Pacific Journal of

Mathematics

OSCILLATION PROPERTIES OF CERTAIN SELF-ADJOINT
DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER

GARY DOUGLAS JONES AND SAMUEL MURRAY RANKIN, 111




PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 1, 1976

OSCILLATION PROPERTIES OF CERTAIN SELF-ADJOINT
DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER

GARY D. JONES AND SAMUEL M. RANKIN, III

Assuming oscillation, a connection between the decreasing
and increasing solutions of

(1) (ry”’y’ = py

is established. With this result, it is shown that if r=1
and p positive and monotone the decreasing solution of (1)
is essentially unique. It is also shown that if » > 0 and
r =1 the decreasing solution tends to zero.

It will also be assumed that p and 7 are positive and continuous
and at times continuously differentiable on [a, + o). By an oscillatory
solution of (1) will be meant a solution y(x) such that there is a sequence
{x,}z., diverging to -+ such that y(z,) = 0 for every n. Equation
{1) will be called oscillatory if it has an oscillatory solution.

Equation (1) has been studied previously by Ahmad [1], Hastings
and Lazer [3], Leighton and Nehari [8] and Keener [7].

Hastings and Lazer [3] have shown that if p >0, =1 and
p =0 then (1) has two linearly independent oscillatory solutions
which are bounded on [a, + <0). They further show that if lim,_... p(¢)=
+ oo then all oscillatory solutions tend to zero. Our result will show
that there is a nonoscillatory solution which goes to zero “faster”
than the oscillatory ones.

Keener [7] shows the existence of a solution y of (1) such that
sgny = sgny” = sgny' = sgn (ry”’). Under the additional hypothesis
that lim inf p(f) = 0 he shows that y({) —0 as t — «. We will give
a condition for y(t) — 0 where lim inf p(tf) can be zero.

Ahmad [1] shows that if (1) is nonoscillatory then every solution
z of (1) with the properties of % above satisfy z = cy for some
constant c.

The following lemmas due to Leighton and Nehari [8] will be
basic in our investigation.

LEeMmMA 1. If y is a solution of (1) with y{¢) =0, y'(c) =0,
Y'(c) =0 and (r{c)y”’(c)) = 0 but not all zero for ¢ = a then y(x),
Y'(x), ¥’ (x) and (r(x)y"(x)) are positive for x > c.

LemmaA 2. If y is a solution of (1) with y(c) =0, y¥"(c) = 0,
Y'(c) £ 0 and (r(c)y”(c)) < 0 but not all zero for ¢ = a then y(x) > 0,
Y'(x) >0, ¥y(x) <0 and (rx)y’ () <0 for zela, ¢).
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We will also use the following theorem of Keener [7].

THEOREM 1. There exists a solution w(x) of (1) which has the
following property:

w(x)w' (@)w"” @)[r@)w”(@)]" = 0;
(P) sgn w(x) = sgn w''(x) = sgn w'(x) = sgn [r(x)w" (x)]’ ;
for a Zx.

We will first show a connection between the decreasing solution
of (1) given by Theorem 1 and the solution that tends to -« given
by Lemma 1. We will use the fact that if y,, ¥, and ¥, are solutions
of (1) then »(x)W(y,, ¥, ¥::x) = r(z)det(yi'(x)) (3,7=1,2 3,4) is a
solution of (1). Further we have

LEMMA 3. If ¥y, ¥, Y, ¥, 18 o basis for the solution space of (1)
then Wm = "'W(?/u Y, ys)r W124 = /"W(?/u Y, ?/4)s W134 = TW(?/U Ys, y4)
ond Wy, = rW(¥., ¥s, ¥.) s a basis for the solution space of (1).

Proof. Let
Y, Y, Y, Y,
e I A
Y Y. 7Y; Y,

(ry?y  (ry) () (ryl)
Then
(W) —rWi, Wie — Wy
—(rWiy rWih —Wi W s
(7' Wi —rWi, oo — Wi
—(rWi) Wi — Wi W iz
(W)  rWa Wis W

adj A =

- (7' 12e)’ Wi Tae W s
(r Wiy rWik Wi W s
(rWi) rWis o3 Wil .

Thus since det A == 0, det adj A == 0. Consequently W, Wy, Wi,
and W,, is a basis for the solution space of (1).

LEMMA 4. Let 9, 9, ¥s Y. be a basis for the solution space of
(1). Then there is a basis for the solution space of (1), 2, 2, 2s, 2,
such that W, = rW(z, 25 23) = kY, Wi = rW(z,, 25, 2,) = kslys, Wi =
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rW(2, 2, 2) = kyys and Wy, = vW(2y, 25, 2,) = kY, where k, # 0, 1 =
1,2 3,4 is a constant.

Proof. Let w, u, us; u, be a basis for the solution space of (1).
Then »W(u,, Uy, us), »W(ny, U, u,), *W(wy, s, ), *W(ny, s, u,) is also
a basis for the solution space of (1) by Lemma 3. Thus each ¥, is
a linear combination of the rW’s. Suppose y = c¢,r W(u,, U, us) +
et W(thy, g, )+t W(thy, s, uy)+cr W(n,, us, u,) Where ¢,#0. Letting
V, = C Uy F Cy, YV, = Colhy — Clhy, V5 = CUs + Cu, and v, = u,, we have
W (v, v v5) = cile.W (uy, Uy, Us) + W (U, %oy ) + W (s, Us, u,) +
W (U, Us, u)l, W(v,, vsy v)=CiW (uy, Uy, wy), W(v,, vs, 0.)=EW (ty, Us, Uy),
W (v, vs, v) = W (u,, s, w,). Repeating the argument three times
gives the desired result.

LEMMA 5. Let z be a monoscillatory solution of (1). Then the
solution space of

(2) z(,’.y’l)l — z’?"y” + Z”’]"y’ — (rzll)fy — 0

1s a three dimensional subspace of (1). Further, if z satisfies the
conditions of Lemma 1 or Theorem 1 then (2) is oscillatory if and
only 1f (1) 1s oscillatory.

Proof. Using Lemma 4, choose solutions ¥, ¥,, ¥. of (1) such
that kz = »W(y, ¥, ¥s), where k= 0. Then

Y Y, Ys Y
i s Ys v 0
ry Y Yy ry”

T S 79 G Y G GO0}

is equivalent to (2). Thus, the first part of the lemma follows. It
follows from Lemma 1 that if z satisfies the conclusion of the lemma
and if ¥ is a solution of (2) such that y(d) = ¥'(d) =0, »(d)y"(d) =1
where d > ¢, then y(x) >0 for z > d, or using the definition of
Hanan [2], (2) is C;;. In the same way it follows from Lemma 2
that if y is a solution of (2) where z satisfies (P) such that y(d) =
y'(d) =0, »(d)y"(d) = 1 then y(z) > 0 for z€e|a, d), i.e. (2) is C, [2].
Writing (2) is the form

(3) (ry”[z) + r2"y'[z* — (rz")y/z* =0,
we have by [4, Theorem 3, p. 338] that (8) is C,(C;;) if and only if

(4) [(ry'[z) + r2"y'[2"] = —(r2")'y/z*
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is Cp;(Cy). It then follows, using the methods of Hanan [2] that (3)
is oscillatory if and only if (4) is oscillatory. Since z satisfies (2),
choose a basis for the solution space of (2) of the form =z, u, u,.
Then zu; — w2’ and zu;, — w2’ satisfy (4) and

(5) (ry'/2*) + [2r2"[2'ly = O .

But Leighton and Nehari [8, p. 335, 3.4] show that (5) is oscillatory
if and only if (1) is oscillatory. Thus the result follows.

THEOREM 2. Suppose (1) is oscillatory. If there exist two line-
arly independent solutions m, and m, of (1) which satisfy (P), then
there is @ ¢ = a and an oscillatory solution w of (1) such that w + N
18 oscillatory, where N 1is the solution defined by N(c) = N'(c) =
N'"(c) = 0, (r(c)N"(e)) = 1.

Proof. Consider the equation
(61) n(ry") — nory” + niry’ — (rni)y =0, 1=12.

By Lemma 5, each of the equations (6) are oscillatory and C,. Since
n, and n, are linearly independent, we can choose ¢ =« such that
ni(e)ny(c) — nyc)n,(c) = 0. Let u; be the solution of (6i) defined by
u,(c) = uie) =0, r(c)w,’ =1 for 7 =1, 2. Since (6i) is C; and u,(c) = 0,
it follows that w«, and wu, are oscillatory solutions of (1). But
uy(€) — ux(e) = ui(e) — uile) = wi'(e) — wi'(c) = 0, (r(c)ul(c)) — (r(c)us'(c)) =
ni(e)/n(c) — ni(c)/ny(c) = 0. Thus u, — u, is a multiple of N and the
result follows.

THEOREM 3. Suppose (1) is oscillatory. If there is a ¢=a
and an oscillatory solution w of (1) such that w + N is oscillatory,
where N 1is the solution of (1) defined by N(c) = N'(¢c) = N"(c) = 0,
(r(e)N"(c)) = 1 then (1) has a basts for the solution space with all
oscillatory elements.

Proof. Let z be a solution of (1) that satisfies (P). Then (2)
is C; and oscillatory. Thus there is a basis for the solution space
of (2), say {u, u, u.}, with all oscillatory elements [5]. Since N does
not satisfy (2), there is a constant 0 < & < 1 such that » + kN is not
" in the solution space of (2). Since w + N is oscillatory, w + kN is
oscillatory. Thus {u + kN, wu,, w,, u;} is a basis for the solution space
of (1).

THEOREM 4. Suppose (1) has a basts for tits solution space with
all oscillatory elements. Then there are two linearly independent
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solutions m, and n, of (1) which satisfy (P).

Proof. Suppose {¥, ¥, ¥, ¥} is a basis for the solution space
of (1) with all oscillatory elements. By Lemma 4 there is a basis
{21, 2,y 25, 24 0of (1) such that Wy, = ky,, W = kY, W= ks,
Wy = by, where Lk, =0 for :=1,2 3, 4. Since ¥, is oscillatory,
there is a sequence {;} — o such that y,(x;,) = 0 for every i. Since
W = ky,, for every x, there are constants c,;; for j =1, 2, 3 such
that ¢}, + ¢, + ¢i, =1 and

U; = C 8+ CiR + €%

has a triple zero at x,. Since {c¢;;};z, are bounded for i =1, 2, 3, we
can assume without loss of generality that

lime;, =¢; for j=1,23.

Hence using Lemma 2 and an argument such as in {7, p. 281]
W, = ez, + €25 + €525

satisfies (P). In the same way there are constants diyy 1=2,3,4,;
j=1,2,3, such that

W, = dzlzl + dzzzs + d2324
Wi = dyz, + dop. + ds2,
W, =d,z + dyzs + d,2,

satisfy the (P). Clearly at least two of W, W, W, W, are linearly
independent.

We will now use the above theorems to prove the following
results for

(6) y” = p(x)y .

THEOREM 5. Suppose (6) vs oscillatory, peC’'la, + ) and p is
monotone. Then there ts a unique solution of (6) (up to constant
multiples) which satisfies (P). Further, a basis for the solution
space of (1) has at most three oscillatory elements.

Proof. Suppose there are two solutions of (6) that satisfy (P)
and are linearly independent. Then by Theorem 1, there is a ¢ = a
and an oscillatory solution % of (6) such that # + N is oscillatory,
where N is the solution defined by N(¢) = N'(¢) = N"(¢) =0, N'"'(c) =1.
By Lemma 1, N(z), N'(z), N"'(x), and N"'(x) are positive for 2 > ¢ = a.
Thus N, N’ and N” are unbounded. Mutliplying (6) by ¥’ where y
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is a solution of (6) and integrating from a to x, we obtain
Gly(@)] = y'"*(z) — 2¢'(2)y"" () + p(x)y*(x)
= Gly@] + | POve)dt .

Assuming that p'(x) <0, G[y(x)] is bounded. Let {x,}7., be the
sequence of maximum points of w”(x). Then w"(x,) < w"(x,) +
p(x,)ui(x,) = Glu(x,)]. But since u + N is oscillatory and N” is
unbounded, %"? is unbounded, contradicting the boundedness of
Gly(x)]. The second part of the conclusion follows from Theorem 4.

If p'(x) = 0, Lazer and Hastings [3] have shown that all oscil-
latory solutions are bounded. The results then follow from the above
theorems.

Whether or not the conclusion of Theorem 5 is true without the
monotone condition on p is an open question.

We conclude with the following observation.

THEOREM 6. If n(x) is a solution of (6) satisfying the conditions
of Theorem 1 where (6) ts oscillatory, then lim,_. n(x) = 0

Proof. Equation (6) is oscillatory if and only if
(7) W'/n?) + @n"[n')y =0
is oscillatory. But, asin [6] it can be shown that lim, .. *»"(x) = 0.

Thus if lim,... n(x) = ¢ > 0 (7) is nonoscillatory.
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