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Let <G+> be an abelian group. With each multiplication
on G (binary operation * such that <G -+ x> is a ring) and
each g€ G is associated the endomorphism gF of left multi-
plication by g. Let L(G)={g9¥|ge G, e Mult G}. Abelian
groups G such that L(G) = E(G) are studied. Such groups
G are characterized if G is torsion, reduced algebraically
compact, completely decomposable, or almost completely
decomposable of rank two. A partial results is obtained for
mixed groups.

Let {G+) be an abelian group. With each multiplication on G
(binary operation * such that (G + =) is a ring) and each ge @G is
associated the endomorphism g of left multiplication by g given by
gf(x) = gz, xeG. Let L(G) be the set of all such endomorphisms,
ie, L(G) = {gr |geG, & Mult (G)}. In general all one can say is
that L(G) is a subset of the endomorphism ring E(G). In this paper
we consider abelian groups G such that every endomorphism is a left
multiplication.

DEFINITION 1. An abelian group G is multiplicatively faithful
ifft L(G) = E(G).

We mostly follow the notations in [2]. Specifically: all groups
are abelian, rings are not necessarily associative, @ denotes the tensor
product over Z and ¢ @_ the natural map #— g Q@ 2 from G into
G® @G, o(x) is the order of an element z, Z(d) is the cyclic group
of order d and Z(d)* is the multiplicative group of units in Z(d).
For a prime p, we write Z, for the localization of Z at p and Z,
for the ring (or group) of p-adic integers. We use t(A)[t(x)] for the
type of a rank one torsion free group A [element z] and h(x) for the
height sequence. Finally, (S)[{S), ]is the subgroup [pure subgroup]
generated by S.

We begin by listing some simple results.

A. Let 6, Hom (G® G, G)— E(G) be given by 6,(4) = 40 (9 Q_),
4deHmm(GR G, G), geG. Then G is multiplicatively faithful iff
U,<¢ Image 4, = E(G).

Proof. Mult G, the group of all multiplications on G, is isomorphic
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to Hom (G ® G, G). Under this identification 4o(g ®_) = g,.
B. G is multiplicatively faithful iff for each ¢ E(G), there
exists u €@, o0 e Mult G such that the following diagram commutes:

u®:->G®G

G

AN /
0\‘ /o
G
Proof. Obvious.

C. A divisible group is multiplicatively faithful iff it is torsion
free. More generally, if G = DP R, D the maximal divisible subgroup
of G with D torsion free, then I(G) = E(G) iff L(R) = E(R).

Proof. This follows directly from (B) and elementary properties
of the tensor product.

D. If Z is a direct summand of G, then I(G) = E(G). More
generally, if A is a ring, 1€ A, and H is a unital A module, then
A P H is multiplicatively faithful.

Proof. Let e F(A@ H). Set u =1¢ A, and define 0 e Mult G
by 03, @z, Dy) = Jag(z,); a,€A, v,cADH, ye HR(AD H).
Then

ASH 2 (Ao H)® A H)

\ /

commutes.

E. Let R(G) be the set of all right multiplications by elements
of G for all rings on G. Then I(G) = K(G) iff R(G) = E(G).

Proof. This follows from considering opposite rings.
Multiplicatively faithful torsion groups are easily characterized.

THEOREM 1. Let G be a torsion group. Then G 1s multiplica-
twely faithful iff G is bounded.

Proof. If L(G) = E(G), then there exists uw €@, o Mult G such
that oo(u @_) =1, where 1; is the identity endomorphism. It follows
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that »G = (0), where n = o(u). If nG = (0), neZ", we can write
G = Z(n) H. (D) applies to give L(G) = E(G).

We next consider mixed groups, and characterize the multipli-
catively faithful ones in one special case.

THEOREM 2. Let G be mixed with maximal torsion subgroup
T=@,T, Supposethat T, (0) for only a finite number of primes
», and also that G/T is homogeneous completely decomposable. Then
L(G@)=EQG) if 1) G=THF, (2) each rank 1 summand of G/T
has idempotent type, (3) o(G/T) = G/T implies T, 1s bounded.

Proof. Suppose (1), (2) and (3) hold for G as above. Let T =
T, T, where T, is the sum of the bounded and T, the sum of the
unbounded p components of 7. Since T, is bounded, write T,=Z(n)PX
with X a unital Z(n) module. F = G/T is homogeneous, completely
decomposable and nonzero. Say F = A B where A is torsion free
of rank one and B = @..;(4).. (I = @ is allowed.) Since ¢(A4) is
idempotent, A is (may be regarded as) a subring with identity of
@ ([2], Th. 121.1). Moreover, since p4 = A only when (T,), = (0),
B® T, may be made into a unital A module in the natural way.
Thus, X BT, is a unital Z(n) P A module and (D) applies to
show G is multiplicatively faithful.

Conversely, let L(G) = E(G) for G satisfying the conditions of our
theorem. Let we G be such that uf = 1;, * some multiplication on
G. If uepG, clearly T, = (0).

Now consider a prime p such that v + T € p(G/T). Since (v + T),
induces the identity endomorphism on G/T, it follows immediately
that w + Tep(G/T) forallne Z*. Writeu = pg + ¢t =09 + ¢, + £,
where o(t,) = p*, (o(t,), p) =1. If ¢, =0, then wepG and T, = (0).
If ¢, =+ 0, then, for all z¢T,,

r=uxr=(pg +t +t)xx = p(g*x) + t,*xx .

(Since (o(t,), p) =1 and xzecT, t*x=0.) But o[n(g*2)] < oz),
o{t,xx) < o(x), 80 o(x) = oft, * x) < o(¢,). Thus T, is bounded.

Thus, for each p such that u+T € p(G/T), we have u+T € p"(G/T)
for all ne Z*, and T, is bounded. Since &(u + T) is the type of each
rank 1 summand of G/T—(recall G/T is homogeneous)—(2) and (3)
hold. Let T, T, be as before. Since T, is bounded, G = T, P H with
T,C H.

To establish (1), we must show that T, is a direct summand of
H. Write H/T, as a direct sum of isomorphic rank one groups,
HIT,=@ A, and let A, = {a; + T,)« Where k{a, + T:) = (m,;), m;; =0
or o for all ¢, 7. Since p(H/T,) = H/T,— (T,), = (0), the following
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implication holds: a;, + T,€ p(H/T;) — a, € pH. From this one easily
obtains H = T, F, where F = {a.})«.

ReEMARK. The condition 7T, # (0) for only finitely many p is
necessary for the theorem. Let G =[], Z(p). Then T(G) = @, Z(p)
is not a direct summand of G. However, G/T(G) is homogeneous
completely decomposable (torsion free divisible) and-—as we shall see
in Theorem 3 — L(G) = E(G).

We next characterize reduced algebraically compact multipli-
catively faithful groups. If G is reduced algebraically compact, then
G =II,G,, where each G, is a complete module over Z,. Since
each G, is fully invariant in G (¢G, = G, for all ¢ + p) and since
Hom (G, ® G, G,) = (0) unless p = ¢ = r, it follows that L(G) = E(G)
if I(G,) = E(G,) for all p. Each G, may be written as a completion:
G, = (B;® B,)", where B; = @aeI(ZAp)m B, = @;ses Z(0*), 0 <y < oo
(See [2], §40 for details.)

THEOREM 3. Let G be reduced algebraically compact. Then G
18 multiplicatively faithful iff, for each p, either B; =+ (0) or G, is
bounded.

Proof. If G, is bounded, then L(G,) = E(G,) by Theorem 1. If
B = (0), write B, = Z2,@® B’. Then G, =(Z,d B @ B,)". Since Z,
is algebraically compact and pure in G, ({21, Th. 41.7, 41.9), we have
G,=2,dG. Since G, is a unital Z, module, (D) gives I(G,) = E(G,).

Conversely, suppose G is reduced, algebraically compact and
multiplicatively faithful. Then L(G,) = E(G,) for allp. If for some
p B =(0), then B, = @sr Z(p*) = T < G, & 155 Z(p*#), Where T
is the torsion subgroup of the direct product. (T < B, = G,.) Now,
G,/T is torsion free divisible, thus homogeneous completely decom-
posable. Moreover, T is a p-group, and L(G,) = E(G,). Theorem 2
applies to give a splitting G, = T@ F. Since G, = T, F = (0). Thus,
G, is a reduced algebraically compact torsion group, and is, therefore,
bounded ([2], Cor. 40.3).

For the rest of the paper, we consider torsion free groups. First,
we do the completely decomposable case.

THEOREM 4. Let G = @, A;, where each A, is torsion free
rank one. Then IL(G)= E(G) iff there exist subsets A, ++-, A, of the
mdex set A and rank one groups A, -+, A, M€, with (1) 4=
U, 4, and (2) H(4;,) + t(A) = H(A,)) for all Ned, i=1,---, n.

Proof. Suppose 4, -+, 4,; A, -+, A;, exist satisfying the above
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conditions. Without loss of generality, assume 4,, ---, 4, are disjoint.
Put M =X, in (2) to see that each #(4,,) is idempotent. Thus, each
A;, can be made into a rank one ring with identity. Let G;=@;.., Gi.
Due to (2), each G, can be regarded (in the natural way) as a unital
A;, module. So we have G = @, G; is a unital A module with
A =@, 4,, (ring direct sum) Since A4 is a. (group) direct summand
of G, (D) applies.

Now suppose G = @,.. A; with L(G) = E(G). Choose ueG,
oceMult G such that oo(u@_) =1, Write u = > a;, a;, €A,
Then, for all xed, 7 o (@i, 4;, ® A;) = A, when © is the projec-
tion from G onto A,. Thus, for each ), there exists at least one
i, 1< 9= n, with #(4;, ® 4;) = (4, + H4;) = t(A4;). The desired
partition of 4 now easily can be constructed.

Let G be an almost completely decomposable rank two torsion
free group, i.e., G2 AP B2dG for some deZ" and rank one
subgroups A4, B of G. We will obtain a numerical condition to show
when such a G is multiplicatively faithful. We may assume #(4)
and #B) are incomparable. (If ¢(4) and #(B) are comparable, then
G = AP B by Theorem 9.6 of [1]. If G = A@ B, Theorem 4 gives
a complete description of when G is multiplicatively faithful.)

Let A = {(a)4, B = <{b), and let d be the minimal positive integer
with dG S AP B. 1t is easy to show that G = (A B, a + nb/d) <
Q @ Q where 7 is an integer with (n,d) =1. (G/A®D B = Z(d).)

Let h,(x) be the p-component of the height sequence of % and
let TI. = {p|ha) = =}, IIs = {p|h(b) = =}. It is also easy to show
that pe[l,UTIls— (p, d) = 1. Let S be the multiplicative subgroup
of Z(d)* generated by 11, U IIs.

THEOREM 5. Let G = (A@D B, a+nb/d) be as above. Then L(G) =
E(G) iff (A) and ¢B) are idempotent and neS.

Proof. Suppose L(G) = E(G). If either A or B—A say—had
nil type, then AG = GA = (0) for any multiplication on G. (Recall
that t(A), t(B) are incomparable.) Thus, 1, could not be represented
as a left multiplication for any ring on G. Since L(G) = E(G) we
must have t(4), #(B) idempotent. .

Since #(A), ¥ B) are idempotent we can assume, without loss of
generality, that 4,(a)=0, p ¢ 14, h,(0)=0, p ¢ I[s. Choose o ¢ Mult (G),
x=aa + Bbe@, a, €@, such that the following is a commutative
diagram:

G@:G@)G

1(;\ /0
G
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Let [T, ={meZ|m=ps-.- p¥ p, eIl,} and define T], similarly.
Since #(A), ¢(B) are incomparable, we have o(a ® b) = 0(b ® a) = 0;
ola ® a) = (c/h)a, heIl; a(db & b) = (e/k)b, ke I15 Let y = a + nb/d.
Then

1 [c nle ]
o = = —bleG.
(¥ ® ) i G
Since d is relatively prime both to »* and to anything in ], U Tl
we must have ¢ = ¢'d, ¢ = ¢'d

1{¢ ne’
Fl5arth]ee.
But 1/d[a + nbl € G. A short computation yields: n%'/k — nc'/h =0 (d).
Since (n, d) = 1, we have ne'h — ¢’k = 0 (d).

Now o[z ®a] =o[(aa + Bb)R a] = ac(a Q a) = a(c'd/h)a =
1(a) = a, so a = hf/c'd. Similarly, 8 = kfe’d. Since aa + Bbe @G, we
must have ¢’ €[4 ¢ €[z But then n = c'k/e’h (d), so neS. This
shows the two conditions of our theorem are necessary for L(G)= E(G).

Conversely, suppose it(A), {(B) are idempotent and ne€S. Let
a, b be as before. Let A€ E(G). Since t(A), ¥B) are incomparable,
Ma) = (m/h)a, Mb) = (t/k)b; he [1, ke Ilz- Now My) = 1/d[(m/h)a +
(nt/k)b] € G, so we must have mk — th = 0 (d).

Since neS, it is easy to choose ¢, c,€ 114, €, ¢ €15 such that
nec, = ce, (d).

Let ¢ be defined by o(a @ a) = (d¢/c)a, o(bQb) = (de/e,)b, a(a@b) =
ob®a)=0. To show o[G&Q G]<S G, it is enough to check that

oy R a), ola@y), oty ®b), 0(bX y) and o(y ® y) are all in G. All
of these elements are obviously in G except the last one, and

oy y) = l[@a + ’ﬁﬁb:l = -1—[—0—0, + nzf-b} .
dz 01 61 d ¢, el
This is in G iff n(c/c,) = n*(efe,)(d), which is true by choice ¢, ¢, ¢, e,.
Thus, ¢ € Mult G.
Now let

= l[__c,m ﬁb]
9= e e

It follows directly that go(¢g@®_) = A. (One need only check this
identity on the independent set {a, b}.) It remains to show that geG.
Now g e G iff nleymfhe] = et/ke (d). This congruence is easy to derive
from mnec, = ce, (d) and mk = th (d), both of which are given. Thus,
ge@, g7 =\, and G is multiplicatively faithful.
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The above theorem can be used to construct an example which
shows that multiplicative faithfulness is not a quasi-isomorphism
invariant for torsion free groups. Let A = {(m/3")a|m, ke Z},
B = {(m/(11)*)b|m, ke Z}, and let G =<{AD B, a + 2b/61). Then
IH.=1{8}, II- = {11} and 2¢<JI,UTIls> S Z(61)*. G is not multi-
plicatively faithful by Theorem 5. A @ B is multiplicatively faithful
by Theorem 4. G is quasi-isomorphic to A@ B, since G2 AP B2
61G.

We give a name to a common occurence for torsion free groups.

DEFINITION 2. Let p be a prime and A a rank one subgroup
of a torsion free group G. A is called p-dense in G iff p(G/A) = G/A
and G is p-reduced.

THEOREM 6. Let A be p-dense in G for some prime p. Let
0acA and let 4, I e Mult G be such that af = af. Then 4=T.

Proof. Since A is p-dense, Hom (G/A R G, G) = (0). But then
also Hom (G/{a) ® G, G) = (0), since A/{a) @ G is the torsion subgroup
of G/Ka) @ G and G is torsion free.

The exact sequence: 0— G i& GRG—G/la)QG—0 yields:
0— Hom (G/{a) ® G, G) — Mult G g E(G), where 0 is given by 6(4) =
4o(a @) = af € E(G). Since Hom (G/<{a) ® G, G) = (0), ¢ is 1 — 1.
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