In this paper a general theorem on the absolute Nörlund summability factors of a Lebesgue-Fourier series at a given point has been established. The theorem exhibits the potency of a Nörlund method as a tool to study absolute summability and the absolute convergence of Fourier series. Several existing results in the field are deduced as special cases. This also shows some sort of continuity amongst these theorems which otherwise seem apparently to be disconnected.

1. Let \(\{p_n\} \) be a sequence of constants such that
\[
P_n = p_0 + p_1 + \cdots + p_n \neq 0, \quad \text{for } n = 0, 1, 2, \cdots.
\]
Given a series \(\sum u_n \) we define \(\{t_n\} \) of its Nörlund means by
\[
t_n = \frac{1}{P_n} \sum_{k=0}^{n} P_k u_{n-k}.
\]
The series \(\sum u_n \) is said to be summable \(|N, p_n| \) and we write \(\sum u_n \in |N, p_n| \), if the sequence \(\{t_n\} \in bv \), that is \(\sum |\Delta t_n| = \sum |t_n - t_{n+1}| \) is convergent.

In the special case when \(p_n = \Gamma(n + k)/\Gamma(k)\Gamma(n + 1), k > 0 \), the summability \(|N, p_n| \) reduces to the familiar Cesàro summability \(|C, k| \) and when \(p_n = 1/(n + 1) \), it is the same as the absolute harmonic summability.

2. Let \(f \) be a periodic function with period \(2\pi \) and let \(f \in L(-\pi, \pi) \). Let the Fourier series of \(f \) at a point \(x \) be given by
\[
f(x) \sim \frac{1}{2} a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} A_n(x).
\]
Throughout the paper we use the following notations:
\[
\phi(t) = \frac{1}{2} \{f(x + t) + f(x - t)\}, \quad \Phi_\alpha(t) = \phi(t),
\]
\[
\phi_\alpha(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t - u)^{\alpha-1} \phi(u) du, \alpha > 0,
\]
\[
\phi_\alpha(t) = \Gamma(\alpha + 1)t^{-\alpha}\Phi_\alpha(t), \alpha \geq 0,
\]
\[
G(n, t) = P_n^{-1} \sum_{k=0}^{n-1} p_k e_{n-k} e^{\phi((n-k)t)},
\]
\[g(n, t) = \text{Im} \left(G(n, t) \right), \]
\[H(n, t) = \frac{P_n}{P_n} \left(|\varepsilon_{n-m}| + \frac{1}{n} \sum_{k=m}^{n+1} |\varepsilon_k| \right) + \frac{p_m}{tP_n}, \]
where \(\tau = \lceil 1/t \rceil \) and \(m = \lfloor (1/2)n \rfloor \),
\[J(n, t) = \frac{1}{\Gamma(1 - \alpha)} \int_0^\pi (w - t)^{-\alpha} \frac{d}{dw} g(n, w)dw, \quad 0 \leq \alpha < 1, \]
\[L(n, t) = \frac{1}{\Gamma(\alpha + 1)} \int_0^\pi u^\alpha \frac{d}{du} J(n, u)du, \quad 0 \leq \alpha < 1, \]
\[V(n, t) = \frac{1}{\Gamma(\alpha + 1)} \int_0^t u^\alpha \frac{d}{du} J(n, u)du, \quad 0 \leq \alpha < 1. \]

\(K, K_n, K_\alpha, \ldots \), denote absolute constants not necessarily the same at different occurrences.

\(B \) denotes the class of bounded sequences and
\(\mathcal{M} \) denotes a class of positive and nonincreasing sequences:
\[\mathcal{M} = \left\{ s_n: s_n > 0, \frac{s_{n+1}}{s_n} \leq \frac{s_n}{s_{n+1}} \leq 1 \right\}. \]

3. Since the publication of the classical theorems of Bosanquet ([3], [4]) on absolute Cesàro summability of a Fourier series in 1936, various results have been worked out on absolute Cesàro summability, absolute harmonic summability and absolute Nörlund summability of Fourier series and series related with it. The purpose of this paper is to furnish a general theorem on the absolute Nörlund summability of a Fourier series from which we deduce several known and unknown results.

We establish the following theorem:

THEOREM. Let \(\alpha \) satisfy \(0 \leq \alpha < 1 \) and let \(\{p_n\} \in \mathcal{M} \) and \(\{\varepsilon_n\} \in \text{bv} \) be such that
(i) \(\sum_{n=1}^\infty |A\varepsilon_k| = O(|\varepsilon_n|) \) and
(ii) \(\left\{ \frac{P_n}{n^\alpha} \sum_{k=1}^\infty \frac{|\varepsilon_k|}{k^{-\alpha}P_k} \right\} \in B. \)

If \(\phi_n(t) \in BV(0, \pi) \), then \(\sum A_n(x)\varepsilon_n \in |N, p_n| \).

4. We use the results in the following lemmas towards the proof of our theorem.

Lemma 1 (McFadden [13]). If \(\{p_n\} \) is a nonnegative nonincreasing sequence then for \(0 < t \leq \pi \) and for any \(n, a \) and \(b \)
LEMMA 2. Let \(\{p_n\} \) be a nonnegative nonincreasing sequence and \(\{\varepsilon_n\} \in b v \) be such that \(\sum_{n}^{2n} |\Delta \varepsilon_k| = O(|\varepsilon_n|) \). Then for \(1/n < t \leq \pi \), \(n = [1/t] \) and \(m = \lfloor(1/2)n\rfloor \),

\[
\left| \sum_{n}^{h} p_k e^{i(n-k)t} \right| \leq KP_{1/t}.
\]

(i) \(G(n, t) = O\left(\frac{P_r |\varepsilon_{n-m}|}{P_n} \right) + O\left(\frac{p_m}{tP_n} \right) \);

(ii) \(\frac{d}{dt} G(n, t) = O(nH(n, t)) \);

and

(iii) \(L(n, t) = O(n^a t^a H(n, t)) \).

Proof. (i) Let

\[P_n G(n, t) = \left(\sum_{0}^{m} + \sum_{m+1}^{n-1} \right) p_k \varepsilon_{n-k} e^{i(n-k)t} \]

\[= S_1 + S_2. \]

Then by Lemma 1

\[S_1 = O\left(P_r \left\{ |\varepsilon_{n-m}| + \sum_{0}^{n-1} |\Delta \varepsilon_{n-k}| \right\} \right) \]

\[= O(P_r |\varepsilon_{n-m}|), \]

and

\[S_2 = \sum_{1}^{n-m-1} p_{n-k} \varepsilon_k e^{i k t} \]

\[= O\left(\frac{1}{t} \right) \left\{ p_{m+1} + \sum_{1}^{n-m-2} |\Delta (p_{n-k})| \right\} \]

\[= O\left(\frac{1}{t} \right) \left\{ p_{m+1} + \sum_{1}^{n-m-2} \varepsilon_k \left(p_{m-k-1} - p_{m-k} \right) + \sum_{1}^{n-m-2} p_{n-k-1} |\Delta \varepsilon_k| \right\} \]

\[= O\left(\frac{p_m}{t} \right), \]

by hypotheses.

(ii) Let

\[P_n \frac{d}{dt} G(n, t) = \left(\sum_{0}^{m} + \sum_{m+1}^{n-1} \right) p_k \varepsilon_{n-k} (n - k) a e^{i(n-k)t} \]

\[= S_3 + S_4. \]
Then, proceeding as above in (i)

\[S_3 = O(P_m) \left\{ (n - m)|\varepsilon_{n-m}| + \sum_{m=0}^{m-1} |\Delta((n-k)\varepsilon_{n-k})| \right\} \]

\[= O(P_m) \left\{ n|\varepsilon_{n-m}| + \sum_{m=0}^{n-1} k|\Delta\varepsilon_k| + \sum_{m=0}^{n-1} |\varepsilon_{k+1}| \right\} \]

\[= O(P_m) \left\{ n|\varepsilon_{n-m}| + \sum_{m=0}^{n-1} |\varepsilon_k| \right\} ; \]

\[S_t = \sum_{k=1}^{n-m-1} k\varepsilon_k p_{n-k} e^{ibt} \]

\[= O(1/t) \left\{ (n - m - 1)|\varepsilon_{n-m-1}| p_{m+1} + \sum_{k=1}^{n-m-2} |\Delta(k\varepsilon_k p_{n-k})| \right\} \]

\[= O(1/t) \left\{ np_m + \sum_{k=1}^{n-m-2} k|\Delta(e_k p_{n-k})| + \sum_{k=1}^{n-m-1} p_{n-k} |\varepsilon_k| \right\} \]

\[= O(n/t) \left\{ p_m + \sum_{k=1}^{n-m-2} |\Delta(e_k p_{n-k})| \right\} \]

\[= O(np_m/t) . \]

(iii) We have

\[\Gamma(1 - \alpha)J(n, t) = \left(\int_t^{t+1/n} + \int_{t+1/n}^{\pi} \right) (u - t)^{-\alpha} \frac{d}{du} g(n, u) du \]

\[= I_1 + I_2, \text{ say} . \]

\[I_1 = O(n H(n, t)) \int_t^{t+1/n} (u - t)^{-\alpha} du, \text{ by (ii)} , \]

\[= O(n^\alpha H(n, t)) , \]

and

\[I_2 = O(n^\alpha) |[g(n, u)]_{\pi}^{\pi} t^{1/n} |, \quad t + \frac{1}{n} < \pi' \leq \pi , \]

\[= O \left(\frac{n^\alpha}{P_n} \right) \left\{ P_{\alpha} |\varepsilon_{n-m}| + \frac{p_m}{t} \right\} , \text{ by (i)} . \]

Therefore

\[\Gamma(\alpha + 1)|L(n, t)| = |[u^\alpha J(n, u)]_t^\pi - \alpha \int_t^{\pi} u^{\alpha-1} J(n, u) du| \]

\[= \left| t^\alpha J(n, t) + \frac{\alpha}{\Gamma(1 - \alpha)} \int_t^{\pi} u^{\alpha-1} (w - u)^{-\alpha} \frac{d}{dw} g(n, w) dw du \right| \]

\[= \left| t^\alpha J(n, t) + \frac{\alpha}{\Gamma(1 - \alpha)} \int_{t'}^{\pi} \frac{d}{dw} g(n, w) dw \int_t^{w} (w - u)^{-\alpha} u^{\alpha-1} du \right| \]

\[= \left| t^\alpha J(n, t) + \frac{\alpha}{\Gamma(1 - \alpha)} \int_{t'}^{\pi} \frac{d}{dw} g(n, w) dw \int_{t/w}^{1} u^{\alpha-1}(1 - u)^{-\alpha} du \right| \]

\[\leq K |t^\alpha J(n, t)| + K_z g(n, t') , \quad t \leq t' < \pi . \]
\[L(n, t) = O(n^a t^v H(n, t)). \]

Lemma 3 (Das [6]). Let \(\{p_n\} \in \mathcal{M} \). Then \(\sum u_n \in |N, p_n| \), if and only if
\[
\sum_1^\infty \frac{1}{nP_n} \left| \sum_1^n p_{n-k} k u_k \right| < \infty .
\]

5. Proof of the Theorem. Let
\[
T_n = T_n(x) = \frac{1}{P_n} \sum_1^n p_{n-k} k A_k(x) \varepsilon_k .
\]

Then by Lemma 3, it is sufficient to show that
\[
\sum \frac{|T_n|}{n} < \infty .
\]

As
\[
kA_k(x) = \frac{2}{\pi} \int_0^\pi \phi(t) \frac{d}{dt} \sin ktdt ,
\]
\[
\frac{\pi}{2} T_n = \frac{1}{P_n} \sum_1^n p_{n-k} \varepsilon_k \int_0^\pi \phi(t) \frac{d}{dt} \sin ktdt
\]
\[
= \int_0^\pi \phi(t) \frac{d}{dt} g(n, t) dt
\]
\[
= \frac{1}{\Gamma(1 - \alpha)} \int_0^\pi \frac{d}{dt} g(n, t) \int_t^\pi \phi(u) (t - u)^{-\alpha} d\phi(u) dt , 0 < \alpha < 1 ,
\]
\[
= \frac{1}{\Gamma(1 - \alpha)} \int_0^\pi \frac{d}{du} J(n, u) du , 0 \leq \alpha < 1 ,
\]
\[
= - \int_0^\pi \phi(u) \frac{d}{du} J(n, u) du + \int_0^\pi V(n, u) d\phi(u)
\]
\[
= - \phi_\alpha(n, \pi) V(n, \pi) + \int_0^\pi V(n, u) d\phi(u) .
\]

If in particular we choose \(\phi(t) = 1 \), then \(\phi_\alpha(t) = 1 \) and \(T_n = 0 \) for every \(n \). Hence
\[
V(n, \pi) = 0 .
\]

Thus
\[
\frac{\pi}{2} T_n = \int_0^\pi V(n, u) d\phi(u) .
\]
As \(\phi(t) \in BV(0, \pi) \), to complete the proof it is sufficient to show that uniformly in \(t, 0 < t \leq \pi \)

\[
\sum_{n} \left| \frac{V(n, t)}{n} \right| \leq K .
\]

Since \(V(n, t) + L(n, t) = 0 \), we have

\[
\sum_{n} \left| \frac{V(n, t)}{n} \right| \leq \sum_{1}^{r} \left| \frac{V(n, t)}{n} \right| + \sum_{r+1}^{\infty} \left| \frac{L(n, t)}{n} \right| .
\]

As

\[
|g(n, t)| \leq \frac{1}{P_{n}} \sum_{0}^{n-1} p_{k} |\varepsilon_{n-k}| \leq K ,
\]

and

\[
\left| \frac{d}{dt} g(n, t) \right| \leq \frac{1}{P_{n}} \sum_{0}^{n-1} p_{k}(n - k) |\varepsilon_{n-k}| \leq K n ,
\]

we have

\[
\Gamma(1 - \alpha) J(n, t) = \left(\int_{t}^{t+1/n} + \int_{t+1/n}^{\pi} \right), (u - t)^{-\alpha} \frac{d}{du} g(n, u) du
\]

= etc.

= \(O(n^{\alpha}) \).

Hence, for \(0 < \alpha < 1 \),

\[
\Gamma(1 + \alpha) |V(n, t)| = \left| \left[u^{\alpha} J(n, u) \right]_{t}^{\pi} - \alpha \int_{0}^{t} u^{\alpha-1} J(n, u) du \right| \leq Kn^{\alpha} t^{\alpha} ,
\]

and

\[
\sum_{1}^{r} \left| \frac{V(n, t)}{n} \right| \leq K t^{\alpha} \sum_{1}^{r} n^{\alpha-1} \leq K .
\]

For \(\alpha = 0 \), we note that

\[
|V(n, t)| = |g(n, t)| \leq \frac{1}{P_{n}} \sum_{0}^{n-1} p_{k} |\varepsilon_{n-k}| (n - k)t \leq nt ,
\]

and thus again

\[
\sum_{1}^{r} \left| \frac{V(n, t)}{n} \right| \leq K .
\]

Therefore, after Lemma 2(iii), it is sufficient to show that

\[
t^{\alpha} \sum_{r+1}^{\infty} n^{\alpha-1} |H(n, t)| \leq K ,
\]
uniformly in \(t, 0 < t \leq \pi \). However

\[
t^n \sum_{n=1}^{\infty} n^{a-1} |H(n, t)|
= P^n t^n \sum_{n=1}^{\infty} n^{a-1} \frac{|\varepsilon_{n-m}|}{P^n} + P^n t^n \sum_{n=1}^{\infty} n^{a-2} \frac{|\varepsilon_k|}{P^n}
+ t^{a-1} \sum_{n=1}^{\infty} n^{a-1} p_n
\leq K_1 + P^n t^n \sum_{n=1}^{\infty} n^{a-2} \frac{|\varepsilon_k|}{P^n} + K_2 t^{a-1} \sum_{n=1}^{\infty} n^{a-2}
\leq K_1 + K_2 P^n t^n \sum_{n=1}^{\infty} n^{a-2} \frac{|\varepsilon_k|}{P^n}
\leq K.
\]

This completes the proof of the theorem.

6. Corollaries.

6.1. Taking \(p_n = \Gamma(n + \beta) / \Gamma(\beta) \Gamma(n + 1) \), \(1 \geq \beta > 0 \), we get

Corollary 1. Let \(\alpha \) satisfy \(0 < \alpha < 1 \), and let \(\{\varepsilon_n\} \in bv \) be such that

(i) \(\sum_{n=1}^{\infty} |\varepsilon_k| = O(|\varepsilon_n|) \) and

(ii) \(\{n^{\beta - \alpha} \sum_{n=1}^{\infty} \frac{|\varepsilon_k|}{k^{1 + \beta - \alpha}}\} \in B \).

If \(\phi(x) \in BV(0, \pi) \), then \(\sum A_n(x) \varepsilon_n \in |C, \beta|, \beta \geq \alpha \).

The case \(\{\varepsilon_n\} = \{1\} \), and \(\beta > \alpha \), furnishes corresponding results due to Bosanquet ([3], [4]). Taking \(0 < \alpha = \beta < 1 \) and specializing \(\{\varepsilon_n\} \) to \((\log(n + 1))^{\alpha-1}\), \(\varepsilon > 0 \), we get a result due to Cheng ([5]). Again in the case \(\alpha = \beta \), taking \(\{\varepsilon_n\} \) to be a convex sequence (see Zygmund [18], p. 93, for the definition and certain properties as needed) we obtain a result due to Prasad and Bhatt ([14]). The case \(\beta = \alpha = 0 \) is covered in Corollary 3 below.

6.2. The case \(p_n = 1/(n + 1) \) furnishes the following result on absolute harmonic summability:

Corollary 2. Let \(\alpha \) satisfy \(0 \leq \alpha < 1 \), and let \(\{\varepsilon_n\} \in bv \) be such that

(i) \(\sum_{n=1}^{\infty} |\varepsilon_k| = O(|\varepsilon_n|) \) and

(ii) \(\left\{ \frac{1}{n^{\alpha}} \sum_{n=1}^{\infty} \frac{|\varepsilon_k|}{k^{1 - \alpha} \log k} \right\} \in B \).

If \(\phi_n(t) \in BV(0, \pi) \), then \(\sum A_n(x) \varepsilon_n \in |N, 1/n + 1| \).
The case $\alpha = 0$, includes a well known theorem due to Varshney ([17], Varshney has proved the result for $\{\varepsilon_n\} = \{1/\log(n + 2)\}$). Specialising $\{\varepsilon_n\}$ to be $\{\log(n + 1)\lambda_n/n^\alpha\}$, where $\{\lambda_n\}$ is a convex sequence, we get the result due to Bhatt [1].

6.3. It is now known (see Dikshit [8]) that if $\{p_n\} \in \mathcal{M}$ and $\{P_n\} \in B$ then the method $|N, p_n|$ is ineffective, in the sense that it sums only absolutely convergent series. Thus the extra hypothesis that $\{P_n\} \in B$ in the theorem yields the following result on absolute convergence factors for Fourier series.

COROLLARY 3. Let α satisfy $0 \leq \alpha < 1$, and let $\{\varepsilon_n\} \in bv$ be such that

(i) $\sum\nolimits_1^\infty |\Delta \varepsilon_k| = O(|\varepsilon_n|)$ and

(ii) $\left\{ \frac{1}{n^\alpha} \sum\nolimits_1^\infty \frac{|\varepsilon_k|}{k^{1-\alpha}} \right\} \in B$.

If $\phi_a(t) \in BV(0, \pi)$, then $\sum A_n(x)\varepsilon_n$ is absolutely convergent.

Results in somewhat weaker form are eventually known in as much as they could be deduced from the theorem of Cheng [5], Prased and Bhatt [14], or the Corollary 2, with an application of a result of Kogbetliantz ([11]).

6.4. The case $\{\varepsilon_n\} \equiv \{1\}$ yields the following:

COROLLARY 4. Let $0 \leq \alpha < 1$ and let $\{p_n\} \in \mathcal{M}$ and be such that

$$\left\{ \frac{P_n}{n^\alpha} \sum\nolimits_1^\infty \frac{1}{k^{1-\alpha}p_k} \right\} \in B.$$

If $\phi_a(t) \in BV(0, \pi)$, then $\sum A_n(x) \in |N, p_n|$.

A more general result in this direction is also known and is given elsewhere (Dikshit [7], [9]; see also Lal [12]).

6.5. Writing $\{\varepsilon_n\} = \{P_n\lambda_n/n^\alpha\}$ we obtain:

COROLLARY 5. Let α satisfy $0 \leq \alpha < 1$, and let $\{p_n\} \in \mathcal{M}$ and $\{\lambda_n\}$ be a sequence such that

(i) $\left\{ \frac{P_n\lambda_n}{n^\alpha} \right\} \in bv$,

(ii) $\sum\nolimits_1^\infty \left| A\left(\frac{P_n\lambda_k}{k^\alpha} \right) \right| = O\left(\frac{P_n |\lambda_n|}{n^\alpha} \right)$ and
If $\phi_a(t) \in BV(Q, \pi)$, then $\sum A_n(x)P_nJ_n^a \in \mathbb{N}, |p_n|$.

It is worthwhile to compare the result of this Corollary for $\alpha = 0$ with one due to T. Singh [16] and L. B. Singh [15] and for $0 < \alpha < 1$, with those due to Nand Kishore [10] and Bhatt [2].

The author would like to thank the referee for the very valuable suggestions.

REFERENCES

Received October 8, 1975 and in revised form January 9, 1976.

UNIVERSITY OF AUCKLAND, NEW ZEALAND
Joseph Anthony Ball and Arthur R. Lubin, *On a class of contractive perturbations of restricted shifts* .. 309
Joseph Becker and William C. Brown, *On extending higher derivations generated by cup products to the integral closure* .. 325
Andreas Blass, *Exact functors and measurable cardinals* 335
Joseph Eugene Collison, *A variance property for arithmetic functions* 347
Craig McCormack Cordes, *Quadratic forms over nonformally real fields with a finite number of quaternion algebras* .. 357
Freddy Delbaen, *Weakly compact sets in \(H^1 \).* .. 367
G. D. Dikshit, *Absolute Nörlund summability factors for Fourier series* 371
Edward Richard Fadell, *Nielsen numbers as a homotopy type invariant* 381
Josip Globevnik, *Analytic extensions of vector-valued functions* 389
Robert Gold, *Genera in normal extensions* .. 397
Solomon Wolf Golomb, *Formulas for the next prime* 401
Robert L. Griess, Jr., *The splitting of extensions of \(SL(3, 3) \) by the vector space \(F_3^3 \).* .. 405
Thomas Alan Keagy, *Matrix transformations and absolute summability* 411
Kazuo Kishi, *Analytic maps of the open unit disk onto a Gleason part* 417
Kwangil Koh, Jiang Luh and Mohan S. Putcha, *On the associativity and commutativity of algebras over commutative rings* 423
James C. Lillo, *Asymptotic behavior of solutions of retarded differential difference equations* .. 431
John Alan MacBain, *Local and global bifurcation from normal eigenvalues* 445
Anna Maria Mantero, *Sets of uniqueness and multiplicity for \(L^p \)* 467
J. F. McClendon, *Embedding metric families* .. 481
L. Robbiano and Giuseppe Valla, *Primary powers of a prime ideal* 491
Wolfgang Ruess, *Generalized inductive limit topologies and barreledness properties* .. 499
Judith D. Sally, *Bounds for numbers of generators of Cohen-Macaulay ideals* 517
Helga Schirmer, *Mappings of polyhedra with prescribed fixed points and fixed point indices* .. 521
Cho Wei Sit, *Quotients of complete multipartite graphs* 531
S. Sznajder and Zbigniew Zielezny, *Solvability of convolution equations in \(\mathfrak{D}'_p, p > 1 \).* .. 539
Mitchell Herbert Taibleson, *The existence of natural field structures for finite dimensional vector spaces over local fields* 545
William Yslas Vélez, *A characterization of completely regular fields* 553
P. S. Venkatesan, *On right unipotent semigroups* 555
Kenneth S. Williams, *A rational octic reciprocity law* 563
Robert Ross Wilson, *Lattice orderings on the real field* 571
Harvey Eli Wolff, *V-localizations and V-monads. II* 579