Pacific Journal of
Mathematics

BANACH SPACES WITH A RESTRICTED HAHN-BANACH
EXTENSION PROPERTY

CHARLES W. NEVILLE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 63, No. 1, 1976

BANACH SPACES WITH A RESTRICTED
HAHN-BANACH EXTENSION PROPERTY

CHARLES W. NEVILLE

We shall study the class of real Banach spaces B with
the following restricted Hahn-Banach extension property: For
each Banach space C with a dense set of cardinality < some
fixed cardinal 9, and for each subspace A of C and bounded
linear map T,: A — B, there exists an extemsion 7:C— B
such that {|T||=1|T,|l. Suprisingly, there exist Banach
spaces in this class which are not isometrically isomorphic
to C(X) for a compact Hausdorff X!

The combined results of Goodner, Hasumi, Kelley and Nachbin
show that those Banach spaces with the Hahn-Banach extension pro-
perty, that is, those Banach spaces which are injective in the category
. of Banach spaces and linear maps of norm < 1, are precisely the
Banach spaces of the form C(X), where X is compact Hansdorff and
extremally disconnected [5], [6], [7], [11]. In this paper, we wish to
study those Banach spaces which enjoy a restricted Hahn-Banach
extension property, where the existence of an extension is only re-
quired for spaces which are relatively small.

To be more precise, let N be an infinite cardinal. We shall say
that a Banach space C is J-separable if C has a dense subset of
cardinality . As usual, the word “separable” standing alone means
N, separable. We shall call a Banach space B N-injective if B has
the following restricted Hahn-Banach extension property: Let C be
an N-separable Banach space, let A be a subspace of C, let i: A=—C
be the inclusion map, and let T,: A— B be a bounded linear map.
Then there exists a bounded linear map T with || T|| = || T, ||, making
the following diagram commute:

A<" ¢

(1) }0\/{
B

We shall study the M-injective Banach spaces in this paper. We
shall only consider real Banach spaces here. We shall characterize
the Banach spaces of type C(X) which are N-injective. We shall
also show that there are a good many other R-injective Banach
spaces! Finally, we shall show that if an R-injective Banach space
also happens to be RN-separable, then it is in fact injective in the
full category <Z. This contrasts rather sharply with the situation
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in the category <& of Banach spaces and bounded linear maps.
Sobezyk showed that ¢, satisfies diagram 1, with ¢, = Band N =N,,
except that the extension T may have a larger norm than 7,. On
the other hand, Phillips showed that there is no continuous linear
projection of m onto ¢, so ¢, is not injective in the full category
& (cf. [3, p. 25], [13]).

N-Injectives of Type C(X).

First, let us prove a theorem which will enable us to characterize
the MN-injective spaces of type C(X). To motivate this theorem, the
reader should recall the Stone-Nakano theorem, which says, among
other things, that a compact Hausdorff space X is extremally dis-
connected if and only if C(X) is a boundedly complete vector lattice
under the usual ordering [12]. Thus, the Goodner-Hasumi-Kelley-
Nachbin theorem may be rephrased to assert that the injectives in
<%, are exactly the C(X)’s which are also boundedly complete vector
lattices. It is thus not surprising that a property similar to lattice
completeness would play a role in the study of Y-injectives. We
shall say that an ordered normed linear space B satisfies condition
ay, if the following is true:

(ax) For each N-separable subspace V of B, the following is
true: Given a subset % of V which is bounded above in
norm by m and of cardinality < M, there exists at least one
be B such that ||b]| < m, f=<0b for all fe &, andif ve Vand
f=wv for all fe &, then b < v.

THEOREM 1. Let X be a compact Hausdorff space and let B be
a closed subspace of C(X). Then B 1is N-injective if B satisfies
property ay.

Conversely, suppose B is N-injective, and suppose B contains
a subset Q with the following properties. Q consists of nonmegative
functions none of which are identically 0, @ contains o dense set
of carinality < N, and the set of points at which the function in
Q attain thetr suprema is demse in X. Then B satisfies condition
G

Proof. First suppose that B satisfies condition a,. The proof
that B is MN-injective follows Goodner’s idea of replacing real valued
sublinear functionals with C(X) valued sublinear functionals in
Banach’s original proof of the Hahn-Banach theorem [3, pp. 135-
187], [5]. Let A be a subspace of C, let C be N-separable, and let
T,: A— B be a bounded linear map. Let p: C— B be defined as
follows: Let .2 be a dense subset of cardinality < : of the unit
ball of A. We know that the set T,(.2#") has cardinality <R and
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is bounded above in norm by || T,||. Clearly Ty (A) is N-separable.
By condition a,, there exists w € B which bounds T(.2¢") U {0} from
above, and which satisfies ||u || < || T,||. Because .2 is dense in the
unit ball of A, we have Ty(¢) < ||c||w for all ce C. Let p(c) = || ¢|| u.
Then p is a sublinear map, and T, is dominated by p. Furthermore,
if S is any linear map from a subspace of C to B which is domi-
nated by p, then S is continuous. In fact, S(c) < ||¢||u and —S(¢c) =
S(—c) = llcllw, so (S| =Tl

Now suppose A’ is a proper subspace of C containing A, and
suppose T’ is an extension of T, to A’ which is dominated by ».
Let % be a dense subset of the unit ball of A’ of cardinality < .
Let ze C ~ A'. As in Banach’s proof of the Hahn-Banach theorem,
we obtain for each (x, y)e A’ X A’', —p(—y —2) — T'(y) £ p(x + z) —
T'(x). Let V = the linear hull of {—p(—y —2)— T'(y):yecA'} U
{p(x + 2) — T'(x): x€ A'}. The continuity of p and 7' together with
the N-separability of A’ implies that V is also N-separable. We
would like to apply condition a, to a set &F ={—p(—y — 2) —
T'(y): y € some dense set in A’} to obtain the existence of ¢ € B, such
that —p(—y —2) — T'(¥) £ ¢ < p(x + 2) — T"(x) for all (z, y)e A’ x A’.
But such a set # would not be bounded in norm, so we shall con-
sider a sequence of sets .7, ={—p(—y —2) — T'y):yent},n =
1,2, ---. Since .2 is a subset of the unit ball of 4’, each set .7,
is bounded in norm. By condition a, applied to .&#, and V, there
exists ¢, € B such that w < ¢, < p(x + 2) — T'(x) for each we . &, and
xecA'. Since % is dense in U, the unit ball of A’, we have
—p(—y —2)—T W =c, =< p(x+2)—T'(x) foreachxc A’ and y en U.
Let W = the linear hull of V and {¢,:n =1,2, ---}. Pick z,€ A’ and
Y€ U. Since US nU, —p(—¥9, — 2) — T'(%) = ¢, = p(@, + 2) — T'(w,)
for n =12 ---, so the set € ={c,;n =12, ---} is bounded in
norm. Clearly & is MN-separable, so by condition a, applied to &
and W, there exists ce B such that ¢, < ¢ < plx + 2) — T'(x) for
each n and each x € A’. Hence —p(—y—2)—T'(¥) < ¢ < p(x + 2)— T"(x)
for all (x,y)e A’ X A'. The rest of the proof now follows from
Zorn’s lemma or transfinite induction exactly as in Banach’s original
proof (cf. [3, p. 10]).

Conversely, suppose that B is -injective, and that Q@ £ B con-
tains a dense subset of cardinality < M and consists of nonnegative
elements. Let Y Z X be the set of points at which the elements of
Q@ attain their suprema, and suppose Y is dense in X. We wish to
show that B satisfies condition a;. Let V be an N-separable subspace
of B, and let &# be a subset of V of cardinality <N which is
bounded above by m in norm. Let fel=(X) be the pointwise sup-
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remum of the set .#. Then ||f|l. < m. Let A be the clcl>sed linear
hull of VU@, let C be the linear hull of A and {f} in I*(X), and
consider the commutative diagram

A<',¢C

N/
N, P
B

Here, I is the inclusion map and P is the map guaranteed by N-
injectivity. We assert that b = P(f) is the element whose existence
is required by condition a,.

Clearly it suffices to show that the map P is positive. For then,
if ve &, we have v £ f, which implies that v = P(v) £ P(f). Also,
if veV and v is an upper bound for &, then f < v, which implies
P(f) £ P(v) = v. Finally ||P(H)|| £ ||fll. £ m. But it is easy to
show that P is positive. Let ¢e€C be =0. Let yeY. There exists
at least one ¢e @ such that ¢ = 0, and ¢(y) =1/¢|| > 0. Let x>0
be such that ||Mg|l =licll. Then [[c|[= [N —cllZ||P(\ — )] =
lIng — P(e) ]| =z M(y) — Ple)y) = lle]l — P(e)(y). Thus P(c) = 0on Y.
Since P(c)e C(X) and Y is dense in X, we have P(¢c) =0 on X,
This concludes the proof of Theorem 1.

If we pick B = C(X) and @ = {1} in Theorem 1, we immediately
have

COROLLARY 1. C(X) is RN-injective if and only if C(X) satisfies
condition a.

Clearly, C(X) satisfies condition a, for every cardinal % if and
only if C(X) is a boundedly complete vector lattice. Thus we have
another proof of the following result of Goodner and Nachbin [5],
[11]:

COROLLARY 2. C(X) is injective wn the category <&, if and only
if C(X) 1s a boundedly complete vector lattice. Equivalently, using
the Stone-Nakano theorem, C(X) is injective in the category <%, if
and only if the compact Hausdorff space X is extremally disconnected.

Of course, if C(X) is a boundedly N-complete vector lattice, that
is, if every set in C(X) of cardinality < N which is bounded above
has a least upper bound, then C(X) clearly satisfies condition a,.
From the Stone-Nakano theorem again, we know that C(X) is bound-
edly N-complete if and only if X is both totally disconnected and
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N-disconnected. Here, N-disconnected means the closure of a union
of at most N clopen sets is again clopen, and the if part is true
because we assume X is compact Hausdorff [11], [12]. Thus we have

COROLLARY 3. C(X) is N-injective if it is a boundedly N-com-
plete vector lattice. Equivalently, C(X) is N-injective if the compact
Hausdorff space X s both totally disconnected and N-disconmected.

We do not know whether there exist spaces C(X) which satisfy
condition a,, but which are not boundedly -complete vector lattices.
We conjecture that there are such spaces.

Other examples of N-injectives. Kelley showed that every in-
jective in the category <%, is of type C(X) [7]. This is not true for
N-injectives! We with to give a general example of a proper sub-
space of C(X) which is N-injective, but which is not of type C(Z)
for any compact Hausdorff Z. To do this, we shall need an example
of a compact Hausdorff space X with special properties. We shall
call a point » of a topological space Y an 3 — P point if the inter-
section of I neighborhoods of p is again a neighborhood of p. The
standard name for an N, — P point is just P-point (cf. [4, Chapter 4]).

First, let us manufacture an example of a compact Hausdorff
space X which contains a nonisolated 9t — P point x,, and which is
totally disconnected and M-disconnected, but not extremally discon-
nected. For N = N,, such examples are fairly ubiquitous in point
set topology, and may be manufactured from the Stone space of
suitable Booolean algebras, or by other means (cf. [2] for a recent
and interesting example). The example we shall give is taken from
Gillman and Jerison [4, Exercises 4N, 6M], who unfortunately only
consider the case M = N,. We shall consider the case of general N,
which introduces slight additional difficulties. We want to thank
A. Hager for suggesting this and other examples of nonisolated
N — P points.

Let Y be a set of cardinality > M. Let z,€ Y. Topologize Y
as follows: A set UZS Y is open if x,¢ U, or if x,e Uand Y~ U
has cardinality < M. This amounts to giving Y ~ {x,} the discrete
topology, and letting neighborhoods of x, be complements of sets of
cardinality < N. Clearly a set F is closed in Y if x,¢ F, or if x,¢ F'
and the cardinality of F is < 3N. From this, we see immediately
that Y is normal. Clearly x, is a nonisolated 9 — P point of Y. To
see that Y is not extremally disconnected, let U be a subset of Y
such that x,¢ U and both U and Y ~ U have cardinality >®. Then
U is open, and the smallest closed set containing U is UU {z,}. But
the closure of U, UU {x,}, is not open, so Y is not extremally discon-
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nected. By the Stone-Nakano theorem, C,(Y), the bounded contin-
uous functions on Y, do not form a boundedly complete vector
lattice.

On the other hand, it is easy to show directly that Cy(Y) is a
boundedly -complete vector lattice. Clearly, f: Y— R is continuous
if and only if, given € > 0, there exists a set F. of cardinality < N
such that | f(x) — f(x,)| < ¢ for all x¢ F,. Suppose # < C(Y) has
cardinality < N. Let f be the pointwise supremum of &#. Let ¢ > 0.
For each he. &, let F, . be a set of cardinality < R such that | h(x) —
Mx)| < e for x¢ F,.. Let F.,=U{F,.:he.&}. The F, has cardi-
nality < R, and if x¢ F., then |h(x) — h(x,)| < ¢ for all he &, so
[f(x) — fx,)] < e as well. Thus f is continuous, and so C,(Y) is
boundedly RN-complete.

Let X be the Stone-Cech compactification of Y. Then C(X) is
isometrically isomorphic, and isomorphic as an ordered Banach space,
to C(Y). Thus C(X) is not boundedly complete, so X is not ex-
tremally disconnected. On the other hand, C(X) is boundedly %-
complete, so X is totally disconnected and MN-disconnected. Finally
Y is dense in X, so %,, being an N — P point of Y, is alsoan Nt — P
point of X. Clearly, %, is not an isolated point of X.

By taking finite disjoint unions of copies of X, we may construct
compact Hausdorff spaces with at least »n nonisolated ¢ — P points,
which are totally disconnected and 9t-disconnected, but not extremal-
ly disconnected. Incidentally, C(X) is a good example of a Banach
space which is N-injective, but not iujective in 2Z. So is C(X) =
{f €eC(X): f(x,) = 0}! Because x, is an N — P point, C(X) is a bound-
edly RN-complete vector sublattice of C(X), and so satisfies condition
ay. Hence, by Theorem 1, it is NM-injective. However, because z, is
not isolated, C(X) is not isometrically isomorphic to any C(Z), and
thus by the Goodner-Hasumi-Kelley-Nachbin theorem is not injetive
in <Z. We shall not go into greater detail, because this example
will be subsumed under the promised general example, which we
shall now give in the form of a theorem:

THEOREM 2. Let X be a compact Hausdorff space which is totally
disconnected and R-disconnected, and which contains n mnonisolated
N — P points, x, +--, ®,. Let x,€X, let ¢, ---,c,e[—1, 1), and let
B={feCX): flx)) = ¢, flx,),i =1, -+, n}. Assume n =1 and x,, x,,
x, are all distinct. Then B is N-injective. However if at least one
¢, = —1, then B is not isometrically isomorphic to C(Z) for any
compact Hausdorff space Z.

Proof. The key to the proof is the fact that for any feC(X)
and ce R, {x: f(x) = ¢} is a G,. Thus f is constant in a neighborhood
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of any P point of X. Let C be JN-separable and let A be a subspace
of C. Let T,: A— B be a bounded linear map. Let V be the closure
of T(A), and let % be a dense subset of V of cardinality < K.
For ke 27] let G,, be a neighborhood of the 9t — P point x, in which
k is constant. Since there are at most N G, ,’s, the set N (G, .: ke 2%}
is also a neighborhood of #,. For i =1,2, ..+, n, let G, be a clopen
neighborhood of @, contained in N {G; ,: k< 2¢"}, and assume z,¢ G,
and G, N G; = @ for ¢ == 4. Since 97 is dense in V, not only is each
fe 27 constant on G;, but so is each fe V.

Let Y= X~ U~ G; and let : C(X)— C(Y) be the restriction
map. Clearly Y is not only compact, but also open in X. Thus Y
is both totally disconnected and N-disconnected, and hence C(Y)
is boundedly NR-complete and hence is N-injective. Consequently,
rTy: A— C(Y) has an extension S:C— C(Y) with the same norm.
Define T:C— B as follows: T(c)(y) = S(e)(y) on Y, and T(e)x) =
¢S(e)(x,) on G,. Since each G, is clopen, T'(¢) € G(X). Clearly T(C)<
B, T is linear, and ||T(¢c)]| =11 S(e)||, so ||T]| = ||T,||. Finally, if
ac 4, then T(a) = Tfa), since Ty a) is constant on each G,. Thus
B is N-injective.

We still must show that B is not isomorphic to any C(Z) if some
¢, # —1. Let & be the set of extreme points of the unit ball of B*,
the dual of B, and endow & with the weak = topology. Be renum-

bering the z, if necessary, we may assume {x,:¢, = —1} = either @
or {&ppy, *+-, ,}. In the former case, set p = n. Then & is home-
omorphic to the union of two disjoint copies of X~ {x, ---,x,} (corre-

sponding to == point evaluations) with x, in one copy identified with
{p,y, +++, z,} in the other copy and vice-versa, if p <mn. Since
Z, +++, %, are not isolated points of X, & is not compact. Therefore,
B cannot be isometrically isomorphic to a C(Z) [3, p. 113].

The reader should note that if some of the ¢,’s are < 0, then B
is not even a sublattice of C(X). Actually, we can say even more.
If Z is a compact Hausdorff space and ¢: Z— Z is a homeomorphism
such that o® is the identity map, then CAZ) = {f € C(Z): foo = —f}.
If for some ¢,, ¢,, #0 and —1 <¢, <1, then B is not even isomet-
rically isomorphic to any C,(Z)! For the set S of extreme points of
the dual unit ball of B which are in minimal facets of the dual unit
ball is clearly all of &, and point evaluation at w, clearly lies in
the weak = closure of &. But for all e B, we have b(x;,) <[ b].
Thus B cannot be isomorphic to any C,(Z) by a theorem of Jerison’s
[3, p. 121].

Each N-Injective is Almost of Type C(X).

Despite the example we have just given, an M-injective Banach
space is not too far removed from a space of type C(X). First, the
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spaces of type C(X) share with the space of the example we have
just given the property that their duals are isometrically isomorphic
to a space of type L'(¢). (A long list of spaces which are preduals
of spaces of type L'(#¢) is given in [8, pp. 180-181]. (I would like
to thank Y. Benjamini and the referee for bringing the class of
preduals of spaces of type L'(#) to my attention.) A well known
result of Lindenstrauss’s states that each Banach space enjoying a
finite dimensional extension property (which is much weaker than
the extension property of N-injectivity) is the predual of an L'()
space [9, Theorem 6.1]. Hence the M-injective Banach space and
the spaces of type C(X) all belong to the rather large family of
preduals of spaces of type L'(z#). But an M-injective space is more
closely related to the spaces of type C(X) than this. In fact, it
turns out that if B is N-injective, then B is the direct limit of its
N-separable subspaces of type C(X).

We may prove this, and more, essentially by means of a slight
modification of Kelley’s original proof that a Banach space which is
injective in the category <7 is of type C(X) [7]. In what follows,
if E is a Banach space, then E* shall denote its dual, and U, shall
denote the closed unit ball of E. If K is a convex subset of K, then
ext K shall denote the set of extreme points of K. If Y £ E, then
Cl Y shall denote the closure of Y. The topology with respect to
which the closure is taken will be specified whenever it is not clear
from context. Finally, if Y is a compact Hausdorff space and y ¢ Y,
then ¢, C(Y)* shall denote evaluation at the point y.

LeMMA 1. Let M and N be Banach spaces, and let S: M — N be
o linear map of norm < 1. Let p be an extreme point of Uy, and
let L =S (p)N Uy. Then either L = @ or L is a support of Uy.

Lemma 1 is a standard fact (cf. [7]).

THEOREM 3. Let B be an RN-injective Banach space. Let A be
an N-separable subspace of B, and let i: A——B be the inclusion
map. Let W be a weak = relatively open subset of Clext U, such
that WN(—W)= @ and CL(WU(—W))=ClextU,.. Let Y =CIW.
Here, the closures are taken with respect to the weak * topology.
Endow Y with the weak = topology, and let j: A—C(Y) be the
natural isometric injection. Then there exists an tsometric injection
p: C(Y)— B such that poj = 1.

Before proving Theorem 3, three comments are in order. First,
as Kelley observed, it is easy to produce such sets W: Simply apply
Zorn’s lemma to produce a set W which is maximal with respect to
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the two properties WN(—W)= g, and W is weak = open in
Clext U, [7]. Second, from the Krein-Milman theorem, we know
that if ae A, then sup{y(a):y€ U,.} is actually attained at some
yeClext U,.. Since WN(—W) is dense in Clext U,, it follows
that j is an isometry. Finally, Y is clearly compact by the Alaoglu
theorem.

Proof. First, we must show that C(Y) is J-separable. Observe
that 7(A4) is N-separable, so the subalgebra in .o~ in C(Y) genarated
by j7(A) and the function = 1 is also N-separable. But .o” separates
points of Y because A does. By the Stone-Weierstrass theorem, .o/
is dense in C(Y), so C(Y) is also M-separable. From the N-injectivity
of B, we conclude that there exists a linear map p:C(Y)— B of
norm 1 such that poj = <.

We will show that p is 1 —1 by showing that its adjoint
p*: B* — C(Y)* is onto. We assert that it suffices to show that
{e,ye WnextUys) € p(Up). To see why, suppose this inclusion
holds. We know p* is weak = continuous and U,. is weak = compact,
so p*(Uy,) is weak » compact and hence weak = closed in C(Y)*.
Thus Cl{e,: ye Wnext Uy} S p*(Up). But the map y—e, ye¥,
is a homeomorphism from Y onto the set {e,; y€ Y} endowed with
the weak = topology. Furthermore, because W is an open subset
of ClextU,., we know that Cl(WnextU,)=ClW =Y. Thus
{e,;ye Y) S p*(Uy). From this, we conclude that ext U,y =
{*+e,ye Y]}, as well as the closed convex hull of ext U,,,., are con-
tained in p*(Ujz). By the Krein-Milman theorem, U,y S p*(Usg).
Thus p* is onto.

In fact, from this last inclusion, we may conclude that p is not
only 1 — 1, but is actually an isometry. Suppose p were not an
isometry. We know that [[p|| =1, so there exists feC(Y) such
that || £l =1 and || p(f)|] < 1. Let peC(Y)* be a linear functional
of norm 1 such that p(f)=1. If A€ U, then | p*ON(f) | = I Mp(f) | £
()l <1, so r¢ p*(Uz). This is a contradiction.

We thus need only show that {e,:ye WnextU,} < p*(U) in
order to complete the proof of Lemma 2. We will do this by chasing
the following commutative diagram of adjoint maps:

A %k o B ok

N S
TN P*
C(Y)*

(2)

Note that all of the maps involved have norm < 1. Let yeY.
Clearly j7%(e,) = y for each y € Y. We assert that if ye Wnext U,
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then j* Y (y) N Uswy = {6,}). Let L = 7*7'(y) N Upyy. By Lemma 1, L
is a support of Uyyy.. L is closed in Ugy). and hence is compact.
By the Krein-Milman theorem, L has extreme points. Because L is
a support of Ugys each extreme point w of L is also an extreme
point of Uy, and hence is of the form =+e¢, for some ze¢ Y. If
w = —e,, then for each ¢ ¢ A we have y(a) = j*(—e,)(a) = —e,(j(a)) =
—z(a),soy = —z. Henceye WN(—-C1W). But WNn(-C1W) = @,
since WN(—W)= @ and W is open. Thus w is not = —e, for any
zeY. If w=e¢, for some z¢ 7Y, it is immediate that z = y. Hence
the only extreme point of L is e¢,. By the Krein-Milman theorem,
L = {e,}.

Now let y € WNext Uy, and observe that i* ™ (y)N Uz # @ by
the Hahn-Banach theorem. Let z€4* ' (y) N Uz. By the commuta-
tivity of diagram 2, j*p*(z) = i*(2) = ¥, so p*(z)€j* *(y) N Uz, and
hence p*(z) = ¢,. Consequently, {e,: y€ W N ext U,} & p*(Us.), which
completes the proof of Theorem 3.

COROLLARY 1. Suppose B is not only RN-injective, dbut also N-
separable. Then B is isometrically isomorphic to C(X), for some
extremally disconnected compact Hausdorff space X. Hence B is
injective im the category 7.

Proof. In the statement of Theorem 3, choose A = Band X = Y.
Then B is isometrically isomorphic to C(X). By Theorem 1, Corollary
1, C(X) satisfies condition a@,. But C(X) is FN-separable, so C(X)
satisfies condition a, for every infinite cardinal R, and thus C(X)
is 2 boundedly complete vector lattice. The remainder of the corol-
lary now follows from Theorem 1, Corollary 2, and the Stone-Nakano
theorem.

Corollary 1 may be rephrased to assert that if B is injective in
the full subcategory of <z whose objects are all J-separable spaces,
then B is actually injective in <Z,. As we mentioned in the intro-
duction, Corollary 1 is interesting because the situation is dramatically
different in the category < It would be interesting to know if
there are any nontrivial full subcategories of <%, in which new in-
jectives can arise. As we shall see in Corollary 5, the full subcategory
&, of <&, whose objects are all weakly compactly generated spaces,
is not such a subcategory.

COROLLARY 2. B is injective in the category <, if and only if
B is isometrically isomorphic to C(X), for some extremally discon-
nected compact Hawsdorff space X.
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Proof. One way is Theorem 1, Corollary 2. Conversely, suppose
B is injective in <Z. B is N-separable for some M, and also N-
injective. Apply Corollary 1.

Corollary 2 is the full Goodner-Kelley-Nachbin characterization of
injectives in <7, [5], [7], [11]. Of course, Corollary 2 is a bit of a
cheat, because the proof of Theorem 3 is essentially Kelley’s proof
(slightly modified) that each injective in .2Z; is of type C(X). However,
the following corollary is somewhat more interesting because it may
provide the first step toward a complete characterization of -
injectives.

COROLLARY 3. Let B be an N-injective Banach space. Then B
18 the direct limit of its M-separable subspaces of type C(Y).

Proof. It suffices to prove that B is the union of such subspaces,
and that if A and C are two such RN-separable subspaces, then there
is an M-separable subspace D of type C(Y) such that AUC < D.
Both assertion follow immediately from Theorem 3.

I am indebted to Y. Benjamini for pointing out that Corollary 1
is actually strong enough to imply the following important result:

COROLLARY 4. There are no V-injective, infinite dimensional,
weakly compactly generated spaces.

Piroof. Suppose B is an J-injective space which is also infinite
dimensional and weakly compactly generated. Let E be an infinite
dimensional separable subspace of B. By a fundamental result of
Lindenstrauss’s, there exists a separable subspace D 2= E and a pro-
jection P: B— D of norm 1 [10, pp. 170-171]. The existence of the
projection P guarantees that D is M-injective. By Corollary 1, D is
isometrically isomorphic to C(X), where X is extremally disconnected
and compact Hausdorff. Since C(X) is separable, X is metrizable.
Thus X has finite cardinality, so D = C(X) is finite dimensional,
which is impossible.

COROLLARY 5. The only injectives wn &, are already injective
in the larger category <7, and are in fact fintte dimensional.

Proof. Let B be an injective in %&,. Since <, contains every
separable space, B is N,-injective. Apply Corollary 4.

In conclusion, we would like to raise a question whose resolution
probably awaits a complete characterization of N-injectives. Cohen
showed that every Banach space has an injective envelope in the
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catogory < [1]. It would be interesting to know whether or not
every Banach space also has an -injective envelope.
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