A RATIONAL OCTIC RECIPROCITY LAW

KENNETH S. WILLIAMS
A RATIONAL OCTIC RECIPROCITY LAW

KENNETH S. WILLIAMS

A rational octic reciprocity theorem analogous to the rational biquadratic reciprocity theorem of Burde is proved.

Let \(p \) and \(q \) be distinct primes \(\equiv 1 \pmod{4} \) such that \((p/q) = (q/p) = 1\). For such primes there are integers \(a, b, A, B \) with

\[
\begin{aligned}
\left\{
& p = a^2 + b^2, \ a \equiv 1 \pmod{2}, \ b \equiv 0 \pmod{2}, \\
&q = A^2 + B^2, \ A \equiv 1 \pmod{2}, \ B \equiv 0 \pmod{2}.
\end{aligned}
\]

Moreover it is well-known than \((A/q) = 1, (B/q) = (-1)^{(q-1)/4}\). If \(k \) is a quadratic residue \(\pmod{q} \) we set

\[
\left(\frac{k}{q} \right)_4 = \begin{cases}
+1, & \text{if } k \text{ is a biquadratic residue } \pmod{q}, \\
-1, & \text{otherwise}.
\end{cases}
\]

In 1969 Burde [2] proved the following

Theorem (Burde).

\[
\left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4 = (-1)^{(q-1)/4} \left(\frac{aB - bA}{q} \right).
\]

Recently Brown [1] has posed the problem of finding an octic reciprocity law analogous to Burde's biquadratic law for distinct primes \(p \) and \(q \) with \(p \equiv q \equiv 1 \pmod{8} \) and \((p/q)_4 = (q/p)_4 = 1\). It is the purpose of this paper to give such a law. From this point on we assume that \(p \) and \(q \) satisfy these conditions and set for any biquadratic residue \(k \pmod{q} \)

\[
\left(\frac{k}{q} \right)_8 = \begin{cases}
+1, & \text{if } k \text{ is an octic residue } \pmod{q}, \\
-1, & \text{otherwise}.
\end{cases}
\]

It is a familiar result that there are integers \(c, d, C, D \) with

\[
\begin{aligned}
\left\{
&p = c^2 + 2d^2, \ c \equiv 1 \pmod{2}, \ d \equiv 0 \pmod{2}, \\
&q = C^2 + 2D^2, \ C \equiv 1 \pmod{2}, \ D \equiv 0 \pmod{2}.
\end{aligned}
\]

Moreover we have \((D/q)_4 = 1\). Also from Burde's theorem we have

\[
\left(\frac{aB - bA}{q} \right) = 1,
\]

and from the law of biquadratic reciprocity after a little calculation we find that \((B/q)_4 = +1\). We prove
THEOREM. Let \(p \) and \(q \) be distinct primes \(\equiv 1(\text{mod} \ 8) \) such that
\[
\left(\frac{p}{q} \right)_4 = \left(\frac{q}{p} \right)_4 = 1.
\]
Then
\[
\left(\frac{p}{q} \right)_4 \left(\frac{q}{p} \right)_4 = \left(\frac{aB - bA}{q} \right)_4 \left(\frac{cD - dC}{q} \right)_4.
\]

We note that it is easy to show that the expression on the right-hand side of the theorem is independent of the particular choices of \(a, b, c, d, A, B, C, D \) made in (1) and (2). In the course of the proof it is convenient to make a particular choice of \(a, b, c, d \) (see (9) and (10)).

We begin by proving three lemmas.

Lemma 1. \((c + d\sqrt{-2})^{(q-1)/2} \equiv ((cD - dC)/q) \) \((\text{mod} \ q) \).

Proof. As \((p/q) = 1 \) we can define an integer \(u \) by \(p = u^2(\text{mod} \ q) \). Next we define integers \(l \) and \(m \) by
\[
l \equiv \frac{cD - dC + Du}{2}, \quad m \equiv \frac{C \cdot cD - dC - Du}{4} \quad (\text{mod} \ q),
\]
so that
\[
l^2 - 2m^2 \equiv cD(cD - dC) \quad (\text{mod} \ q)
\]
and
\[
2lm \equiv dD(cD - dC) \quad (\text{mod} \ q),
\]
giving
\[
D(cD - dC)(c + d\sqrt{-2}) \equiv (l + m\sqrt{-2})^q \quad (\text{mod} \ q),
\]
and so
\[
D^{(q-1)/2}(cD - dC)^{(q-1)/2}(c + d\sqrt{-2})^{(q-1)/2} \equiv (l + m\sqrt{-2})^{q-1} \quad (\text{mod} \ q).
\]
Now working modulo \(q \) we have
\[
(l + m\sqrt{-2})^{q-1} = \frac{(l + m\sqrt{-2})^q}{l + m\sqrt{-2}} = \frac{l^q + m^q(\sqrt{-2})^q}{l + m\sqrt{-2}} = \frac{l + m\sqrt{2^{q/2}}}{l + m\sqrt{-2}} \equiv 1,
\]
also
\[D^{(q-1)/2} \equiv \left(\frac{D}{q} \right) = 1, \]

and

\[(cD - dC)^{(q-1)/2} \equiv \left(\frac{cD - dC}{q} \right), \]

from which the required result follows immediately.

Lemma 2. \((a + b\sqrt{-1})^{(q-1)/4} \equiv ((aB - bA)/q) \pmod{q} .\)

Proof. As \((p/q) = 1\) we define an integer \(u\) by \(p \equiv u \pmod{q}\) as in Lemma 1. Next we define integers \(r\) and \(s\) by

\[r \equiv \frac{aB - bA + Bu}{2}, \quad s \equiv \frac{A \cdot aB - bA - Bu}{2} \pmod{q} \]

so that

\[r^2 - s^2 \equiv aB(aB - bA) \pmod{q} \]

and

\[2rs \equiv bB(aB - bA) \pmod{q} \]

giving

\[B(aB - bA)(a + b\sqrt{-1}) \equiv (r + s\sqrt{-1})^2 \pmod{q}, \]

and so

\[B^{(q-1)/4}(aB - bA)^{(q-1)/4}(a + b\sqrt{-1})^{(q-1)/4} \equiv (r + s\sqrt{-1})^{(q-1)/2} \pmod{q}. \]

Thus as \((B/q)_4 = ((aB - bA)/q) = 1\) we obtain

\[(a + b\sqrt{-1})^{(q-1)/4} \equiv \left(\frac{aB - bA}{q} \right) \left(r + s\sqrt{-1} \right)^{(q-1)/2} \pmod{q}. \]

Next we note that \(r^2 + s^2 \equiv uB(aB - bA) \pmod{q}\) so that

\[\left(\frac{r^2 + s^2}{q} \right) = \left(\frac{p}{q} \right) \left(\frac{B}{q} \right) \left(\frac{aB - bA}{q} \right) = 1. \]

Hence we may define an integer \(w\) by \(w^2 \equiv r^2 + s^2 \pmod{q}\). Then we define integers \(e\) and \(f\) by

\[e \equiv \frac{rB - sA + Bw}{2}, \quad f \equiv \frac{A \cdot rB - sA - Bw}{2} \pmod{q}, \]

so that
\[e^2 - f^2 \equiv rB(rB - sA) \pmod{q} \]

and

\[2ef \equiv sB(rB - sA) \pmod{q} \]

giving

\[B(rB - sA)(r + s\sqrt{-1}) \equiv (e + f\sqrt{-1})^2 \pmod{q}, \]

and so

\[B^{(q-1)/2}(rB - sA)^{(q-1)/2}(r + s\sqrt{-1})^{(q-1)/2} \equiv (e + f\sqrt{-1})^{q-1} \pmod{q}. \]

Now working modulo \(q \) we have

\[
(e + f\sqrt{-1})^{q-1} \equiv \frac{(e + f\sqrt{-1})^q}{e + f\sqrt{-1}} \equiv \frac{e^q + f^q(\sqrt{-1})^q}{e + f\sqrt{-1}} \\
\equiv \frac{e + f\sqrt{-1}}{e + f\sqrt{-1}} = 1,
\]

and

\[B^{(q-1)/2} = \left(\frac{B}{q} \right) = 1, \quad (rB - sA)^{(q-1)/2} \equiv \left(\frac{rB - sA}{q} \right), \]

so

\[(r + s\sqrt{-1})^{(q-1)/2} \equiv \left(\frac{rB - sA}{q} \right), \]

giving

\[(a + b\sqrt{-1})^{(q-1)/4} \equiv \left(\frac{aB - bA}{q} \right) \left(\frac{rB - sA}{q} \right) \pmod{q}. \]

The required result now follows as modulo \(q \) we have

\[rB - sA \equiv \frac{B(aB - bA + Bu)}{2} - \frac{A^2}{B} \left(\frac{aB - bA - Bu}{2} \right) \]

\[\equiv \frac{B}{2} \{(aB - bA + Bu) + (aB - bA - Bu)\} \]

\[\equiv B(aB - bA), \]

that is

\[\left(\frac{rB - sA}{q} \right) = \left(\frac{B}{q} \right) \left(\frac{aB - bA}{q} \right) = +1. \]

Before proving the final lemma we state some results we shall need. Let \(w = \exp(2\pi i/8) = (\sqrt{2} + \sqrt{-2})/2 \) and let \(R \) be the ring
of integers of the cyclotomic field \(Q(w) = Q(\sqrt{2}, \sqrt{-1}) \). \(R \) is a unique factorization domain. Let \(\pi \) be any prime factor of \(p \) in \(R \), fixed once and for all. For integers \(x \not\equiv 0(\text{mod } p) \) we define an octic character \((\cdot/\pi)_8 \) by

\[
\left(\frac{x}{\pi} \right)_8 = w^{i} \text{ if } x^{(p-1)/8} = w^{\ell}(\text{mod } \pi), \quad 0 \leq \ell \leq 7.
\]

If \(x \equiv 0(\text{mod } p) \) we set \((x/\pi)_8 = 0 \). In terms of this character we define the corresponding Jacobi and Gauss sums for arbitrary integers \(k \) and \(\ell \) as follows:

\[
J(k, \ell) = \sum_{x=0}^{p-1} \left(\frac{x}{\pi} \right)_8^k \left(\frac{1-x}{\pi} \right)_8^\ell,
\]

\[
G(k) = \sum_{x=0}^{p-1} \left(\frac{x}{\pi} \right)_8^k \exp(2\pi i x/p).
\]

These sums have the following well-known properties (see for example [4], Chapter 8):

(4) \(J(k, \ell)J(k, \ell) = p \), if \(k, \ell \not\equiv 0(\text{mod } 8) \),

(5) \(J(k, \ell) = \frac{G(k)G(\ell)}{G(k+\ell)} \), if \(k, \ell, k+\ell \not\equiv 0(\text{mod } 8) \),

(6) \(G(k)G(-k) = (-1)^{k(p-1)/8}p \), if \(k \not\equiv 0(\text{mod } 8) \).

We shall also need the evaluation of the familiar sum

(7) \(G(4) = \sum_{x=0}^{p-1} \left(\frac{x}{\pi}_8 \right)^4 \exp(2\pi i x/p) = \sum_{x=0}^{p-1} \left(\frac{x}{p} \right) \exp(2\pi i x/p) = p^{1/2} \)

and the result

(8) \(J(2, 2) = \pm J(1, 2) \).

A more precise form of (8) follows from a theorem of Jacobi (see for Example [3], page 411, equation (99)). Finally we let \(\sigma_k(k = 1, 3, 5, 7) \) be the automorphism of \(Q(w) \) defined by \(\sigma_k(w) = w^k \).

Now from (5) and (6) we have

\(\sigma_3(J(1, 4)) = J(3, 12) = J(3, 4) = \frac{G(3)G(4)}{G(7)} = \frac{G(1)G(4)}{G(5)} = J(1, 4) \),

so that \(J(1, 4) \in \mathbb{Z}[\sqrt{-2}] \). Moreover from (4) we have \(J(1, 4)J(1, 4) = p \) so we may choose the signs of \(c \) and \(d \) in (2) so that

(9) \(J(1, 4) = c + d\sqrt{-2} \).

Also from (5) and (6) we have
\[\sigma_s(J(1, 2)) = J(5, 10) = J(5, 2) = \frac{G(5)G(2)}{G(7)} = \frac{G(1)G(2)}{G(3)} = J(1, 2) , \]

so that \(J(1, 2) \in \mathbb{Z}[\sqrt{-1}] \). Moreover from (4) we have \(J(1, 2)J(1, 2) = p \) so we may choose the signs of \(a \) and \(b \) in (1) so that

\begin{equation}
J(1, 2) = a + b\sqrt{-1} ,
\end{equation}

since it is easy to prove (and well-known) that \(J(1, 2) \equiv 1(\text{mod } 2) \).

Lemma 3. \(G(1)^s = p(a + b\sqrt{-1})^4(c + d\sqrt{-2})^4 . \)

Proof. From (5), (9), (10) have

\[c + d\sqrt{-2} = J(1, 4) = \frac{G(1)G(4)}{G(5)} \]

and

\[a + b\sqrt{-1} = J(1, 2) = \frac{G(1)G(2)}{G(3)} . \]

Multiplying these together we obtain

\[(a + b\sqrt{-1})(c + d\sqrt{-2}) = \frac{G(1)^sG(2)G(4)}{G(3)G(5)} = \frac{G(1)^sG(2)}{(-1)^{(p-1)/8}p^{1/2}} \]

by (6) and (7). Hence taking the fourth power of both sides we get

\begin{equation}
G(1)^sG(2)^4 = p^2 (a + b\sqrt{-1})^4(c + d\sqrt{-2})^4 .
\end{equation}

Now from (5) and (7) we have

\[J(2, 2) = \frac{G(2)^s}{G(4)} = \frac{G(2)^s}{p^{1/2}} , \]

so that from (8) and (10) we obtain

\begin{equation}
G(2)^4 = p[J(2, 2)]^2 = p[J(1, 2)]^2 = p(a + b\sqrt{-1})^2 ,
\end{equation}

and the required result now follows from (11) and (12).

Proof of theorem. Raising \(G(1) \) to the \(q \)th power we obtain modulo \(q \),

\[G(1)^q = \sum_{x=0}^{q-1} \left(\frac{x}{\pi} \right)^q \exp \left(2\pi ixq/p \right) = \sum_{x=0}^{q-1} \left(\frac{x}{\pi} \right)^q \exp \left(2\pi ixq/p \right) , \]

since \(q \equiv (\text{mod } q) \), giving
\[G(1)^q = \left(\frac{q}{\pi} \right)_8^{-1} \sum_{x=0}^{p-1} \left(\frac{xq}{\pi} \right)_8 \exp \left(2\pi i(xq)/p \right) = \left(\frac{q}{\pi} \right)_8^{-1} G(1) , \]

since \((q, p) = 1\) implies that
\[\sum_{x=0}^{p-1} \left(\frac{xq}{\pi} \right)_8 \exp \left(2\pi i(xq)/p \right) = \sum_{y=0}^{p-1} \left(\frac{y}{\pi} \right)_8 \exp \left(2\pi iy/p \right) = G(1) . \]

Hence
\[G(1)^q = \left(\frac{q}{\pi} \right)_8^{-1} G(1) = \left(\frac{q}{p} \right)_8 G(1) , \]

that is
\[G(1)^{q-1} = \left(\frac{q}{p} \right)_8 \mod q . \]

Hence by Lemmas 1, 2, 3 we have modulo \(q\)
\[\left(\frac{q}{p} \right)_8 = (G(1))^{(q-1)/8} \]
\[= p^{(q-1)/4}(a + b\sqrt{-1})^{(q-1)/4}(c + d\sqrt{-2})^{(q-1)/2} \]
\[= \left(\frac{p}{q} \right)_8 \left(\frac{aB - bA}{q} \right)_8 \left(\frac{cD - dC}{q} \right)_8 , \]

from which the theorem follows.

Example. We take \(p = 17 \equiv 1 \mod 8\) and \(q = 409 \equiv 1 \mod 8\) so that we may choose
\[a = 1, \ b = 4, \ c = 3, \ d = 2 , \]
\[A = 3, \ B = 20, \ C = 11, \ D = 12 . \]

Since \(q \equiv 1 \mod p\) we clearly have
\[\left(\frac{q}{p} \right)_8 = \left(\frac{q}{p} \right)_8 = \left(\frac{q}{p} \right)_8 = 1 . \]

As \(((aB - bA)/q) = (8/409) = +1\) by Burde’s theorem we have \((p/q)_s = 1\). Finally
\[\left(\frac{aB - bA}{q} \right)_s = \left(\frac{8}{409} \right)_s = \left(\frac{194}{409} \right)_s = -1 , \]
\[\left(\frac{cD - dC}{q} \right)_s = \left(\frac{14}{409} \right)_s = -1 , \]

so by the theorem of this paper we have \((p/q)_s = 1\), which is easily verified directly.
REFERENCES

Received August 4, 1975. Research supported under National Research Council of Canada grant no. A-7233.

Carleton University—Ottawa Canada
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLF
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF HAWAII
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Joseph Anthony Ball and Arthur R. Lubin, *On a class of contractive perturbations of restricted shifts* .. 309
Joseph Becker and William C. Brown, *On extending higher derivations generated by cup products to the integral closure* .. 325
Andreas Blass, *Exact functors and measurable cardinals* 335
Joseph Eugene Collison, *A variance property for arithmetic functions* 347
Craig McCormack Cordes, *Quadratic forms over nonformally real fields with a finite number of quaternion algebras* 357
Freddy Delbaen, *Weakly compact sets in H^1*. .. 367
G. D. Dikshit, *Absolute Nörlund summability factors for Fourier series* 371
Edward Richard Fadell, *Nielsen numbers as a homotopy type invariant* 381
Josip Globevnik, *Analytic extensions of vector-valued functions* 389
Robert Gold, *Genera in normal extensions* .. 397
Solomon Wolf Golomb, *Formulas for the next prime* 401
Robert L. Griess, Jr., *The splitting of extensions of $SL(3, 3)$ by the vector space F_3^3* ... 405
Thomas Alan Keagy, *Matrix transformations and absolute summability* 411
Kazuo Kishi, *Analytic maps of the open unit disk onto a Gleason part* 417
Kwangil Koh, Jiang Luh and Mohan S. Putcha, *On the associativity and commutativity of algebras over commutative rings* 423
James C. Lillo, *Asymptotic behavior of solutions of retarded differential difference equations* ... 431
John Alan MacBain, *Local and global bifurcation from normal eigenvalues* ... 445
Anna Maria Mantero, *Sets of uniqueness and multiplicity for L^p* 467
J. F. McClendon, *Embedding metric families* ... 481
L. Robbiano and Giuseppe Valla, *Primary powers of a prime ideal* 491
Wolfgang Ruess, *Generalized inductive limit topologies and barrelledness properties* ... 499
Judith D. Sally, *Bounds for numbers of generators of Cohen-Macaulay ideals* 517
Helga Schirmer, *Mappings of polyhedra with prescribed fixed points and fixed point indices* ... 521
Cho Wei Sit, *Quotients of complete multipartite graphs* 531
S. Sznajder and Zbigniew Zielezny, *Solvability of convolution equations in \mathcal{F}_p', $p > 1$* ... 539
Mitchell Herbert Taibleson, *The existence of natural field structures for finite dimensional vector spaces over local fields* 545
William Yslas Vélez, *A characterization of completely regular fields* 553
P. S. Venkatesan, *On right unipotent semigroups* 555
Kenneth S. Williams, *A rational octic reciprocity law* 563
Robert Ross Wilson, *Lattice orderings on the real field* 571
Harvey Eli Wolff, *V-localizations and V-monads. II* 579