ANALYTIC EXTENSIONS OF VECTOR-VALUED FUNCTIONS

Josip Globevnik
Let Δ be the open unit disc in \mathbb{C}, $\partial\Delta$ its boundary and $B \subset \partial\Delta$ a relatively open set. Let X be a complex Banach space. Denote by $H_b(\Delta, X)$ the set of all continuous functions from $\Delta \cup B$ to X which are analytic on Δ. A set $P \subset X$ is said to have the analytic extension property with respect to $H_b(\Delta, X)$ if for each relatively closed set $F \subset B$ of Lebesgue measure 0 and for each continuous function $f : F \to P$ there exists $g \in H_b(\Delta, X)$ with $g|F = f$ and $g(\Delta \cup B) \subset P$.

Theorem. Let $P \subset X$ be an open set. Then P has the analytic extension property with respect to $H_b(\Delta, X)$ for every relatively open $B \subset \partial\Delta$ if and only if P is connected.

By a result of E. A. Heard and J. H. Wells any closed disc in \mathbb{C} has the analytic extension property with respect to $H_b(\Delta, C)$ for every relatively open $B \subset \partial\Delta$ (see [9]). The special case $B = \partial\Delta$ is the well known Rudin-Carleson theorem (see [4], [10], [12]). This result was generalized to the vector case by proving that every closed ball in X has the analytic extension property with respect to $H_b(\Delta, X)$ for every relatively open $B \subset \partial\Delta$ (see [6]), the special case $B = \partial\Delta$ is the Rudin-Carleson theorem for vector-valued functions (see [5], [11], [14]).

It is a natural question whether the balls above can be replaced by some other sets:

Problem (see [8]). Obtain a (geometrical, topological) characterization of the sets having the analytic extension property with respect to $H_b(\Delta, X)$ for every relatively open $B \subset \partial\Delta$.

It seems that this problem is not solved even for the subsets of \mathbb{C}.

Taking $B = \partial\Delta$, $F = \{-1, 1\}$ it is trivial to see that every set having the analytic extension property with respect to $H_b(\Delta, X)$ for every relatively open $B \subset \partial\Delta$, is pathwise connected. The converse is not true in general as shown by taking $P = \{t : 0 \leq t \leq 1\}$. However, the converse turns out to be true for open sets and this is the main result of the present paper.

Throughout, we denote by $\bar{\Delta}$ the closure of Δ. Given $r > 0$ we denote by $B_r(X)$ the open ball in X of radius r, centered at the origin. If K is a compact Hausdorff space we denote by $C(K, X)$
the space of all continuous functions from K to X. By $A(\Delta, X)$ we denote the Banach space of all continuous functions from $\overline{\Delta}$ to X, analytic on Δ, with sup norm, and we write $A = A(\Delta, C)$. We write $I = \{t: 0 \leq t \leq 1\}$ and we denote the set of all positive integers by N.

For the proof of theorem we shall need four lemmas.

Lemma 1. Suppose that G is a closed subset of $\partial \Delta$ of Lebesgue measure 0 and let $U(G) \subset \overline{\Delta}$ be a neighbourhood of G. Let $p: I \rightarrow X$ be a path in a complex Banach space X and let $\varepsilon > 0$ be arbitrary. There exists $\phi \in A(\Delta, X)$ having the following properties:

- (i) $\|\phi(z) - p(1)\| < \varepsilon \ (z \in G)$
- (ii) $\|\phi(z) - p(0)\| < \varepsilon \ (z \in \overline{\Delta} - U(G))$
- (iii) $\phi(\overline{\Delta}) \subset p(I) + B_{\varepsilon}(X)$.

Proof. By the Mergelyan theorem for analytic functions into a Banach space (see [3]) there exists a polynomial $f: C \rightarrow X$ satisfying $\|f(z) - p(z)\| < \varepsilon \ (z \in I)$. By the continuity of f there exists an open neighbourhood V of I such that $f(V) \subset p(I) + B_{\varepsilon}(X)$. Let $W \subset V$ be an open set, bordered by a Jordan curve, containing the point 1 in its boundary and satisfying $I - \{1\} \subset W$, $\overline{W} \subset V$. Let $T \subset W$ be a neighbourhood of the point 0 in W such that $\|f(z) - p(0)\| < \varepsilon \ (z \in T)$. Assume for a moment that $\alpha \in A$ satisfies $\alpha(\overline{\Delta}) \subset \overline{W}$, $\alpha(G) = \{1\}$ and $\alpha(\overline{\Delta} - U(G)) \subset T$. Then it is easy to check that $\phi = f \circ \alpha$ has all the required properties. It remains to prove the existence of such an α. By the Riemann mapping theorem (see [13]) there exists a homeomorphism β from $\overline{\Delta}$ onto \overline{W}, analytic on Δ and satisfying $\beta(0) = 0$, $\beta(1) = 1$. Let $S \subset \Delta$ be a neighbourhood of 0 such that $\beta(S) \subset T$. By the Rudin-Carleson theorem (see [12], p. 205) there exists $\psi \in A$ satisfying $\psi(\overline{\Delta}) \subset \overline{W}$, $\psi(G) = \{1\}$, $|\psi(z)| < 1 \ (z \in \overline{\Delta} - G)$. Let $U_i \subset U(G)$ be an open subset of $\overline{\Delta}$ containing G. Now $\overline{\Delta} - U_i$ is a compact set disjoint from G and it follows that for sufficiently large $n \in N$ we have $\psi^n(z) \cdot \gamma(z) \in S \ (z \in \overline{\Delta} - U_i)$. Now putting $\alpha(z) = \beta[\psi^n(z) \cdot \gamma(z)] \ (z \in \overline{\Delta})$ it is easy to see that α has all the required properties.

Lemma 2. Let X be a complex Banach space and let Q be an open connected subset of X. Given a compact subset K of Q and a point $x \in K$ there exists $\delta_0 > 0$ such that for every $\delta: 0 < \delta < \delta_0$ there exists a path $p: I \rightarrow X$ satisfying

- (i) $p(0) = x$
- (ii) $K \subset p(I) + B_\delta(X)$
- (iii) $p(I) + B_{\delta_0}(X) \subset Q$.

For the proof we shall need four lemmas.
Proof. By the compactness of K there exists an $\varepsilon > 0$ such that $K + B_\varepsilon(X) \subset Q$. Cover K by a finite number of balls, say by $B_\varepsilon, B_2, \cdots, B_n$ of radii ε whose centers lie in K. With no loss of generality assume that the center of B_i is x_i. By the connectedness of Q there exists a path $q : I \to X$, satisfying $q(I) \subset Q$, $q(0) = x$, and connecting the centers of all B_i. By the compactness of $q(I)$ there exists $\delta_0 > 0$ such that $q(I) + B_{\delta_0}(X) \subset Q$. Let δ satisfy $0 < \delta < \delta_0$ and cover K by a finite number of balls B_1, B_2, \cdots, B_n of radii δ whose centers lie in K. Let $1 \leq i \leq n$. Consider those balls B_k whose centers lie in B_i. Connect all these centers by a path p_i starting and ending at the center of B_i and satisfying $p_i(I) \subset B_i$. Having done this for all i, denote by $q_i (1 \leq i \leq n - 1)$ the part of the path q between the centers of B_i, B_{i+1}. Now define p as the sum of the paths

$$p = \sum_{i=1}^{n-1} (p_i + q_i) + p_n.$$

If $s \in I$ is such that $p(s)$ is in none of the balls B_i $(1 \leq i \leq n)$ then $p(s) \in q(I)$ and consequently $p(s) + B_{\delta_0}(X) \subset q(I) + B_{\delta_0}(X) \subset Q$. If $s \in I$ is such that $p(s)$ is in some B_i then $p(s) + B_{\delta_0}(X) \subset p(I) + B_{\delta_0}(X) \subset K + B_{\delta_0}(X) \subset Q$. On the other hand, if $y \in K$ then $y \in D_k$ for some ball D_k whose center is contained in $p(I)$ which means that $y \in p(I) + B_\varepsilon(X)$.

Lemma 3. Let $F \subset \partial \Delta$ be a closed set of Lebesgue measure 0 and let $U(F) \subset \Delta$ be a neighbourhood of F. Suppose that Q is an open connected set in a complex Banach space X containing the point 0. Let $\varepsilon > 0$ be arbitrary. Given $f \in C(F, X)$ satisfying $f(F) \subset Q$ there exists $\tilde{f} \in A(\Delta, X)$ satisfying

(i) $\tilde{f}|F = f$

(ii) $\tilde{f}(\Delta) \subset Q$

(iii) $\|\tilde{f}(z)\| < \varepsilon$ ($z \in \Delta - U(F)$).

Proof. $f(F) \cup \{0\}$ is a compact set contained in Q. By Lemma 2 there exists $\delta : 0 < \delta < \varepsilon/5$ and a path $p : I \to X$ satisfying $f(F) \subset p(I) + B_{\delta}(X)$, $p(I) + B_{\delta}(X) \subset Q$ and $p(0) = 0$. Since F is a compact set the function f is uniformly continuous on F. By the assumption F is nowhere dense on $\partial \Delta$. It follows that

$$F = \bigcup_{i=1}^{\delta} F_i,$$

where $F_i \subset \partial \Delta$ are disjoint closed sets such that

$$\|f(\eta) - f(\zeta)\| < \delta \quad (\eta, \zeta \in F_i; \ 1 \leq i \leq n).$$
Let U_i ($1 \leq i \leq n$) be disjoint open subsets of \mathcal{I} satisfying $F_i \subset U_i \subset U(F)$ ($1 \leq i \leq n$). Since $f(F) \subset p(I) + B_s(X)$ there exist $t_i \in I$ and $z_i \in F_i$ ($1 \leq i \leq n$) such that

$$||p(t_i) - f(z_i)|| < \delta \quad (1 \leq i \leq n).$$

Applying Lemma 1 to the paths $t \mapsto p(t_i)$ ($1 \leq i \leq n$) there exist functions $\phi_i \in A(\mathcal{I}, X)$ ($1 \leq i \leq n$) satisfying

$$||\phi(z) - p(t_i)|| < \delta \quad (z \in F_i)$$
$$||\phi(z)|| < \delta/n \quad (z \in \mathcal{I} - U_i)$$
$$\phi_i(\mathcal{I}) \subset p(I) + B_s(X).$$

Now define $\Psi \in A(\mathcal{I}, X)$ by

$$\Psi = \sum_{i=1}^{n} \phi_i.$$

If $z \in \mathcal{I} \setminus \bigcup_{i=1}^{n} U_i$ then

$$||\Psi(z)|| \leq \sum_{i=1}^{n} ||\phi_i(z)|| < n. \quad \delta/n = \delta.$$

If $z \in U_i$ for some i then $z \notin U_j$ ($i \neq j$) and

$$\Psi(z) = \phi_i(z) + \sum_{j=1 \neq i}^{n} \phi_j(z) \in p(I) + B_s(X) + B_s(X) \subset p(I) + B_{2\delta}(X).$$

Consequently $\Psi(\mathcal{I}) \subset p(I) + B_{2\delta}(X)$. Now define $\Theta \in C(F, X)$ by $\Theta(z) = \Psi(z) - f(z)$ ($z \in F$). If $z \in F$ then $z \in F_i$ for some i and consequently

$$||\Theta(z)|| \leq ||\Psi(z) - p(t_i)|| + ||p(t_i) - f(z)|| + ||f(z_i) - f(z)||$$
$$\leq \sum_{j \neq i} ||\phi_j(z)|| + ||\phi_i(z) - p(t_i)|| + 2\delta.$$

By the Rudin-Carleson theorem for vector valued functions there exists $\tilde{\Theta} \in A(\mathcal{I}, X)$ satisfying $||\tilde{\Theta}|| < 4\delta$, $\tilde{\Theta} | F = \Theta$. Finally, define $\tilde{f}(z) = \Psi(z) - \tilde{\Theta}(z)$ ($z \in \mathcal{I}$). Clearly $\tilde{f} \in A(\mathcal{I}, X)$. Further, $\tilde{f}(\mathcal{I}) \subset p(I) + B_{2\delta}(X) + B_{2\delta}(X) \subset p(I) + B_{2\delta}(X) \subset Q$. Clearly $\tilde{f} | F = f$. Also, if $z \in \mathcal{I} \setminus U(F)$ then $z \in \mathcal{I} \setminus \bigcup_{i=1}^{n} U_i$ hence $||\tilde{f}(z)|| \leq ||\Psi(z)|| + ||\tilde{\Theta}(z)|| < \delta + 4\delta < \varepsilon$.

Lemma 4. Let E be closed subset of $\partial \mathcal{I}$ and let $G \subset \partial \mathcal{I} - E$ be a relatively closed set of Lebesgue measure 0. Let $H \subset \partial \mathcal{I} - E$ be a compact set of Lebesgue measure 0, disjoint from G. Let Q be an open connected set in a complex Banach space X containing the point 0 and suppose that $f \in C(H, X)$ satisfies $f(H) \subset Q$.

There exists $\delta_0 > 0$ such that for every $\eta > 0$ the following holds for all $f_0 \in C(H, X)$ satisfying $f_0(H) \subset Q$ and $||f_0 - f|| < \eta$. There exists $\delta > 0$ such that for every $\delta < \delta_0$ and for all $f_0 \in C(H, X)$ satisfying $f_0(H) \subset Q$ and $||f_0 - f|| < \delta$ there exists $\tilde{f_0} \in C(H, X)$ satisfying $||\tilde{f_0} - f|| < \eta$.
every ε: 0 < ε < δ and for every neighbourhood \(U \subset \overline{A} - E \) of \(H \) there exists a continuous function \(\tilde{f}: \overline{A} - E \to X \), analytic on \(\Delta \) and satisfying

1. \(\tilde{f}|_H = f \)
2. \(\tilde{f}|_G = 0 \)
3. \(\| \tilde{f}(z) \| < \varepsilon \ (z \in (\overline{A} - E) - U) \)
4. \(f(\overline{A} - E) + B_\varepsilon(X) \subset Q \).

Proof. With no loss of generality we may assume that \(U \cap G = \emptyset \). By Lemma 2 there exists \(\delta_0 > 0 \) such that for every \(\delta: 0 < \delta < \delta_0 \) there exists a path \(p: I \to X \) satisfying \(p(0) = 0, f(H) \subset p(I) + B_\delta(X) \), \(p(I) + B_{\delta_0}(X) \subset Q \). Let \(0 < \delta < \delta_0 \) and \(0 < \varepsilon < \delta \). Applying Lemma 3 to the function \(f \) and to the (open connected) set \(p(I) + B_\varepsilon(X) \) there exists \(f_1 \in \mathcal{A}(\Delta, X) \) satisfying

\[
\tilde{f}_1|_H = f
\]

\[
\tilde{f}_1(\overline{A}) + B_{\delta_0}(X) \subset Q
\]

\[
\| \tilde{f}_1(z) \| < \varepsilon/2 \ (z \in \overline{A} - U).
\]

Define

\[
f_2(s) = \begin{cases} -\tilde{f}_1(s) & (s \in G) \\ 0 & (s \in H) \end{cases}.
\]

Then \(f_2 \) is continuous on \(G \cup H \) and satisfies \(\| f_2(s) \| < \varepsilon/2 \ (s \in G \cup H) \). By Theorem 2 in [6] there exists a continuous function \(\tilde{f}_2: \overline{A} - E \to X \), analytic on \(\Delta \), satisfying \(\tilde{f}_2|_G \cup H = f \) and \(\| \tilde{f}_2(z) \| \leq \varepsilon/2 \ (z \in \overline{A} - E) \). Put \(\tilde{f} = \tilde{f}_1 + \tilde{f}_2 \). It is easy to check that \(\tilde{f} \) has all the required properties.

Proof of theorem. Let \(Q \) be an open connected subset of a complex Banach space \(X \). Let \(E \subset \partial \Delta \) be a closed set and let \(F \subset \partial \Delta - E \) be a relatively closed set of Lebesgue measure 0. Suppose that \(f: F \to X \) is a continuous function satisfying \(f(F) \subset Q \). We will prove that there exists a continuous extension \(\tilde{f}: \overline{A} - E \to X \), \(\tilde{f}|_F = f \), which is analytic on \(\Delta \) and which satisfies \(f(\overline{A} - E) \subset Q \).

If \(E \) is empty then the statement of the theorem is proved by Lemma 3. So assume that \(E \) is not empty. With no loss of generality assume that \(0 \in Q \). As in [6] write \(F = \bigcup_{n=1}^\infty F_n \) where \(F_n \subset \overline{A} - E \) are compact sets such that there exist disjoint open sets \(U_n \subset \overline{A} - E \) satisfying \(F_n \subset U_n \) for all \(n \).

Now we define inductively a sequence \(\{D_n\} \) of open subsets of \(\overline{A} - E \) satisfying \(F_n \subset D_n \subset U_n \) for all \(n \), a decreasing sequence \(\{\delta_n\} \) of positive numbers and a sequence \(\{\phi_n\} \) of functions from \(\overline{A} - E \) to \(X \) having the following properties:
for each $i \in \mathbb{N}$, ϕ_i is continuous on $\bar{A} - E$ and analytic on A.

(ii) $\phi_i \big|_{F_j} = 0$ ($i \neq j$; $i, j \in \mathbb{N}$)

(iii) $\phi_i \big|_{F_i} = f \big|_{F_i}$ ($i \in \mathbb{N}$)

(iv) $\phi_i(\bar{A} - E) + B_{\delta_i}(X) \subset Q$ ($i \in \mathbb{N}$)

(v) $\|\phi_i(z)\| < \delta_i/2^{i+1}$ ($z \in (\bar{A} - E) - D_i$; $i \in \mathbb{N}$)

(vi) $\|\sum_{j=1}^i \phi_j(z)\| < \delta_{i+1}/2$ ($z \in D_{i+1}; i \in \mathbb{N}$).

If $i = 1$, put $D_1 = U_1$ and apply Lemma 4 to the function $f \big|_{F_1}$ to obtain δ_i satisfying $B_{\delta_i}(X) \subset Q$ and ϕ_i which satisfies (i)-(v) above for $i = 1$. Now assume that δ_i, D_i, ϕ_i ($1 \leq i \leq n$) are given satisfying (i)-(v) for $1 \leq i \leq n$ and (vi) $1 \leq i \leq n - 1$. Applying Lemma 4 to the function $f \big|_{F_{n+1}}$ there exists $\delta_{n+1} > 0 < \delta_n$ such that Lemma 4 holds for $\delta = \delta_{n+1}$. Since the function

$$z \mapsto \sum_{j=1}^n \phi_j(z)$$

is continuous on $\bar{A} - E$ and equal 0 on F_{n+1} there exists a neighbourhood $D_{n+1} \subset \bar{A} - E$ of F_{n+1} satisfying $D_{n+1} \subset U_{n+1}$ and such that (vi) is satisfied for $i = n$. Now, by Lemma 4 there exists ϕ_{n+1} satisfying (i)-(v) for $i = n + 1$.

Define

$$\tilde{f}(z) = \sum_{i=1}^n \phi_i(z) \quad (z \in \bar{A} - E).$$

If $z \in (\bar{A} - E) - \bigcup_{j=1}^n D_j$ then $\|\phi_i(z)\| < \delta_i/2^{i+1} < \delta_i/2^{i+1}$. Consequently the series converges uniformly for all such z. By

$$\sum_{i=1}^\infty \|\phi_i(z)\| < \delta_i/2$$

and by $B_{\delta_i}(X) \subset Q$ we have $f(z) \in Q$ for all such z. Suppose that $z \in D_k$ for some k. Then $z \in D_j$ for $j \neq k$ and by the above argument the series converges uniformly on D_k. Further, by (v) and (vi) we have

$$\left\|\sum_{j=k}^\infty \phi_j(z)\right\| \leq \left\|\sum_{j=1}^{k-1} \phi_j(z)\right\| + \sum_{j=k+1}^\infty \|\phi_j(z)\| < \delta_k/2 + \delta_k/2 = \delta_k.$$

Consequently by (iv) $f(z) \in \phi_k(\bar{A} - E) + B_{\delta_k}(X) \subset Q$. Since each compact subset of $\bar{A} - E$ misses all but a finite number of the sets D_i the series converges uniformly on compact subsets of $\bar{A} - E$. Consequently \tilde{f} is continuous on $\bar{A} - E$, analytic on A and, as shown above, satisfies $\tilde{f}(\bar{A} - E) \subset Q$. By the properties of ϕ_i we have also $\tilde{f} \big|_{F} = f$.

COROLLARY (see [7]). Given any open connected subset Q of a
separable complex Banach space X there exists an analytic function $f: \Delta \to X$ whose range is contained and dense in Q.

Proof. Put $E = \{1\}$ and let $F = \{z_n\} \subset \partial \Delta - \{1\}$ be an injective sequence converging to 1. Let $f(z_n) = w_n$ where $\{w_n\} \subset Q$ is a sequence dense in Q and then apply theorem.

Acknowledgment. The author wishes to thank Professor Ivan Vidav and Professor Jože Vrabec for some helpful discussions while this paper was being prepared, and to Professor Leopoldo Nachbin with whose help the author spent a month at the Instituto de Matemática, Universidade Federal do Rio de Janeiro where the final version of this paper was written.

References

Received September 30, 1975. This work was supported in part by the Boris Kidrič Fund, Ljubljana, Yugoslavia.

University of Ljubljana
Ljubljana, Yugoslavia
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAI'I
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
UNIVERSITY OF OREGON
AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Joseph Anthony Ball and Arthur R. Lubin, *On a class of contractive perturbations of restricted shifts* ... 309
Joseph Becker and William C. Brown, *On extending higher derivations generated by cup products to the integral closure* 325
Andreas Blass, *Exact functors and measurable cardinals* .. 335
Joseph Eugene Collison, *A variance property for arithmetic functions* 347
Craig McCormack Cordes, *Quadratic forms over nonformally real fields with a finite number of quaternion algebras* 357
Freddy Delbaen, *Weakly compact sets in H^1* .. 367
G. D. Dikshit, *Absolute Nörlund summability factors for Fourier series* 371
Edward Richard Fadell, *Nielsen numbers as a homotopy type invariant* 381
Josip Globevnik, *Analytic extensions of vector-valued functions* 389
Robert Gold, *Genera in normal extensions* .. 397
Solomon Wolf Golomb, *Formulas for the next prime* .. 401
Robert L. Griess, Jr., *The splitting of extensions of $SL(3, 3)$ by the vector space F_3^3* 405
Thomas Alan Keagy, *Matrix transformations and absolute summability* 411
Kazuo Kishi, *Analytic maps of the open unit disk onto a Gleason part* 417
Kwangil Koh, Jiang Luh and Mohan S. Putcha, *On the associativity and commutativity of algebras over commutative rings* 423
James C. Lillo, *Asymptotic behavior of solutions of retarded differential difference equations* ... 431
John Alan MacBain, *Local and global bifurcation from normal eigenvalues* 445
Anna Maria Mantero, *Sets of uniqueness and multiplicity for L^p* 467
J. F. McClendon, *Embedding metric families* .. 481
L. Robbiano and Giuseppe Valla, *Primary powers of a prime ideal* .. 491
Wolfgang Ruess, *Generalized inductive limit topologies and barrelledness properties* 499
Judith D. Sally, *Bounds for numbers of generators of Cohen-Macaulay ideals* 517
Helga Schirmer, *Mappings of polyhedra with prescribed fixed points and fixed point indices* ... 521
Cho Wei Sit, *Quotients of complete multipartite graphs* .. 531
S. Sznajder and Zbigniew Zielezny, *Solvability of convolution equations in \mathcal{K}_p^p, $p > 1$* ... 539
Mitchell Herbert Taibleson, *The existence of natural field structures for finite dimensional vector spaces over local fields* 545
William Yslas Vélez, *A characterization of completely regular fields* 553
P. S. Venkatesan, *On right unipotent semigroups* .. 555
Kenneth S. Williams, *A rational octic reciprocity law* ... 563
Robert Ross Wilson, *Lattice orderings on the real field* .. 571
Harvey Eli Wolff, *V-localizations and V-monads. II* ... 579