FORMULAS FOR THE NEXT PRIME

SOLOMON WOLF GOLOMB
FORMULAS FOR THE NEXT PRIME

SOLOMON W. GOLOMB

In 1971, J. M. Gandhi showed that if the first \( n \) primes, \( p_1, p_2, \ldots, p_n \) are known, then the next prime, \( p_{n+1} \), is given "explicitly" by the formula:

\[
1 < b^t \left( \sum_{d | P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right) < b,
\]

where \( b \) is any positive integer \( \geq 2 \), where \( P_n = p_1 p_2 \cdots p_n \), where \( \mu(d) \) is the Möbius function, and where the unique integer value of \( t \) which satisfies the indicated inequalities is in fact \( p_{n+1} \).

In this paper, we obtain the following formulas for \( p_{n+1} \):

\[
\begin{align*}
(2) & \quad p_{n+1} = \lim_{s \to \infty} \{P_n(s)\zeta(s) - 1\}^{-1/s} \\
(3) & \quad p_{n+1} = \lim_{s \to \infty} \{P_n(s) - \zeta^{-1}(s)\}^{-1/s} \\
(4) & \quad p_{n+1} = \lim_{s \to \infty} \{\zeta(s) - Q_n(s)\}^{-1/s} \\
\end{align*}
\]

and

\[
(5) \quad p_{n+1} = \lim_{s \to \infty} \{1 - \zeta^{-1}(s)Q_n(s)\}^{-1/s}.
\]

Here \( \zeta(s) = \sum_{n=1}^{\infty} n^{-s} \) for (real) \( s > 1 \) is the Riemann Zeta Function, with \( \zeta^{-1}(s) = \sum_{n=1}^{\infty} \mu(n)/n^s \); \( P_n(s) = \prod_{p \leq n} (1 - p^{-s}) \), and \( Q_n(s) = \{P_n(s)\}^{-1} = \sum_{n=1}^{\infty} n^{-s} \), where the prime indicates that summation is extended over those values of \( n \) having no prime factors exceeding \( P_n \).

The approach to be followed here involves the derivation of a more general formula, based on the notion of probability distributions on the positive integers, from which both the Gandhi formula and the new formulas listed above follow as special cases.

2. Probability formulas for the integers. Let \( \alpha(n) \) be a probability function on the positive integers. That is, \( \alpha(n) \geq 0 \) for all \( n = 1, 2, 3, \ldots \), and \( \sum_{n=1}^{\infty} \alpha(n) = 1 \).

Let \( \beta(m) = \sum_{n=1}^{\infty} \alpha(mn) \). In the probability distribution \( D \) determined by \( \{\alpha(n)\} \), \( \beta(m) \) is the probability that a randomly chosen integer is a multiple of \( m \). Next, let \( \gamma(k) = \sum_{d | k} \mu(d)\beta(d) \). Then \( \gamma(k) \) is the probability (in \( D \)) that a randomly chosen integer is relatively prime to \( k \), because

\[\gamma(k) = 1 - \sum_{p \mid k} \beta(p) + \sum_{p \nmid p_1, \ldots, p_j} \beta(p_1 \cdots p_j) - + \cdots.\]

Let \( P_n = p_1 p_2 \cdots p_n \) be the product of the first \( n \) primes. Then
\[ \gamma(P_n) = \sum_{d\mid P_n} \mu(d)\beta(d) \] by the definition of \( \gamma(k) \); but also

\[ \gamma(P_n) = \alpha(1) + \alpha(p_{n+1}) + \cdots = \sum_{j=1}^{\infty} \alpha(j), \]

where \( \sum'' \) indicates summation over all positive integers divisible by none of the first \( n \) primes.

**Theorem 1.** Suppose \( 1 \leq n_1 < n_2 < n_3 < \cdots \) is any subsequence of the positive integers, and there exists an operator \( T \) such that

\[ T \left( \sum_{i=1}^{\infty} \alpha(n_i) \right) = n_1 \]

for all such subsequences. Then

\[ T(\gamma(P_n) - \alpha(1)) = p_{n+1} \]

is a "formula" for the next prime, \( p_{n+1} \).

**Proof.** Since \( \gamma(P_n) - \alpha(1) = \sum''_{j>1} \alpha(j) = \alpha(p_{n+1}) + \cdots \), we have

\[ T(\gamma(P_n) - \alpha(1)) = p_{n+1} \]

by the hypothesis concerning the operator \( T \).

Another general result is given by:

**Theorem 2.**

\[ \gamma(0) = \lim_{n \to \infty} \gamma(P_n) = \sum_{d=1}^{\infty} \mu(d)\beta(d) = \alpha(1). \]

**Proof.** This follows directly from

\[ \gamma(P_n) = \sum_{d\mid P_n} \mu(d)\beta(d) = \sum_{j=1}^{\infty} \alpha(j). \]

As we shall see, Theorem 2 is a generalization of Euler’s product formula for the Zeta Function.

3. Some special cases. Suppose \( \alpha(n) = (b - 1)b^{-n} \) for \( n = 1, 2, 3, \ldots \) where \( b > 1 \) is a positive integer. This is a geometric distribution on the positive integers. Then

\[ \beta(m) = \sum_{n=1}^{\infty} \alpha(mn) = \frac{b - 1}{b^m - 1}, \]

and

\[ \gamma(k) = \sum_{d\mid k} \mu(d)\beta(d) = (b - 1) \sum_{d\mid k} \frac{\mu(d)}{b^d - 1}. \]
In particular, \( \gamma(P_n) = (b - 1) \sum_{d|P_n} \mu(d)/(b^d - 1) \), and
\[
\gamma(P_n) - \alpha(1) = (b - 1) \left( \sum_{d|P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right) = (b - 1) \left\{ \frac{1}{b} \prod_{p_{n+1}}^\infty (1 - \frac{1}{p_i^{x_i}}) + \cdots \right\},
\]
and to recover \( p_{n+1} \) it suffices to divide by \( b - 1 \), and then multiply by the smallest power \( b^t \) of \( b \), \( t \) an integer, such that
\[
b^t \left( \sum_{d|P_n} \frac{\mu(d)}{b^d - 1} - \frac{1}{b} \right) > 1.
\]
This is Gandhi's Formula (1). (For other derivations, see [1] and [2].)

Alternatively, let \( \alpha(n) = n^{-s}/\zeta(s) \) for a fixed real value of \( s \), \( s > 1 \). (Note that \( \sum_{n=1}^\infty \alpha(n) = (\sum_{n=1}^\infty n^{-s})/\zeta(s) = 1 \).) Then \( \beta(m) = \sum_{n=1}^\infty \alpha(mn) = m^{-s} \), and \( \gamma(k) = \sum_{d|k} \mu(d)d^{-s} = \sum_{p|k} (1 - p^{-s}) \). Specifically, \( \gamma(P_n) = \sum_{d|P_n} (\mu(d))/d^s = \prod_{n=1}^\infty (1 - \frac{1}{p_i^{x_i}}) = P_n(s) \). Note also that \( \alpha(1) = 1/\zeta(s) \). Thus \( \gamma(P_n) - \alpha(1) = (p_{n+1})^{-s} + \cdots \), and an appropriate operator \( T \) to recover the term \( p_{n+1} \), in the sense of Theorem 1, is \( T = \lim_{s \to \infty} (\ )^{-s} \). Thus
\[
P_{n+1} = \lim_{s \to \infty} \{ P_n(s) - \zeta^{-1}(s) \}^{-1/s}.
\]

Each of the formulas (2), (3), (4), (5) can be given a direct interpretation. Thus

\[
\begin{align*}
(9) & \quad P_n(s)\zeta(s) - 1 = \sum a^{-s} \\
(10) & \quad P_n(s) - \zeta^{-1}(s) = - \sum \mu(a)a^{-s} \\
(11) & \quad \zeta(s) - Q_n(s) = \sum a^{-s} \\
(12) & \quad 1 - \zeta^{-1}(s)Q_n(s) = - \sum \mu(a)a^{-s}
\end{align*}
\]

where \( \sum_1 \) indicates summation over those integers \( a > 1 \) all of whose prime factors exceed \( p_n \); where \( \sum_2 \) indicates summation over those integers \( a > 1 \) having at least one prime factor exceeding \( p_n \); and where \( \mu(a) \) is the Möbius function. In all four of these expressions, the first surviving term in \( p_{n+1}^{-s} \), which is recovered by the inversion operator \( T \) to yield the formulas (2), (3), (4), and (5).

For the case \( \alpha(n) = n^{-s}/\zeta(s) \), Theorem 2 yields the identity
\[
\gamma(0) = \prod_{i=1}^\infty (1 - p_i^{-s}) = \sum_{d=1}^\infty \mu(d) \cdot d^{-s} = 1/\sum_{n=1}^\infty n^{-s}
\]
which includes the Euler Product Formula for the Zeta Function (cf. [3]).
The reader is invited to find other distributions on the positive integers for which Theorems 1 and 2 yield interesting formulas. A simpler proof of Gandhi’s formula was given by the present author in 1974.

REFERENCES


Received August 13, 1975, and in revised form December 19, 1975. This research was supported in part by the U.S. Army Research Office, under Contract DA-ARO-D-31-124-73-G167.

UNIVERSITY OF SOUTHERN CALIFORNIA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>On a class of contractive perturbations of restricted shifts</td>
<td>Joseph Anthony Ball and Arthur R. Lubin</td>
<td>309</td>
</tr>
<tr>
<td>On extending higher derivations generated by cup products to the integral closure</td>
<td>Joseph Becker and William C. Brown</td>
<td>325</td>
</tr>
<tr>
<td>Exact functors and measurable cardinals</td>
<td>Andreas Blass</td>
<td>335</td>
</tr>
<tr>
<td>A variance property for arithmetic functions</td>
<td>Joseph Eugene Collison</td>
<td>347</td>
</tr>
<tr>
<td>Quadratic forms over nonformally real fields with a finite number of quaternion algebras</td>
<td>Craig McCormack Cordes</td>
<td>357</td>
</tr>
<tr>
<td>Weakly compact sets in $H^1$</td>
<td>Freddy Delbaen</td>
<td>367</td>
</tr>
<tr>
<td>Absolute Nörlund summability factors for Fourier series</td>
<td>G. D. Dikshit</td>
<td>371</td>
</tr>
<tr>
<td>Nielsen numbers as a homotopy type invariant</td>
<td>Edward Richard Fadell</td>
<td>381</td>
</tr>
<tr>
<td>Analytic extensions of vector-valued functions</td>
<td>Josip Globevnik</td>
<td>389</td>
</tr>
<tr>
<td>Genera in normal extensions</td>
<td>Robert Gold</td>
<td>397</td>
</tr>
<tr>
<td>Formulas for the next prime</td>
<td>Solomon Wolf Golomb</td>
<td>401</td>
</tr>
<tr>
<td>The splitting of extensions of $SL(3, 3)$ by the vector space $F_3^3$</td>
<td>Robert L. Griess, Jr.</td>
<td>405</td>
</tr>
<tr>
<td>Matrix transformations and absolute summability</td>
<td>Thomas Alan Keagy</td>
<td>411</td>
</tr>
<tr>
<td>Analytic maps of the open unit disk onto a Gleason part</td>
<td>Kazuo Kishi</td>
<td>417</td>
</tr>
<tr>
<td>On the associativity and commutativity of algebras over commutative rings</td>
<td>Kwangil Koh, Jiang Luh and Mohan S. Putcha</td>
<td>423</td>
</tr>
<tr>
<td>Asymptotic behavior of solutions of retarded differential difference equations</td>
<td>James C. Lillo</td>
<td>431</td>
</tr>
<tr>
<td>Local and global bifurcation from normal eigenvalues</td>
<td>John Alan MacBain</td>
<td>445</td>
</tr>
<tr>
<td>Sets of uniqueness and multiplicity for $L^p$</td>
<td>Anna Maria Mantero</td>
<td>467</td>
</tr>
<tr>
<td>Embedding metric families</td>
<td>J. F. McClendon</td>
<td>481</td>
</tr>
<tr>
<td>Primary powers of a prime ideal</td>
<td>L. Robbiano and Giuseppe Valla</td>
<td>491</td>
</tr>
<tr>
<td>Generalized inductive limit topologies and barrelledness properties</td>
<td>Wolfgang Ruess</td>
<td>499</td>
</tr>
<tr>
<td>Bounds for numbers of generators of Cohen-Macaulay ideals</td>
<td>Judith D. Sally</td>
<td>517</td>
</tr>
<tr>
<td>Mappings of polyhedra with prescribed fixed points and fixed point indices</td>
<td>Helga Schirmer</td>
<td>521</td>
</tr>
<tr>
<td>Quotients of complete multipartite graphs</td>
<td>Cho Wei Sit</td>
<td>531</td>
</tr>
<tr>
<td>Solvability of convolution equations in $K_p^p$, $p &gt; 1$</td>
<td>S. Sznajder and Zbigniew Zielezny</td>
<td>539</td>
</tr>
<tr>
<td>The existence of natural field structures for finite dimensional vector spaces over local fields</td>
<td>Mitchell Herbert Taibleson</td>
<td>545</td>
</tr>
<tr>
<td>A characterization of completely regular fields</td>
<td>William Yslas Vélez</td>
<td>553</td>
</tr>
<tr>
<td>On right unipotent semigroups</td>
<td>P. S. Venkatesan</td>
<td>555</td>
</tr>
<tr>
<td>A rational octic reciprocity law</td>
<td>Kenneth S. Williams</td>
<td>563</td>
</tr>
<tr>
<td>Lattice orderings on the real field</td>
<td>Robert Ross Wilson</td>
<td>571</td>
</tr>
<tr>
<td>V-localizations and V-monads. II</td>
<td>Harvey Eli Wolff</td>
<td>579</td>
</tr>
</tbody>
</table>