WEAKLY COMPACT SETS IN H^1.

FREDDY DELBAEN
Suppose that A is a uniform algebra on a compact set X and that $\phi: A \to C$ is a nonzero multiplicative linear functional on A. Let M_ϕ be the set of positive representing measures for ϕ. If M_ϕ is finite dimensional, let m be a core measure of M_ϕ. The space H^1 is the closure of A in $L^1(m)$. The space H^∞ is the weak* (i.e. $\sigma(L^\infty, L^1)$) closure of A in $L^\infty(m)$. The weakly compact sets R in H^1 are then those sets such that for all $\varepsilon > 0$ there is a bounded set in H^∞ which approximates R up to ε.

It is well known (see Gamelin [1] for all details) that if m is a core measure in the finite dimensional set M_ϕ, then the annihilator N of A (or $\Re A$) in the real Banach space L^1 is finite dimensional, and is in fact a subspace of L^∞ (see Gamelin [1] p. 108). Since N is finite dimensional there is a constant K, such that $\|g\|_\infty \leq K\|g\|$, for all $g \in N$. There also exists a linear projection P of L^1 onto N, the kernel of P being precisely $\Re A$.

I am very grateful to the referee who pointed out an error in the first draft of this paper and gave a simplification of the proof.

2. Weakly compact sets in H^1. The notation used in the proof of the following theorem is the same as in the introduction.

Theorem. If $R \subset H^1$ then the following are equivalent

1. R is relatively weakly compact in H^1
2. $\forall \varepsilon > 0 \exists M$ such that $\forall f \in R \exists g \in H^\infty$ with $\|g\|_\infty \leq M$ and $\|f - g\| \leq \varepsilon$
3. $\forall \varepsilon > 0 \exists M$ such that $\forall f \in R \exists g \in A$ with $\|g\| \leq M$ and $\|f - g\| \leq \varepsilon$.

Proof. (3) \Rightarrow (2) obvious, (2) \Rightarrow (1) follows from general arguments due to Grothendieck ([2] p. 296); (1) \Rightarrow (2) is less trivial. Without loss of generality we may suppose that for all $f \in R$ we have $\|f\|_1 \leq 1$. From now on all calculations are made with fixed f. It is clear that all bounds only depend on $\|P\|$ and K. Since $\log^+|f| \leq |f|$ it is obvious that $\|\log^+|f|| \leq \|f\|_1 \leq 1$. Since $L^1 = \Re A \oplus N$ we also have uniquely determined elements $u \in \Re A$ and $v \in N$ such that $\log^+|f| = u + v$. Since v is the image of $\log^+|f|$ by the operator P we have
The conjugation operator $*$ is defined on $\overline{\text{Re } A}$ and takes values in $L^p(0 < p < 1)$, hence $\exists K_3$ such that $\|u\|_{L^p} \leq K_3\|u\|$. The function e^{u+*u} is well defined and $f e^{-u-*u} \in H^\infty$. Indeed:

$$|f| e^{-u-*u} = e^{\log |f|} e^{-u} \leq e^{\log |f|} e^{-u} = e^u \leq e^{K_2} = K_4.$$

Hence $f = F e^{v+*u}$ with $\|F\|_{L^\infty} \leq K_4$. The next step is the approximation of e^{u+*u} by functions in H^∞. First remark that $u = \log + |f| - v \geq - K_3$. Put $u_n = \min(u, n) \geq - K_3$ and $u_n = w_n + v_n$ where $w \in \text{Re } A$ and $v \in \mathbb{N}$. We first prove that:

(i) $\|e^{w_n+*w_n}\|_{L^\infty} \leq M_n$ where M_n is independent of u

(ii) $\|e^{w_n+*w_n} - e^{u+*u}\|_1 \to 0$ uniformly in u as $n \to \infty$.

Proof of (i): Since $\log + |f| = u + v$ we have

$$|u| \leq |v|_{L^\infty} + \log + |f| \leq \log + |f| + K_1.$$

Hence $e^u \leq K_4 |f|$ and so the family e^u is equally integrable (Here it is used that relatively weakly compact sets in L^1 are equally integrable (see [2] p. 295).) Consequently $e^{u_n} \to e^u$ uniformly in u. Since $v_n = P(u_n - u)$ we also have $\|v_n\|_{L^\infty} \leq K_1 |v_n|_1 \leq K_1 |P| |u_n - u|_1 \leq K_2$ for n large enough. Indeed since $-K_2 \leq u_n - u \leq \log + |f| + K_2 \leq |f| + K_2$ we have that the functions u form an equally integrable family and hence $u_n - u$ uniformly in u. All this implies

$$|e^{w_n+*w_n}| = e^{u_n} = e^{u_n - v_n} \leq K_1 e^{u_n} \leq K_1 e^u = M_n.$$

Proof of (ii)

$$|e^{u+*u} - e^{w_n+*w_n}| \leq |e^{w_n+*w_n} - e^{u+*u}| + |e^{w_n+*w_n} - e^{u_n+*w_n}|$$

$$+ |e^{u_n+*w_n} - e^{w_n+*w_n}|$$

$$\leq e^v |e^{*u} - e^{*w_n}| + |e^u - e^{u_n}| + |e^{u_n} - e^{w_n}|$$

$$\leq A_n + B_n + C_n.$$

Here is

$$A_n = e^v |e^{*u} - e^{*w_n}|$$

$$B_n = |e^u - e^{u_n}|$$

$$C_n = |e^{u_n} - e^{w_n}|.$$

In the proof of (i) it was already observed that $\|B_n\|_1 \to 0$ uniformly in u. For n large enough one has

$$|e^{u_n} - e^{w_n}| = |e^{u_n+v_n} - e^{w_n}| = e^{u_n} |e^v - 1| \leq K_4 e^u |e^v - 1|.$$

Since $\|v_n\|_{L^\infty} \leq K_2 |u_n - u| \to 0$ uniformly in u one has $\|C_n\|_1 \leq$
Remains to show that $\int A_n \to 0$.

Put $E_n = \{ x \mid |u(x) - w_n(x)| \geq \delta \}$ where $\delta > 0$ will be conveniently chosen.

$$\int A_n = \int_{E_n} A_n + \int_{E_n^c} A_n \leq \int_{E_n} 2e^u + \int_{E_n^c} e^u |e^{i*u} - e^{i*w_n}|.$$

Since

$$K_3 \int |u - w_n| dm \geq \left(\int |u - w_n|^{1/2} dm \right)^2 \geq \left(\int_{E_n} |u - w_n|^{1/2} dm \right)^2 \geq \delta m(E_n)^2$$

one has $m(E_n) \to 0$ uniformly in u, hence by equally integrability of e^u it follows that $\int_{E_n} 2e^u \to 0$ uniformly in u. Also

$$\int_{E_n^c} e^u |e^{i* u} - e^{i*w_n}| \leq \int \delta e^u \leq \delta \int K_4 |f| \leq \delta K_4$$

and hence $\| A_n \|_1 \leq \delta K_4 + 2 \int_{E_n^c} e^u$.

The first term is made small by choosing δ, afterwards we choose n to be sure that the second term is also small enough, since this can be done uniformly in u the proof of (ii) is complete.

Fix now $\epsilon > 0$ and let n be large enough to assure $\| e^{w_n + i*w_n} - e^{u + i*u} \|_1 \leq \epsilon / K_4$. It then follows that

$$\| f - Fe^{w_n + i*w_n} \|_1 \leq \| F \|_1 \| e^{u + i*u} - e^{w_n + i*w_n} \|_1 \leq \epsilon .$$

Taking $M = M_n \cdot K_4 = K_2 e^n$ will do the job.

To prove that $(2) \Rightarrow (3)$ we only have to observe that the unit ball of A is dense in the unit ball of H^∞ for the L^1 norm. Since m is a core point, m is dominant and we can apply the Arens-Singer result ([1], p. 152, 153).

References

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Joseph Anthony Ball and Arthur R. Lubin, *On a class of contractive perturbations of restricted shifts* ... 309
Joseph Becker and William C. Brown, *On extending higher derivations generated by cup products to the integral closure* .. 325
Andreas Blass, *Exact functors and measurable cardinals* .. 335
Joseph Eugene Collison, *A variance property for arithmetic functions* 347
Craig McCormack Cordes, *Quadratic forms over nonformally real fields with a finite number of quaternion algebras* .. 357
Freddy Delbaen, *Weakly compact sets in H^1*. ... 367
Edward Richard Fadell, *Nielsen numbers as a homotopy type invariant* 381
Josip Globevnik, *Analytic extensions of vector-valued functions* 389
Robert Gold, *Genera in normal extensions* .. 397
Solomon Wolf Golomb, *Formulas for the next prime* 401
Robert L. Griess, Jr., *The splitting of extensions of $SL(3, 3)$ by the vector space F_3^3* ... 405
Thomas Alan Keagy, *Matrix transformations and absolute summability* 411
Kazuo Kishi, *Analytic maps of the open unit disk onto a Gleason part* 417
Kwangil Koh, Jiang Luh and Mohan S. Putcha, *On the associativity and commutativity of algebras over commutative rings* 423
James C. Lillo, *Asymptotic behavior of solutions of retarded differential difference equations* ... 431
John Alan MacBain, *Local and global bifurcation from normal eigenvalues* 445
Anna Maria Mantero, *Sets of uniqueness and multiplicity for L^p* 467
J. F. McClendon, *Embedding metric families* .. 481
L. Robbiano and Giuseppe Valla, *Primary powers of a prime ideal* 491
Wolfgang Ruess, *Generalized inductive limit topologies and barrelledness properties* ... 499
Judith D. Sally, *Bounds for numbers of generators of Cohen-Macaulay ideals* ... 517
Helga Schirmer, *Mappings of polyhedra with prescribed fixed points and fixed point indices* ... 521
Cho Wei Sit, *Quotients of complete multipartite graphs* 531
S. Sznajder and Zbigniew Zielezny, *Solvability of convolution equations in \mathcal{F}_p', $p > 1$* ... 539
Mitchell Herbert Taibleson, *The existence of natural field structures for finite dimensional vector spaces over local fields* 545
William Yslas Vélez, *A characterization of completely regular fields* 553
P. S. Venkatesan, *On right unipotent semigroups* ... 555
Kenneth S. Williams, *A rational octic reciprocity law* 563
Robert Ross Wilson, *Lattice orderings on the real field* 571
Harvey Eli Wolff, *V-localizations and V-monads. II* 579