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PRIMARY POWERS OF A PRIME IDEAL

L. RoBBIANO AND G. VALLA

In this paper we show that the powers of a prime ideal
p are primary iff the direct summands of the graded ring
associated with p are torsion-free. We prove some conse-
quences of this fact especially in connection with geometric
situations.

Let k£ be a field, Y, X closed subschemes of Pg; suppose that Y
is irreducible, reduced and contained in X and let p be the prime
ideal corresponding to Y in the homogeneous coordinate ring of X
(which is the unique ring B = k[x,, ---, ©,] such that X = Proj (B)
and (x, ---, #,) does not belong to Ass(B)). Is it true that p" is
primary for every n?

The general answer is of course in the negative (see for instance
Corollary 8.2). On the other hand it is well known that the answer
is in the affirmative if k1 =C, X = P; and Y is a complete inter-
section; this fact has been improved by Bonardi in [1] and recently
by Hochster, who more generally proved that p* is primary for all
n if p is a prime ideal generated by a regular sequence in a domain
(see [3]).

The main purpose of this paper is the study of the case where
Y is not a complete intersection in X, and we get two essentially
different situations when dim (Y) =0 and dim (Y')>0. More precisely,
if Y is a closed rational point, we get the following complete answer:
p* is primary for all » if and only if x is a “cone” having Y in
its vertex (for precise statement see Theorem 3.1). Instead, when
dim (Y) >0, if Y and X are complete intersections in P;, such that
Y is nonsigular and X is nonsingular in the points of Y, then p?
is primary and p” is primary for all » if we add the condition
dim (Y) = codim (X) (see Theorem 3.3), in particular if X is a hyper-
surface (Corollary 3.4).

Suitable example at the end of §3 justify the hypotheses we
need in the above mentioned theorems.

As to the proofs, first we develop criteria for p* to be primary,
showing that this property is connected with the fact that certain
modules are torsion-free (Proposition 1.1 and Corollaries). Then,
essentially using homological methods, we can prove “algebraic”
theorems (Theorems 2.2 and 2.3), from which the “geometric” ones
easily follow.

In this paper all rings are supposed to be commutative, noetherian
and with identity.
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1. Let B be a ring, p a prime ideal and A = B/p; denote by
G, the A-module p*/p*** and by G(b) the graded A-algebra @, G.
(for more details see [6]).

PROPOSITION 1.1. If N s a positive integer, the following con-
ditions are equivalent:

(a) p* is primary for n < N.

(b) G, is torsion-free for n < N — 1.

Proof. It is clear that p" primary implies G,_, torsion-free. Let
n< N, xep, yep . If yep", yep ™ then 0 < r < n; we have 0 #
TeA, 0+ ye@,, therefore Z§ # 0 or, which is the same, xy ¢ p™*;
but we have p™+' 2 p™ and so xy ¢ p".

REMARK 1. As a consequence of Proposition 1.2 we get that p?
is primary iff G, is torsion-free. Nevertheless the following example
shows that if n > 2p" need not to be primary even if G,_, is torsion-
free. Let B=klx, v, z1= kX, Y, Z1/(Y? YZ, XY — Z°) and p = (9, 2).
We get in this case G(p) = k[X][T, T.}/(XT, T.T,, T% T, hence G,
is torsion-free, but p* is not primary.

REMARK 2. In the above example p* is primary and this shows
that Gy torsion-free does not imply G, torsion-free for n < N.

COROLLARY 1.2. The following conditions are equivalent:

(a) p* is primary for every n.

(b) G(p) is torsion-free.

(¢) The canonical homomorphism G(p) — G(bB,) is injective.

In particular G(p) is a domain tff p* is primary for every m
and G(pB,) is a domain.

Proof. It follows from Proposition 1.1 that (a) and (b) are
equivalent. Denoting with K the quotient field of A4, the equivalence
of (b) and (c) easily follows after remarking that G(pB,) = G(p) @, K.

COROLLARY 1.3. If p is locally gemerated by a regular sequence,
p* is primary for all n. In particular if V(p) is regular in Spec (B)
and Spec (4) is regular, p* is primary for every mn.

Proof. For an ideal it is clear that to be primary is a local
property, hence we may assume that p is generated by a regular
sequence and the conclusion follows since G(p) is a polynomial ring
over A (see [5] Theorem 2.1).
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2. Let B be a ring, p a prime ideal and A = B/p.

LEMMA 2.1. The following conditions are equivalent:

(a) b s locally generated by a regular sequence.

(b) p/p* is a projective A-module and B, is regular.

(e) pr/p**t is a projective A-module for all n and B, is regular.

Proof. We may assume that B is local. If p is generated by
a regular B-sequence, B, is regular and since G(p) is a polynomial
ring over A, p*/p*** is a free A-module for all ». Let us now assume

that (b) holds, and @, ---, @, €p/p* be a free basis over A. Using
Nakayama we get p = (ay, - -+, @,), hence pB, = (a,---, a,)B,; we claim
that (a, -+, a,) is a minimal basis for pB,. On the contrary, let
pB, be generated by a proper subset of {a, :--, a,} say {a, ---, a,};
then there exists an element ¢ not in p such that ta,c(a,, -+, @,)B,
which contradicts the hypothesis that @, ---, @, are linearly inde-
pendent over A. Combining with B, regular, it follows that a,, ---, a.
is a regular B,-sequence. Let us now consider the graded homo-
morphism @: A[T,, ---, T.] — G(p) defined by @(T,) = @, cp/p’. It is

clear that @ is onto, hence G(p) = A[T, ---, T,]/I. On the other
hand G(pB,) = G(p)®. K = K|[T,, ---, T,] (K = quotient field of A)
because a,, -+, a, is a regular B,-sequence generating pB,. It follows
that 1@, K =0, hence I = 0 as I is obviously a torsion-free A-module.
Applying Rees criterion (see [5] Theorem 2.2) we get that a, ---, @,
is a regular B-sequence.

THEOREM 2.2. If B, and A are regular and dim (A) =1 the
following conditions are equivalent:

(a) P is primary.

(b) p* is primary for every n.

(c) V(p) is regular in Spec (B).

(d) p is locally generated by a regular sequence.

(e) P/p* is a projective A-module.

(f) p*/p"™ s a projective A-module for every n.

Proof. It is obvious that (b) implies (a). By Lemma 2.1 (d),
(e), (f) are equivalent and (d) implies (b) by Corollary 1.3. If now
p* is primary, by Proposition 1.1 p/p* is a finitely generated torsion-
free A-module, hence projective, because A is a Dedekind domain
and so (a) implies (e). The equivalence between (c) and (d) is well
known since A is regular.

LeMMA 2.8. Let A be a domain, M a finitely generated A-module,
and a an ideal of A such that h.d., M < gr(a) and M, is torsion-
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free for every prime p such that a & p. Then M is torsion-free.

Proof. 1If not, we can choose a prime p=(0) such that p € Ass(M),
and then pA, € Ass(J4,), hence depth (M,) = 0. Therefore h.d.,, M, =
gr (p4,). But h.d., (M,) <h.d., M and so gr(p4,) <h.d., M < gr(a);
this implies a ¢ p, then M, is torsion-free over A,, a contradiction.

THEOREM 2.4. Let R be a ring, a, P, n tdeals such that a, P are
locally generated by regular sequemce, P is prime and a & P S n.
If V(Bja) — V(n/a) is regular in Spec (R/a), Spec(R/P) — V(/P) s
regular and gr (n/P) = d = 2, we have:

(a) (/o) is primary

(b) If d>gr(aR,) for every maximal ideal m 2 nu (for istance
if d > dim R), then (P/a)* is primary for every m.

Proof. Using Corollary 1.3 and the local character of the
property of being primary, we can restrict our attention to the
maximal ideals containing n. Hence we may assume that R is local.

We shall denote by a,, ---, @, the elements of the regular R-
sequence generating a, by a, the ideal (a, -, a;) (@, = 0), by B the
ring R/a, by B; the ring R/a;,, by p the ideal P/a in B and by A the
ring R/¢ = Bfp.

We shall give the proof in several steps.

1. V(P/a,) — V(/a,) is regular in Spec(B;) for 1 =1, ---, 7.
It follows from the property that a local ring is regular if its quotient
by a regular sequence is regular.

2. a,¢P+ (ay, -, 8, +,a,) fori=1, -, 7.
If we denote by a; the ideal (o, -, &, *, @,), the ring

B, = Ry/aRy = (By/a;Ry)/(@;)

is regular, hence a, ¢ ¥R, + a;R,.

3. Let s, N be integers 0 <s <7, 0 < N; if (/a,)* is primary

for every nonnegative integer 1 < s — 1 and for every t =1, ---, N,
then a, N P = a, P for every ¢ =1, ---, N.

The proof is by induction on s; the case s = 0 is trivial. Hence

we may assume s = 1 and a,_, NP = a,_ P for everyt =1, ---, N.

Let now ., ax, P!, then ax,e¥ + a,_,; by step 2 a, ¢ + a,_,

so 0 # @, € (Pla,_)/(B/a,_,)*. Let x,eP™ + a,_,, z, &P + q,_,, thus

0 = Z, € (Pla,_)"/(B/a,_)"**. On the other hand, by Proposition 1.1,

Y (B/a,_ )Y (Bla,_,) can be imbedded as a graded module in

G(P/a,_,) @, K (where K is the quotient field of A), which is an
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integral domain by Corollary 1.3 and step 1. Therefore, if m <t —1,
0 = a,z, € (Pla,_)"/(Bla,_ )" i.e. ax, & P"** + a,_, hence a,x, ¢ P* +
a,_,, a contradiction. In conclusion m = ¢ — 1 and so z, e B + a,_,.
We get V. a2, = X505 ey, + &y, with y, e P hence diZiay, e
a, , NP =a,_PBP"* by induction and the conclusion immediately
follows.

4. The following sequence of A-modules is exact for all ¢ and 4.
(1) 0—a,NPta, NP — PP —a, + Pla, + P — 0
The proof is standard.

5. (P/a,) is primary for s=r. If s=0 it follows from Corol-
lary 1.3. Therefore we may assume that (/a,)* is primary for
1 <s— 1. Using step 3 we get a,/a, N P = a,/a,PB. This is a free
A-module generated by @, ---, @,; indeed if a2, + --- + a2, caPB,
we get >0, a2, = >, a;y; with y; €, hence x;, — y, €a, & B. Using
the exact sequence (1) with ¢ = 1, 4 = s we get h.d., (¥/a,)/(B/a,) < 1.

On the other hand by step 1 V(¥/a,) — V(n/a,) is regular in
Spec (B,) and by hypothesis Spec (E/P) — V(1/®) is regular; applying
Corollary 1.3 we get that (P/a,)’ is primary at every point of
Spec (B,) — V(w/a,), hence by Proposition 1.1 (P/a,)/(B/a,)* is torsion-
free at the same points. Applying Lemma 2.3, we are through.

6. Let s be an integer, 1 =<s < 7. If (P/a,)’ is primary for
1=20,---,5s —1 and for every ¢, the following exact sequence of

A-modules holds for all t:

0 —a,_, N Pa,_, NP —a, N Pla, NP
(2)
e+ e, + B0,
The first homomorphism is the canonical one. Let @ be an element
of a N Pja,NP'*; by step 3 a= i aw;, 2,€P"". We define
P(@) = 7, and the exactness easily follows.

7. If 0 < s <d, (B/a,) is primary for every t. We shall prove
by induction on s that h.d.,(a, N Pla, NP+ <s —1 for all ¢,
h.d., (a, + Bt/a, + Py < s for all ¢ and (P/a,)’ is primary for all ¢
(we use the convention that h.d., M = —1 if M is the A-module
with unique element 0).

The case s = 0 is clear. Letus now suppose that

h.d. (@, N Pla,_, NPH)=s — 2
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for all ¢, h.d.,(a,_, + B/a,_, + P*) < s — 1 for all ¢ and (P/a,)* is
primary for 4+ <s — 1 and for every ¢. By step 4 and 6, the exact
sequences (1) and (2) hold for any ¢ and for ¢=3s. From (2)
and Theorem B ([4] pg. 124) we get h.d.,(a, N Pt/a, N P <
max (h.d., (a,_,NP*/a, , NP, h.d., (@, + P7a,_, + P)) =5 — 1 for
all ¢, hence we deduce from (1) h.d., (e, + P/a, + P) < s < d for
all ¢. Using Lemma 2.3 and the same kind of argument of step 5
we get that a, + P/a, + B+t is torsion-free for all ¢t. Hence, by
Proposition 1.1, (¥3/a,)’ is primary for all ¢.

8. (Conclusion.) Applying step 5 with s =r we get (a); applying
step 7 with s = r we get (b).

3. In this section k& will denote a field and P} the n-dimensional
projective space over k; if ais a homogeneous ideal of k[X,, ---, X,],
we shall denote by V = V{(a) = Proj (k[X,, ---, X,]/a) the associated
projective scheme. If P is a closed rational point on V and p the
homogeneous prime ideal of Fk[z, ---, x,] = k[X, ---, X,]/a corre-
sponding to P, we may assume in the following that P= (1,0, ---, 0),
hence p = (x,, ---, x,).

THEOREM 3.1. With the same assumptions, the following con-
ditions are equivalent:

(a) p* is primary for every m.

(b) a is generated by forms in k[X, ---, X,].

Proof. Let a=(F, ---, F,), F,eklX, ---, X,] and R =
kX, ---, X,]/a* where a*=(F, -+, F)kX, -+, X,]; we get
KX, ---, X,]/a = R[X,] and so p is the extension to R[X;] of a
maximal ideal of R. Hence (b) implies (2). Now we prove that (a)
implies (b). Let a = (F, ---, F,); we may write F, = Xi"'G(X,, -,
X)) + XrGy(X,, -+, X,) + -+ + G(X, -+, X,) Wwhere m = oF, and
¢t = 0G,. Reducing modulo a we get a7 'g,cp* but 27 '¢p and p*is
primary, hence g,ep* i.e. G, (X, --+, X,)* + a which implies G, ea.
By repeating this argument we get G, ---, G,€qa, therefore a =
@G, -+, Gn Fy, -+, F,); the same for F,, ---, F, and we are done.

COROLLARY 3.2. With the same assumptions as above, if P is
regular the following conditions are equivalent:

(a) p* is primary.

(b) »p" is primary for every m.

(¢) V is a linear space (i.e. a is generated by linear forms).

Proof. It follows from Theorem 3.1 that (c) and (b) are equivalent
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after remarking that a cone is a linear space if a point of its vertex
is nonsingular for the cone. The equivalence of (a) and (b) follows
from Theorem 2.2.

THEOREM 3.3. Let X, Y be closed subschemes of Py, which are
complete intersections in Py. Suppose that Y is an irreducible,
reduced, positive dimensional, normal subscheme of X and Sing (X) N
Y < Sing (Y) (where ”Sing” stands for “singular locus of”). If p
denotes the prime ideal corresponding to Y in the projective coordi-
nate ring of X, then:

(a) P is primary.

(b) If dim Y = codim X, then p™ is primary for every n.

Proof. If we denote by n the ideal associated with Sing (Y),
we get the proof as a strightforward consequence of Theorem 2.3.

COROLLARY 3.4. With the same hypotheses of Theorem 3.3, if
X is a hypersurface, p* is primary for all n.

Now we shall try to justify the hypotheses of the previous
theorems with same examples.

ExAMPLE 1. In Theorem 3.1 and Corollary 3.2 the condition
“P rational” is essential. Let

B = Rz, x,, x,]/(X¢ + 2X? — 2X X, + X3,

p = (x, — x,); we have B/p = R[X,, X |/(X:+ X}), hence P is a non-
rational closed point on V. By strightforward computation V is a
regular conic and p" is primary for all n since p is generated by a
regular element of B, but V is obviously not a linear space.

ExampLE 2. In Corollary 3.2 the condition “P regular” is essen-
tial. Let B = klz, x, =] = k[ X,, X, X]/(X, X2 — X)), b = (2, x,); 1t is
clear that p* is primary.

REMARK. In Theorem 3.3 the condition “dim Y > 0” is essential

because if dim Y = 0 we have the counterexamples given by Theorem
3.1.

ExAMPLE 3. Let
B = k[x,, -+, w2 J/( XX, — XX, XX, - X!, X,X; — X X)),

p = (xs, x5 2,). In this case the hypotheses of Theorem 3.3 are full-
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filled, save “X complete intersection”, and p* is not primary.

EXAMPLE 4. (see [2]). Let X = P;, p the prime ideal defining
the Veronese surface i.e. the prime ideal generated by the 2 by 2
X, X, X,
minors of the matrix M = (X1 X, X4>. In this case the hypotheses
X, X, X,
of Theorem 3.3 are fullfilled, ;ave “aY complete intersection”, and p?
is not primary. In fact if d =det M, d¢p, (for ¢ =0, ---, 5).

ExAMPLE 5. Let B = k[x,, =, 2, 2] = k[X,, X, X,, Xi[/(X X, — X3),
p = (%, ®;). In this case the hypotheses of Theorem 3.3 are fullfilled,
save “Sing (X)N Y < Sing (Y)”, and p* is not primary.

ExAmMPLE 6. Let
B= k[xo; "ty x?]/(Xoxz + XLX?s + Xf; XoXs =+ X1—X6 + X72) ’

p= (= ++-, 2;). In this case the hypotheses of Theorem 3.3 are
fullfilled hence p* is primary, but 1 =dim ¥ < codim X = 2 and we

are going to prove that p® is not primary. In fact if we call f, =
XX, + XX, + X3, f, = XX, + XX, + X% from the identity

X6f1 - Xzfz = Xl(X3X5 - XzXe) + XﬁXf - X2X72

we get (1, — 2.2,) = 2,22 = xwi € p® with 22, — 20, €9° and x, ¢ b.
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