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SOLVABILITY OF CONVOLUTION EQUATIONS

IN ^r;, p > l

S. SZNAJDER AND Z. ZlELEZNY

Let S be a convolution operator in the space ^ ^ , p > 1,
of distributions in Rn growing no faster than exp(k\x\p)
for some k. A condition on £ introduced by I. Cioranescu
is proved to be equivalent to

We denote by J%^p\ p > 1, the space introduced in [4] and con-
sisting of distributions in Bn which "grow" no faster than exp (k\x\p),
for some k.

I. Cioranescu [1] characterized distributions with compact support,
i.e. in the space g", having fundamental solutions in J ^ ' . We
recall that a distribution E is a fundamental solution for Seg 7 ' if

S*E = 8 ,

where d is the Dirac measure and * denotes the convolution. Cioranescu
proved that, if S is a distribution in g" and S its Fourier transform,
the following conditions are equivalent:

(a) There exist positive constants A, N, C such that

sup|S(£ + aOI ^ n /

where 1/p + 1/q = 1.
(b) S has a fundamental solution in
In this paper we study the solvability of convolution equations in

J Γp. If ^c(^%7- ^%7) is the space of convolution operators in
we ask the question: Under what condition on S e
S*J%ΓP' = J2?7? The last equation means that the mapping u —> S*w
of J ^ ' into ,_%7 is surjective.

We prove the following theorem which extends the results of
Cioranescu mentioned above.

THEOREM. If S is a distribution in ^(SΓP': ^Γp

f) then each of
the conditions (a) and (b) is equivalent to each of the following ones:

(a;) There exist positive constants A', N'9 C such that

\ξ\) Nt ξeR",

where 1/p + 1/q — 1.
(c)
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REMARK. For j = l a similar theorem was proved in [5].

Before presenting the proof we state the basic facts about the
spaces 3fΓp' and ^{Sfp': <-%7); for the proofs we refer to [4].

We denote by S%ΓP the space of all functions φ e C°°{Rn) such that

vk(φ) = sup eklxlP\Daφ{x)\ < oo , k = 0, 1, . ,

where a = (^, α2, , an), \a\ = ^ + α2 + + a% and

D« = (λ Jjγiλ J Y 2 ...ίλ JΔan.
V i dx1) \ i dx2 / \ i 9α;w/

The topology in . ^ is defined by the family of semi-norms vk. Then
3fr9 becomes a Frechet space.

The dual 3Γi of 3ίΓp is a space of distributions. A distribution
u is in ,J%7 if and only if there exists a multi-index a, an integer
k ^ 0 and a bounded, continuous function / on Bn such that

u = D«[eklx]fp(x)] .

If ueSfp and ^ > e ^ ^ , then the convolution u*φ is a function
in C°°(Rn) defined by

U*9(χ) = (uy, φ{x - ]/)> ,

where (u, φ) = u(φ).
The space ^'(-%7 - ^ ' ) of convolution operators in JtΓi consists

of distributions S e ^Γp' satisfying one of the equivalent conditions:
( i ) The products Sx exp [k(l + | x |2)p/2], k = 0, 1, , are tem-

pered distributions
(ii) For every k ^ 0 there exists an integer m ^ 0 such that

S = Σ D"fa ,
|α|£m

where fat \ a \ ̂  m, are continuous functions in ϋ!71 whose products
with exp(fe|ίc|p) are bounded

(iii) For every φ e J%rvi the convolution S*φ is in Jί^; moreover,
the mapping φ-+S*φ of c ^ into J%^p is continuous.

If Seέ?i(3rp':Jrp') and S is the distribution in 3tΓp' defined by

<S, ^> = <5S, 9<-α)>, φeSΓV9 then S is also in ^{Srv

f: 3TV'). The

convolution of S with ueStpf is then defined by

( 1 ) (S*U, φ) = (U*S, φ) = (U, S*φ), φ β JTP .

For a function φ e J%"p, the Fourier transform

φ(ξ) =
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can be continued in Cn as an entire function such that

wk(φ) = sup (1 + ] ξ \γe-^q/k\ $(O | < oo , k = 1, 2, . . . ,
ζeCn

where ζ = ζ + it]. We denote by Kp the space of Fourier transforms
of functions in 3ίΓv. If the topology in Kp is defined by the family of
semi-norms wk, then the Fourier transformation is an isomorphism
of ^Tp onto Kv.

The dual Kp of Kp is the space of Fourier transforms of distri-
butions in 3ίΓl. The Fourier transform u of a distribution ueSΓp

is defined by the Parseval formula

(u, φ) = (2πY(ux, φ(-x)) .

For Seέ?c(3ίrp':.5ίrp'), the Fourier transform S is a function
which can be continued in Cn as an entire function having the following
property: For every k > 0 there exist constants C" and JV" such that

(2) \S(ξ + i7})\£ C"(l + Iζ\)«"e

Furthermore, if S e ^ ( ^ ' : ^ ' ) and ueSfp', we have the formula

( 3) S^u = Sύ ,

where the product on the right-hand side is defined in Kp by (Su, ψ) =

In the proof of our theorem we shall make use of the following
lemma of L. Hormander (see [3], Lemma 3.2):

If Fy G and F/G are entire functions and p is an arbitrary
positive number, then

|F(C)/G(O| ύ sup \F(z)\ sup \G(z)\/( sup
\ζ,-z]<4p |C-«|<4|0 / \!C-2|<^

where ζ, z 6 C\

Proof of the theorem. It is obvious that (a) => (a') and (c) => (b).
The implication (b) => (a) was proved in [1] for S e i ί ' . If Se
tfci^p': ^fP

r) the proof is the same and therefore we omit it. Our
only task is to prove that (a') => (c).

Let S be a distribution in ^f

c(3ίΓp\ J ^ ' ) whose Fourier transform
satisfies condition (α;), and let T — S. Then the Fourier transform
of T also satisfies condition (a'). We consider the mapping S*:̂ 6—•>
S*M of ̂ ?7 into ^%7. By (1), it is the transpose of the mapping
T*:φ-*T*φ of Jg; into ^Γp. In order to prove (c) it suffices to
show that T* is an isomorphism of 3ίΓp onto T*3ΓP (see [2], Corollary
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on p. 92).
Since T is in ^(^7- -%7)> t h e mapping T* is continuous, by

(iii). Also, using Fourier transforms and formula (3), it is easy to
see that T* is injective. We now prove that the inverse of T*f i.e.
the mapping T*φ-+φ, is continuous. Since the Fourier transformation
is an isomorphism from 3ίΓv onto Kp, it suffices to prove the equivalent
statement that the mapping fφ—+φ is continuous.

Suppose that

where φ, ψ e Kp. We recall that f is an entire function satisfying
condition (a') and estimates of the form (2). Given an arbitrary
integer k > 0, we pick an integer h' such that

(4) fc'>(10« + l)fc.

In view of (2), for kτ there exist constants N", C" > 0 such that

I f(ζ)| ^ C"(l + \ξ\)N"eWq/k', ζ = ξ + ίyeCn.

Hence, setting

(5) P=\V\+A'[log(2 + \ξ\)Y/q

and making use of the inequality

(α + b)q ̂  2q(aq + bq\ a, b ^ 0 ,

we obtain

sup \f(z)\ = sup|f(ζ + z)\
|ζ-2|<4/> \z\<4P

< C " ( l + l ί l + 4:Q)N"e{]rίl+ip)q/k'

where z 6 C% and Cl9 C[ are constants.
On the other hand

( 7 )

sup I f{z)\ = sup I f(ζ + β)| ^ sup I f(ξ + z)\
\ζ.-z\<p \z\<p k l < ^ ' [ l ( 2 + | ? | ) ] 1 / 9

^ σ
(l

by condition (a').
Applying now to the functions ψ, f and ψ/f = φ Hormander's

lemma with p given by (5) and making use # of the estimates (6)
and (7), we obtain
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(8)
I φ(ζ) I ̂  sup I f(z) I sup I T{z) I /( sup I T(z) |Y

C2(l + | f |)W'+»"+(W) /*'β(
lβ«+1>"'g/*' sup | t ( ζ + z)\ ,

\z\<4p

where C2 is another constant. But, for any integer I > 0 and all

z = x + iyeC
n with I z I < 4^, we have

\ξ + ίcD-'

+ \ξ\)-

+ If|)-

where C3 and C3 depend only on I and q. We choose the integer I
so that

i > max jfc + 1 + 2ΛP + iSΓ" + 2(8A;)% (10* + 1) / ( —

which is possible because of (4). Then

& + 1 + 2N' + N" + (8A')9(Λ + 4-) - I < 0

and

Consequently from (8) and (9) it follows that

Wk(φ) ^ CtWάφ) = C.

for some C4 independent of ^. This proves the continuity of the
mapping fφ—>φ and thus completes the proof of the implication
(a')-(c).
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