FORMULAS FOR THE NEXT PRIME

SOLOMON WOLF GOLOMB
FORMULAS FOR THE NEXT PRIME

SOLOMON W. GOLOMB

In 1971, J. M. Gandhi showed that if the first \(n \) primes, \(p_1, p_2, \ldots, p_n \) are known, then the next prime, \(p_{n+1} \), is given "explicitly" by the formula:

\[
1 < b^t \left(\sum_{d \mid P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right) < b,
\]

where \(b \) is any positive integer \(\geq 2 \), where \(P_n = p_1 p_2 \cdots p_n \), where \(\mu(d) \) is the Möbius function, and where the unique integer value of \(t \) which satisfies the indicated inequalities is in fact \(p_{n+1} \).

In this paper, we obtain the following formulas for \(p_{n+1} \):

\[
\begin{align*}
(2) \quad p_{n+1} &= \lim_{s \to \infty} \left(P_n(s) \zeta(s) - 1 \right)^{-1/s} \\
(3) \quad p_{n+1} &= \lim_{s \to \infty} \left(P_n(s) - \zeta^{-1}(s) \right)^{-1/s} \\
(4) \quad p_{n+1} &= \lim_{s \to \infty} \left(\zeta(s) - Q_n(s) \right)^{-1/s}
\end{align*}
\]

and

\[
(5) \quad p_{n+1} = \lim_{s \to \infty} \left(1 - \zeta^{-1}(s) Q_n(s) \right)^{-1/s}.
\]

Here \(\zeta(s) = \sum_{n=1}^{\infty} n^{-s} \) for (real) \(s > 1 \) is the Riemann Zeta Function, with \(\zeta^{-1}(s) = \sum_{n=1}^{\infty} \mu(n)/n^s \); \(P_n(s) = \prod_{p_i \leq p_n} (1 - p_i^{-s}) \), and \(Q_n(s) = \{P_n(s)\}^{-1} = \sum_{n=1}^{\infty} n^{-s} \), where the prime indicates that summation is extended over those values of \(n \) having no prime factors exceeding \(p_n \).

The approach to be followed here involves the derivation of a more general formula, based on the notion of probability distributions on the positive integers, from which both the Gandhi formula and the new formulas listed above follow as special cases.

2. Probability formulas for the integers. Let \(\alpha(n) \) be a probability function on the positive integers. That is, \(\alpha(n) \geq 0 \) for all \(n = 1, 2, 3, \ldots \), and \(\sum_{n=1}^{\infty} \alpha(n) = 1 \).

Let \(\beta(m) = \sum_{n=1}^{\infty} \alpha(mn) \). In the probability distribution \(D \) determined by \(\{\alpha(n)\} \), \(\beta(m) \) is the probability that a randomly chosen integer is a multiple of \(m \). Next, let \(\gamma(k) = \sum_{d \mid k} \mu(d) \beta(d) \). Then \(\gamma(k) \) is the probability (in \(D \)) that a randomly chosen integer is relatively prime to \(k \), because

\[
\gamma(k) = 1 - \sum_{p_i \mid k} \beta(p_i) + \sum_{p_i p_j \mid k} \beta(p_i p_j) - + \cdots
\]

Let \(P_n = p_1 p_2 \cdots p_n \) be the product of the first \(n \) primes. Then
\(\gamma(P_n) = \sum_{d|P_n} \mu(d) \beta(d) \) by the definition of \(\gamma(k) \); but also

(6) \[
\gamma(P_n) = \alpha(1) + \alpha(p_{n+1}) + \cdots = \sum_{j=1}^{\infty} \alpha(j),
\]

where \(\sum'' \) indicates summation over all positive integers divisible by none of the first \(n \) primes.

Theorem 1. Suppose \(1 \leq n_1 < n_2 < n_3 < \cdots \) is any subsequence of the positive integers, and there exists an operator \(T \) such that

\[
T \left(\sum_{i=1}^{m} \alpha(n_i) \right) = n_i
\]

for all such subsequences. Then

(7) \[
T(\gamma(P_n) - \alpha(1)) = p_{n+1}
\]

is a "formula" for the next prime, \(p_{n+1} \).

Proof. Since \(\gamma(P_n) - \alpha(1) = \sum'_{j>1} \alpha(j) = \alpha(p_{n+1}) + \cdots \), we have \(T(\gamma(P_n) - \alpha(1)) = p_{n+1} \) by the hypothesis concerning the operator \(T \).

Another general result is given by:

Theorem 2.

(8) \[
\gamma(0) = \lim_{n \to \infty} \gamma(P_n) = \sum_{d=1}^{\infty} \mu(d) \beta(d) = \alpha(1).
\]

Proof. This follows directly from

\[
\gamma(P_n) = \sum_{d|P_n} \mu(d) \beta(d) = \sum_{j=1}^{\infty} \alpha(j).
\]

As we shall see, Theorem 2 is a generalization of Euler's product formula for the Zeta Function.

3. Some special cases. Suppose \(\alpha(n) = (b - 1)b^{-n} \) for \(n = 1, 2, 3, \cdots \) where \(b > 1 \) is a positive integer. This is a geometric distribution on the positive integers. Then

\[
\beta(m) = \sum_{n=1}^{\infty} \alpha(mn) = \frac{b - 1}{b^m - 1},
\]

and

\[
\gamma(k) = \sum_{d|k} \mu(d) \beta(d) = (b - 1) \sum_{d|k} \frac{\mu(d)}{b^d - 1}.
\]
In particular, \(\gamma(P_n) = (b-1) \sum_{d|P_n} \frac{\mu(d)}{b^d - 1} \), and
\[
\gamma(P_n) - \alpha(1) = (b-1)
\left(\sum_{d|P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right)
= (b-1) \left\{ \frac{1}{b^{p_{n+1}}} + \cdots \right\},
\]
and to recover \(p_{n+1} \) it suffices to divide by \(b-1 \), and then multiply by the smallest power \(b^t \) of \(b \), \(t \) an integer, such that
\[
b^t \left(\sum_{d|P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right) > 1.
\]
This is Gandhi's Formula (1). (For other derivations, see [1] and [2].)

Alternatively, let \(\alpha(n) = n^{-s}/\zeta(s) \) for a fixed real value of \(s \), \(s > 1 \). (Note that \(\sum_{n=1}^\infty \alpha(n) = (\sum_{n=1}^\infty n^{-s})/\zeta(s) = 1 \).) Then \(\beta(m) = \sum_{n=1}^\infty \alpha(mn) = m^{-s} \), and \(\gamma(k) = \sum_{d|k} \mu(d)d^{-s} = \sum_{p|k} (1 - p^{-s}) \). Specifically, \(\gamma(P_n) = \sum_{d|P_n} \mu(d)/d^s = \prod_{i=1}^s (1 - p_i^{-s}) = P_n(s) \). Note also that \(\alpha(1) = 1/\zeta(s) \). Thus \(\gamma(P_n) - \alpha(1) = (p_{n+1})^{-s} + \cdots \), and an appropriate operator \(T \) to recover the term \(p_{n+1} \), in the sense of Theorem 1, is
\[
T = \lim_{s \to \infty} (1 -)^{-1/s}.
\]
Thus
\[
(3) \quad P_{n+1} = \lim_{s \to \infty} \{ P_n(s) - \zeta^{-1}(s) \}^{-1/s}.
\]
Each of the formulas (2), (3), (4), (5) can be given a direct interpretation. Thus
\[
(9) \quad P_n(s)\zeta(s) - 1 = \sum a^{-s}
\]
\[
(10) \quad P_n(s) - \zeta^{-1}(s) = - \sum \mu(a)a^{-s}
\]
\[
(11) \quad \zeta(s) - Q_n(s) = \sum a^{-s}
\]
\[
(12) \quad 1 - \zeta^{-1}(s)Q_n(s) = - \sum \mu(a)a^{-s}
\]
where \(\sum_1 \) indicates summation over those integers \(a > 1 \) all of whose prime factors exceed \(p_n \); where \(\sum_2 \) indicates summation over those integers \(a > 1 \) having at least one prime factor exceeding \(p_n \); and where \(\mu(a) \) is the Möbius function. In all four of these expressions, the first surviving term in \(p_n^{-s} \), which is recovered by the inversion operator \(T \) to yield the formulas (2), (3), (4), and (5).

For the case \(\alpha(n) = n^{-s}/\zeta(s) \), Theorem 2 yields the identity
\[
(13) \quad \gamma(0) = \prod_{i=1}^\infty (1 - p_i^{-s}) = \sum_{d=1}^\infty \mu(d) \cdot d^{-s} = 1/\sum_{n=1}^\infty n^{-s}
\]
which includes the Euler Product Formula for the Zeta Function (cf. [3]).
The reader is invited to find other distributions on the positive integers for which Theorems 1 and 2 yield interesting formulas. A simpler proof of Gandhi's formula was given by the present author in 1974.

REFERENCES

Received August 13, 1975, and in revised form December 19, 1975. This research was supported in part by the U.S. Army Research Office, under Contract DA-ARO-D-31-124-73-G167.

UNIVERSITY OF SOUTHERN CALIFORNIA
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joseph Anthony Ball and Arthur R. Lubin, On a class of contractive perturbations of restricted shifts</td>
<td>309</td>
</tr>
<tr>
<td>Joseph Becker and William C. Brown, On extending higher derivations generated by cup products to the integral closure</td>
<td>325</td>
</tr>
<tr>
<td>Andreas Blass, Exact functors and measurable cardinals</td>
<td>335</td>
</tr>
<tr>
<td>Joseph Eugene Collison, A variance property for arithmetic functions</td>
<td>347</td>
</tr>
<tr>
<td>Craig McCormack Cordes, Quadratic forms over nonformally real fields with a finite number of quaternion algebras</td>
<td>357</td>
</tr>
<tr>
<td>Freddy Delbaen, Weakly compact sets in H^1</td>
<td>367</td>
</tr>
<tr>
<td>G. D. Dikshit, Absolute Nörlund summability factors for Fourier series</td>
<td>371</td>
</tr>
<tr>
<td>Edward Richard Fadell, Nielsen numbers as a homotopy type invariant</td>
<td>381</td>
</tr>
<tr>
<td>Josip Globevnik, Analytic extensions of vector-valued functions</td>
<td>389</td>
</tr>
<tr>
<td>Robert Gold, Genera in normal extensions</td>
<td>397</td>
</tr>
<tr>
<td>Solomon Wolf Golomb, Formulas for the next prime</td>
<td>401</td>
</tr>
<tr>
<td>Robert L. Griess, Jr., The splitting of extensions of $SL(3, 3)$ by the vector space F_3^3</td>
<td>405</td>
</tr>
<tr>
<td>Thomas Alan Keagy, Matrix transformations and absolute summability</td>
<td>411</td>
</tr>
<tr>
<td>Kazuo Kishi, Analytic maps of the open unit disk onto a Gleason part</td>
<td>417</td>
</tr>
<tr>
<td>Kwangil Koh, Jiang Luh and Mohan S. Putcha, On the associativity and commutativity of algebras over commutative rings</td>
<td>423</td>
</tr>
<tr>
<td>James C. Lillo, Asymptotic behavior of solutions of retarded differential difference equations</td>
<td>431</td>
</tr>
<tr>
<td>John Alan MacBain, Local and global bifurcation from normal eigenvalues</td>
<td>445</td>
</tr>
<tr>
<td>Anna Maria Mantero, Sets of uniqueness and multiplicity for L^p</td>
<td>467</td>
</tr>
<tr>
<td>J. F. McClendon, Embedding metric families</td>
<td>481</td>
</tr>
<tr>
<td>L. Robbiano and Giuseppe Valla, Primary powers of a prime ideal</td>
<td>491</td>
</tr>
<tr>
<td>Wolfgang Ruess, Generalized inductive limit topologies and barrelledness properties</td>
<td>499</td>
</tr>
<tr>
<td>Judith D. Sally, Bounds for numbers of generators of Cohen-Macaulay ideals</td>
<td>517</td>
</tr>
<tr>
<td>Helga Schirmer, Mappings of polyhedra with prescribed fixed points and fixed point indices</td>
<td>521</td>
</tr>
<tr>
<td>Cho Wei Sit, Quotients of complete multipartite graphs</td>
<td>531</td>
</tr>
<tr>
<td>S. Sznajder and Zbigniew Zielezny, Solvability of convolution equations in \mathcal{K}_p, $p > 1$</td>
<td>539</td>
</tr>
<tr>
<td>Mitchell Herbert Taibleson, The existence of natural field structures for finite dimensional vector spaces over local fields</td>
<td>545</td>
</tr>
<tr>
<td>William Yslas Vélez, A characterization of completely regular fields</td>
<td>553</td>
</tr>
<tr>
<td>P. S. Venkatesan, On right unipotent semigroups</td>
<td>555</td>
</tr>
<tr>
<td>Kenneth S. Williams, A rational octic reciprocity law</td>
<td>563</td>
</tr>
<tr>
<td>Robert Ross Wilson, Lattice orderings on the real field</td>
<td>571</td>
</tr>
<tr>
<td>Harvey Eli Wolff, V-localizations and V-monads. II</td>
<td>579</td>
</tr>
</tbody>
</table>