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Let A=k[z,,---,x,] be a finitely generated integral domain
over a field k of characteristic zero. Let A denote the integral
closure of A in its quotient field. A well known result due
to A. Seidenberg says that any first order k-derivation of A
can be extended to A. This result is known to be false for
higher order derivations. In this paper, the authors inves-
tigate what types of higher derivations on A can be extended
to A. The main results are for higher derivations which are
cup products. Set Deri(A) = Deri (A), and inductively define
Der?(A), as follows:

Der?(A), = {pe Derz(A)|do ez Der: (A), U Derf~(A4),} .

The authors show that if ¢ € Derf (A4),, then o(A) S A. Various
examples are given which indicate that the above mentioned
result is about as good as possible.

Introduction. Throughout this paper, A = k[x, ---, x,] will
denote a finitely generated integral domain over a field & of charac-
teristic zero. We shall let @ denote the quotient field of A and
A the integral closure of A in Q. For each n=1,2, -.., we shall
let Dery(A) denote the A-module of all nth order k-derivations of A
to A. Thus, peDery(A4) if and only if @€ Hom, (A4, A), and for
all @y, +--, a,€ A we have

v

(1) olaw, -+ a,) = st (“l)s_i <21<ia’i1 tee az‘s@(ao tev dil tet Oy e @,) -
The authors refer the reader to [3] for the various facts about
Der;(A) used in this paper. Of particular importance is the fact
that any nth order derivation @€ Der}(A4) can naturally be extended
to an nth order derivation of any localization of 4 [Thm 15; 3].
We shall need the Hochschild coboundary operator 4 which is
defined as follows: If @ e Hom, (4, 4), then dp: A X A-— A is the
k-bilinear mapping defined by 4e(a, a,) = @(a.a,) — a,P(a,) — a.P(a,).
We shall also need the cup product @ U + of two k-linear mappings
@ and ¥ of A. @ U: A X A— A is the k-bilinear mapping defined
by @ U ¥(a, @) = @(a)y(a,) If P and P are two A-submodules of
Hom, (4, A), then P U P will denote the set of all k-bilinear mappings
of A x A into A which are finite A-linear combinations of mappings
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326 JOSEPH BECKER AND WILLIAM C. BROWN

of the form @ Uy for o€ P, v€ P’. Thus, if @ is an nth order k-
derivation of A such that 4 e 3= Der; (A) U Der;~ (A4), then there
exist constants ¢;;€ A and k-derivations v, A¥’ € Deri (A) such that
for all @ and b in A, we have

P(ab) = ap(d) + bp(a) + 3. enyi" (@) + - -
+ 2 e (@)N(D)

Now the purpose of this paper is to study which nth order k-
derivations ®: A— A can be extended to A. In [4], A. Seidenberg
showed that any 1st order derivation of A must map A to A. In
[1], an example was given which shows that 2nd order derivations
® € Deri(A) need not have the property that ¢(4) = A. Since we shall
have use of this example latter, we present it here

(2)

ExAMPLE 1. Consider the curve X® = Y® over the rational numbers
Q. Let A be the coordinate ring of this curve i.e. 4 = Q[x, y] =
QIX, Y]/(X? — Y?®). One can easily check that A is a domain whose
integral closure is given by A = A[x/y]. Since the quotient field of
A is a finite separable extension of Q(y), it follows that any 2nd
order derivation ® € Der3(A4) is determined by its values on y and %°.
A simple calculation shows that if ®(y) = a, and @(y*) = b (Where a
and b lie in the quotient field of A), then

P@) = S (ZLED), o) = 395 - sy
X

and

oo = (B =m).
8 x

If we set a =1 and b = —2y, then @ € Der}(A), and one easily checks

that p(x/y) = x/y*¢ A.

Thus, higher derivations on A need not extend to A. At the
end of [1], the author conjectured that any e Derj(4) such that
49 € Deri(A) U Deri(4) must map A to A. In this paper, we shall
show that this conjecture is correct. We shall also formulate suf-
ficient conditions on @ ¢ Der}(4) in order that p(A)c A. We assume
the reader is familiar with [1].

Main results.
THEOREM 1. Let A = k[x,, ---, x,] be a finitely generated integral

domain over a field k of characteristic zero. Let A denote the
integral closure of A in its quotient field Q. Let @€ Dery(4) and
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assume 49 € Deri(A) U Der, (4). Then o(4) C A.

Proof. Let Min (A) denote the collection of height one primes
in A. Since A is a Krull domain, we have A = [}{4,|q¢ Min (4)}.
Here as usual A, means A localized at the prime ¢g. Let g€ Min (4).
Then p=qNAecMin(4). Let us set R=A, and R=(4),= 4,
the integral closure of R in Q. Let g denote the extended prime
ideal ¢R in R. Then R; = A,. Now since R is a localization of
A, we see that @e Deri(R). Suppose we could show that @(R) <
R. Then o(R;) € R; or equivalently ¢(4,) £ A,. Since A is the
intersection of the A,, the theorem would be proven. Thus to prove
Theorem 1, it suffices to prove the following assertion:

“Under the same hypotheses as Theorem 1, let pe Min(4), R =
A, and R= A4,. Then 9(R)< R.”

So fix a minimal prime p ¢ Min (A4), and set R= A,, B = 4,. We
have already noted that @€ Deri(R), and one easily sees that dpe
Deri (R) U Dery(R). Now if A = A, there is nothing to prove. Hence,
we may assume A #= A. Then the conductor C of 4 in A4 is a proper
ideal in A. If C¢ p, then R= R and again there is nothing to
prove. Hence we may assume CC p. In this case, CR is the con-
ductor of R in R.

We now follow the proof of Theorem 3 in [1]. Let the tran-
scendence degree of 4 over & be », and let m denote the maximal
ideal in B. Then R/m is the quotient field of A/p and hence has
transcendence degree » — 1 over k. Let {a@,, ---, @,_,} be a transcend-
ence basis of R/m over k. Pull these @, back to elements «, in B —
m. Then F = k(a, ---, a,_) is a field of transcendence degree r — 1
over &, and FC R.

We know that R is a semilocal ring with maximal ideals m,,
-+, m, lying over m in R. Set J = ()i, m,;, the Jacobson radical of
R. Each local ring V;=R,,i=1,---,¢ is a discrete rank one
valuation ring dominating R. By [Thm 18, p. 45; 6], we can find an
element B e J such that 2 generates the maximal ideal in each V..
Since the Krull dimension of R is one, we see that J is the radical
of the ideal CR in E. Thus, some power of 8, say 5", lies in CR.
We shall have use of this remark later.

It was shown in [1], that Der} (R) is a free R-module with basis
{0y, 0., +++, 0,_}. The derivations 0, satisfy the following relations:

(3) 0B =1d(@)=0=08(6) for i=1 «o,r—1

and
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1 if 1= .

o(a;) = {0 i i 145 r—-1.
We observe that the derivations d, commute on the field F(8). Since
B is a uniformizing parameter for V,, 8 is transcendental over F.
Hence Q is a separable algebraic extension of F(B). Therefore the
derivations on F(G) have a unique extension to Q. It follows that
the 6, commute on Q. It follows from [2; Thm 16, 11. 2] that the
union Ug_, Der; (Q) is a free Q-algebra generated by oy, -+, 0,_,. In
particular, @ can be written as a unique polynomial of degree two
in gy, -+, 0,_,. The coefficients of this polynomial lie in Q. Let us
write @ as follows:

(4) P = Tii 0,1;57; -+ Z a’z’jaz‘aj + l’iauaf .
=0 )

0Si<jsr—1 1=
Since 4@ € Der}, (R) U Der}, (R), we can write for all ¢ and b in R:
(5) Plab) = aP(b) + bp(a) + 3 ervrila)hi(b)

where ¢,€ R and +, M, € Der; (R). One easily checks that equation
(5) continues to hold for all ¢ and b in @. Now by [Thm 1; 4], each
o, and A, extends to B. It then easily follows that CR is differential
under 4, and X\, i.e. ¥(CR) < CR and N (CR) < CR. Thus, CR remains
differential under +, and )\, when considered as an ideal in . Hence,
[Thm 1; 5] implies that each m, in R is differential under +, and \,.

Write each +, and A\, as a linear combination of 4, 0, -+, d,_;:
r—1 r—1
(6) “Fz:;#ziai )'l:izza’\/liai-

Here the coefficients f,; and 7, lie in B. Then y,(J) CJ and M (J) < J
imply that p, and 7, lie in J. If we now substitute the expressions
in equations (6) and (4) into equation (5) and then make various
substitutions of the form a,b =« ---, @,_, B, we see that all the
coefficients, except possibly a,, appearing in (4) lie in B. We further
get that a,eJ for ¢ =1, .., — 1, and aq,€ J°

Thus, to complete the proof of the assertion @(R) & R, we must
show that a, in (4) lies in B. We shall show this by arguing that
a,€ V, for every 1 =1, ---, .

Sofixan¢=1, -.--,¢t and let v;:V,— Z be the valuation of V,
given by v(B8) = 1. We wish to show that v,(a,) = 0. Let us assume
v{ay) < 0. We need the following lemma:

LEMMA 1. There exist two elements x and y in R such that
(a) The value N = v{x) of x is the smallest positive value of
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any element in R.
(b) The value v.(y) of ¥y is mot a multiple of N.

Proof. Since RCV,, we have v,(z) = 0 for every element z in
R. So we can certainly find an element z in R which satisfies (a).
As pointed out earlier, 8e CRC R. Thus, g"*' e R for any nonnega-
tive integer [.

Now suppose no y€ R can be found satisfying (b). Then for
every nonnegative integer I, we must have n + ! = v,(8"") is a
multiple of N. This can only happen if N = 1. We shall show this
is impossible.

If N=1, then x = 7B for some unit v in V;. We want to consider

P@) = Sad@) + 5 addi) + 3 a.040)

0= 1< Sr—

which is an element of R. Now we have

do(x) = OL(Y) + 7
0.x) = BOLY) di=1, ., —1
00(x) = BOD(Y) + 07) =1, 00, r—1
0,0;(x) = B06,0;(7) 0<i=25=sr—1

(7)

and
03(x) = BoH(Y) + 20,(7) .

Since the d; are derivations on R, they naturally extend to V,. Thus,
the elements in equation (7) are all elements of V,, and clearly d,(x)
is a unit in V,. If we now use the facts that a, ---,a,, a e R,
a;€J and a,€J?, we see that

Mr—1 r—1

(8)  o[Sas@+ S apdife) + Sese)| 21
1=1 0=i<ysr—1 =0

Thus, v(@(x)) = v(a,) + v,(0(x)) = v.(a,) < 0. But, P(x) € R means the

value of ®(x) must be nonnegative. Thus, we have reached a con-

tradiction and the proof of Lemma 1 is complete.

Now among all the elements z of R such that v,(z) is not a
multiple of N pick one, say y, of smallest value /. Lemma 1 guaran-
tees that such an element ye R exists. Then M — N > 0, and M —
N is not the value of any element of R. Since v,(x) = N,z = 78~
for some unit 7€ V,. An argument similar to that in Lemma 1
shows that v,(e(x)) = vi(a,) + N — 1. Now there are two cases to
consider. REither @(x) is a unit in R or it is not. If ®(x) is a nonunit,
then v,(@(x)) = N. But this implies v,(a,) =1 which is contrary to
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our assumption. Thus, ®(xr) is a unit. So v{a) =1 — N. But now
a similar computation applied to y gives us that v(e(y)) = via,) +
M~—1=M-— N. Since o(y)e R, and M — N is not the value of
anything in R, we have reached a contradiction.

Thus, v,(a,) = 0 and the proof of Theorem 1 is complete.

In our proof of Theorem 2 below, we shall need the fact that
the coefficient a, in equation (4) actually lies in J. The proof of
Theorem 1 shows that a,€ B. To see that a,cJ, we proceed as
follows: Since @(R) < R, equation (5) immediately implies that (CR) &
CR. In the notation of Theorem 1, we wish to argue that v,(a,) =
1. Suppose v,(a,) = 0. Let N be the minimum positive value of any
element in CR, and let x€ CR have value N. Then as in Lemma 1,
v{P(x)) = vla,) + N—1 = N—1. Since @(x)e CR this is impossible.
Thus v,(a,) = 1.

For Theorem 2, we shall need the following definition:

DEFINITION. Set Der}, (4), = Der}(A) and inductively define Der’(A4),
as follows:

Der} (4), = { € Deri(4)| 4p & S, Der; (4), U Deri (A)} -

Thus, Theorem 1 states that if @€ Der:(4), then @(A)c A. We
can now prove the general result.

THEOREM 2. Let A = k{x, ---, x,] be a finitely generated integral
domain over a field k of characteristic zero. Let A denote the
integral closure of A in its quotient field Q. Let @ e Dery (A),.
Then p(A)c A.

Proof. The proof proceeds along the same lines as in Theorem
1. It suffices to show that for every prime p of height one in A,
@(R) = R. Here, as in Theorem 1, B denotes the integral closure of
R= A, in @. One easily checks that @€ Der} (R),. We shall adopt
all the notation used in Theorem 1. Thus, CR is the conductor of
R in R.

For the purposes of this proof, let us define Der? (R)z inductively
as follows:

(9) Der}, (R)z = Der} (R)
Der: (R)z = | Dert (R)| 4pe 3, Ders (R)z U Dext™ (B)z

and 9(R) R} .
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Then we have already proven that Der} (R), = Der; (R)z in Theorem
1, and we shall show that Der} (R), = Der; (R)z for all n.

Now we know that |J,Der;(Q) is a free Q-algebra generated
by 8y, +++, 0,_,. Thus if @ € Der} (R), then = g(,, ---, J,_,) for some
polynomial ¢(X,, ---, X,_)eQ[X,, ---, X,_,] of degree less than or
equal to n. We further know this polynomial is unique. We now
need the following lemmas:

LEMMA 2. Let @ € Der} (R)z, and write @ = g0y, +++, 6,_,). Then
the coefficients of any monomials of g which contain 6i(l < 7 < n)
lie in J°.

Proof. We proceed by induction on n. The case n =1 was
proven in Theorem 1. The case n = 2 was proven in Theorem 1 and
the remarks following Theorem 1. Thus, we may assume Lemma
2 has been proven for all elements of Derp(R)z with m < n.

Let @€ Der; (R)z. Then there exist constants ¢;; € R and deriva-~
tions ', M’ € Deri (R)z, 7 =1, ---, n — 1, such that for all ¢ and b
in @ equation (2) is satisfied. Our induction hypothesis applies to
the derivations " and A{’. So we can write:

(]) = Z Ci ]5 + Z Ct tza,latz + + thl t] tl e Btj
)\,{J):Zdua +Z|dtlt2 ‘I"Zdtl -t "'5t<'

2

(10)

In (10), the coefficient of any monomial in either expression which
contains 67 will lie in J°. We note that since v, \{’: R— R, all the
coefficients of (10) lie in R.

Now write out the polynomial ¢(d,, +--, d,_,) which gives us @
as follows:

(11) P = Z atat + Z a’tltgatlatg + -0+ Z atl-utnatl e 3:,,, .

Since (R) C R, one easily checks that all the coefficients a,, a,,, -+ -,
..., of (11) lie in B. We now substitute equations (10) and (11)
into (2) and get:
Sia0(adb) + >} atltzstlﬁtz(ab) + o+ 3 a’tl-'-tnatl s tn(ab)
= a{Z a'tgt(b) + o £ Z atlu-tnatl e Btn(b)}
+b{3ad(a) + -+ + X @y, 0y - 00,(0)}

15+ SedSda@lsarom - -

+ Z dé;”—tln——l 5tn o atnﬂl(b)} +

+ Dlepa-{2 "0 @) + oo e+ et 0, 0 0, (a))
X {3 di'o,(b)} .
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After simplifying (12) and comparing coefficients, we see that any
coefficient of (11) (except possibly for a,) in a monomial containing
0§ lies in J?%. Thus, the lemma will be complete if we show a,cJ.

Since @(R) C R, one easily sees using (2) that (CR) = CR. Thus,
to argue a,€J, one can proceed exactly as in the remarks following
Theorem 1. Pick an element xz€ CR of minimum value N = v,(x).
If v a;) =0, then v,(®(x)) = N — 1 which is a contradiction. This
completes the proof of Lemma 2.

We now proceed to prove Theorem 2 by induction on n. A.
Seidenberg’s original result [Thm; 4], and Theorem 1 give us the
case » = 1 and » = 2. Thus, assume Theorem 2 is correct for all
m < n, and let @ € Der; (R),., We can expand ® as in equation (2)
for some choice of constants ¢;; € B and derivations ", A'? € Dery (R),.
By our induction hypothesis, Der] (R), = Deri(R)z. So by Lemma
2, each " and A can be written as in equation (10) with the
coefficients of any monomials containing 6/ lying in J?. Now write
@ as in equation (11). Following the same substitutions as in Lemma
2, we see that all the coefficients a,, « -+, @,_y, Gy ***, @y,..p, lie in R.
Further, the coefficients appearing in terms containing 67 lie in J9,
except possibly for a,. Thus, as in Theorem 1, we have to argue
that v,(a,) = 0 for all ¢ =1, --.,¢. But this argument is exactly the
same as in Theorem 1. Assume v,a,) < 0. The coefficients of (11)
lying in the right powers of J exactly mean that v(®(z)) = v(a,) +
v{z) — 1 for any nonunit z of B. Thus we proceed exactly as before
to argue that v,(a,) < 0 is impossible. This completes the proof of
Theorem 2.

The reader may be Wond_ering; if a slightly weaker hypothesis
on @€ Dery (4) will imply ®(A) C A. In particular, it is natural to
ask the following question: Suppose @ € Der? (4) such that

4pe 3 Derl, (4) U Deri(4) .

Then is @(4) & A? Theorem 1 implies this is true if » = 2. We
shall give an example which shows that for n > 2 the answer to
the above question is in general negative.

ExAMPLE 2. We return to Example 1 at the beginning of this
paper. We may equally well describe the ring A as A = Q[¢, t*].
Set ¢ = 9/d,, a first order derivation on the quotient field of A. One
can easily check that td, t*0, 0* — (2/t)0, t0° — 0 and 6° — (3/t)0* + (3/t%)d
are all derivations on 4. Set
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3 3 9t 2 3 2
13 = t23<b‘3 _ 3 —5) _ 9% <32 — ~5> + —<52 — _5> ) .
(13) ? t * t? 2 t 2 t ()
Then @€ Dery(4). If we expand @ out, we get @ = %' — 6t6° +
156 — (18/t)d. Now the integral closure A of A is just Q[t], and
thus @(4) ¢ A. However one can easily check that

dp = 4(53 — %52 + é’ia) U (£20) + 6(t0° — &) U (8° — )

+ (#20) U (53 — %32 + %5) :

Thus
Ap € Dery (A) U Derj (A) + Derg (A) U Dery(A4) + Der} (A) U Derg (4) ,

but @(4) ¢ A.

This example shows that we really need the stronger statement
@ € Der?(A), in order to conclude the ®(4) C A.

Finally, we note that the methods used in Theorems 1 and 2
give a new proof of A. Seidenberg’s original theorem for finitely

generated domains:

THEOREM (A. Seidenberg). Let A = k[x, ---, x,] be a finitely
generated integal domain over a field k of characteristic zero. Let
A denote the imtegral closure of A im its quotient field Q. Let
de Deri (A). Then 6(A) C A.

Proof. Using the same notation as in Theorem 1, we see that
it suffices to prove 6(R)c R. Write 6 = a,d, + -+ + a,_,0,_, with
the a,€@Q. Since d(a;)e R, we see a, ---, a,_,€ B. As before, it
remains to argue that v,(a,) =0 for all 1 =1, ---,¢. So fix an ¢ =
1, .-+, t and assume v/a,) < 0. Pick xe R such that N = v,(x) is the
minimum positive value of any element of . Then v,(0(x)) = v,(a,) +
N —1. Since d(x)e R, we conclude that v,(¢)) =1 — N. By an
argument similar to that in Lemma 1, we can find an element y¢
R such that M = v,(y) is the minimum positive value of anything
in R which is not a multiple of N. Then v,d(y)) = M — N which
is impossible.
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