LATTICE ORDERINGS ON THE REAL FIELD

ROBERT ROSS WILSON
Since every total order is a lattice order, and the real field $R$ is a totally ordered field, it is a lattice-ordered field. In 1956 Birkhoff and Pierce raised the question of whether $R$ can be made into a lattice-ordered field in any other way. In this paper we answer their question affirmatively by showing that there are, in fact, $2^c$ such orderings, where $c$ is the cardinal of $R$.

Introduction. We answer the question of the existence of such orderings, raised by Birkhoff and Pierce in [2, p. 68], in Theorem 1, and find the number of orders in Corollary 1.2. We denote the rational field by $Q$, the positive cone of $R$ (i.e., the set of reals $\geq 0$) in the usual order by $R^+$, and the positive cone of $Q$ by $Q^+$.

**Theorem 1.** Let $L$ be any subfield of $R$ except $Q$. Let $K$ be any proper subfield of $L$, such that $L$ is algebraic over $K$. Then there is a relation $\leq$ on $L$, with positive cone $P_L$, such that $\langle L, \leq \rangle$ is a lattice-ordered field which is not totally ordered. Moreover:

1. The order $\leq$ restricted to $K$ is the usual total order ($K \cap P_L = K \cap R^+$).
2. $K$ is the largest totally ordered subfield of $L$ under $\leq$.
3. The order $\leq$ is a distributive lattice order.
4. The order $\leq$ is $R$-compatible ($P_L \subseteq R^+$).
5. $L \cap R^+$ is quotient-represented by $P_L$, in the sense that for each $l \in L \cap R^+$, there exist $p, q \in P_L$ with $q \neq 0$, such that $l = p/q$.

We will give the proof in Section 2, where we state the main lemma (see 2.2). We will use the assertion (2) in counting the number of such orders, and we will need the technical feature (5) in the construction process.

**Corollary 1.1.** Let $L$ be a subfield of $R$ containing $\kappa$ distinct subfields $K$ such that $L$ is algebraic over $K$. Then $L$ admits at least $\kappa$ distinct lattice orders.

**Proof.** By (2), these distinct subfields give distinct orders.

**Corollary 1.2.** $R$ admits exactly $2^c$ and the algebraic numbers $A$ admit exactly $2^{\aleph_0}$ lattice orders.

**Proof.** $R$ is known to be algebraic over $2^c$ distinct subfields and
In fact, \( R \) may be replaced by any uncountable subfield in Corollary 1.2. Similarly, \( A \) may be replaced by any other countable subfield which is algebraic over \( 2^\aleph_0 \) subfields.

We observe that \( R \)-compatibility excludes from consideration many orders on proper subfields \( L \). For example, for every \( R \)-compatible order on \( Q(\sqrt{2}) \) the non-trivial field automorphism produces another order which is not \( R \)-compatible. Even though it can be shown that \( R \)-compatibility follows from quotient-representability, which plays an important role in the construction process, we require \( R \)-compatibility during the inductive step to show that quotient-representability extends. Thus we cannot dispense with \( R \)-compatibility and, indeed, must prove it independently.

When \( P_M \) is the positive cone for an order \( \leq \) on some subfield \( M \) of \( R \), we will refer order expressions to \( P_M \) by (wrt \( P_M \)) meaning with respect to \( P_M \).

I am especially indebted to K. Baker for many valuable suggestions and to the reviewer for extensive clarifying remarks.

2. Main lemma and proof of Theorem 1. Our method of proof employs judiciously chosen algebraic bases to extend orders. Thus, if \( K \) is ordered by \( \leq \) with positive cone \( P_K \), if \( M \) is an extension field of \( K \), and if \( B \) is a basis for \( M \) over \( K \), we write \( P_K(B) \) for the set of finite sums of the form \( \sum k_i b_i \) with \( k_i \in P_K \) and \( b_i \in B \). For \( B = \{b_1, \ldots, b_m\} \), we write \( P_K(b_1, \ldots, b_m) \).

REMARK 2.1. If \( P_K \) is the positive cone for a lattice order on \( K \) and \( B \) is a basis for \( M \) over \( K \), then it is immediate that \( P_K(B) \) is closed under addition and that \( P_K(B) \) induces a lattice order \( \leq \) on \( M \) considered as a group (since ordering, like addition, is computed 'coordinatewise'). Moreover, if the order on the 'coordinate' field is total, then \( \leq \) is distributive.

To prove Theorem 1, we start with \( P_K = K \cap R^+ \) and consider the collection \( m = \{\langle M, B \rangle \} \) where \( M \) is an intermediate field and where \( B = B_M \) is a basis for \( M \) over \( K \) such that \( B \subset L \cap R^+ \) and such that:

(a) \( P_K(B) \) is closed under multiplication (for which it will be sufficient to show that \( b \cdot c \in P_K(B) \) for all \( b \) and \( c \) in \( B \));

(b) \( P_K(B) \) is \( R \)-compatible;

(c) \( P_K(B) \) quotient-represents \( M \cap R^+ \); and

(d) \( 1 \in B \).

By (a) and (c) above and Remark 2.1 we see that the order \( \leq \) on \( M \) with positive cone \( P_K(B) \) make \( \langle M, \leq \rangle \) into a lattice-ordered
field satisfying (3) and (5). Our original choice of $P_K$ as $K \cap R^+$ and (d) give (1) while the fact that distinct elements of $B$ are incomparable with respect to $\leq$ gives us (2). Finally, (4) is just (b).

Thus, Theorem 1 will be proven if we show that $\langle L, B_L \rangle$ belongs to $m$. In fact, we will employ induction, in the form of Zorn’s lemma (though we may also view it as a transfinite induction using successive simple extensions) to choose a maximal $\langle M_0, B_{M_0} \rangle$ from $m$ and we will see that $M_0 = L$. For the inductive step we will require the following lemma.

**Main Lemma 2.2.** Let $M$ and $M'$ be subfields of $R$ with $M'$ a finite algebraic extension of $M$. Suppose that $P_M$ is the positive cone of a lattice order $\leq$ on $M$ which quotient-represents $M \cap R^+$. Then there exists $\alpha \in M'$ such that

(i) $M' = M[\alpha]$,

(ii) $\alpha$ satisfies $\alpha^n = a_{n-1}\alpha^{n-1} + \cdots + a_0$ with $a_i \in P_K$ (where $n$ is the degree of $M'$ over $M$),

(iii) $P_M(1, \alpha, \ldots, \alpha^{n-1})$ is $R$-compatible, and

(iv) $P_M(1, \alpha, \ldots, \alpha^{n-1})$ quotient-represents $M' \cap R^+$.

The proof will be given in the next section.

For the inductive step we suppose $\langle M, B \rangle$ is a member of $m$ so that $B$ is a basis for $M$ over $K$ satisfying (a), (b), (c) and (d). We suppose that $M \neq L$, so that there exists a proper simple extension $M'$ of $M$ with $M' \subset L$. We choose $\alpha \in M'$ using the Main Lemma and consider $B' = \{b\alpha^i | b \in B, 0 \leq i \leq n - 1 \}$. Now $B' \supset B$ and is a basis for $M'$ over $K$ satisfying (a), (b), (c) and (d). Thus $\langle M', B' \rangle \in m$. Clearly, any maximal member $M_0$ of $m$ must be $L$.

3. Proof of Main Lemma. In outline, the proof proceeds as follows:

**Step 1.** We find a $\beta$ such that $M' = M[\beta]$, $\beta > 1$ (wrt $R^+$), and $\beta$ satisfies $\beta^n = b_{n-1}\beta^{n-1} + \cdots + b_0$ with $b_i \in M \cap R^+$. That is, (ii) holds except that $M \cap R^+$ replaces $P_M$. (This step depends only on the usual topology of $R$ and $C$ and the usual order structure of $R$.)

**Step 2.** We use quotient-representability to replace $\beta$ by $\alpha \in M'$ so that (i) $M' = M[\alpha]$, $\alpha > 1$ (wrt $R^+$), and $\alpha$ satisfies (ii). We write $P_M'$ for $P_M(1, \alpha, \ldots, \alpha^{n-1})$. It is clear that $P_M' \subset M \cap R^+$ (i.e., that $P_M'$ satisfies (iii)).

For use in the remaining steps we define
Step 3. To show $P'_M$ quotient-represents $M' \cap R^+$ it is clearly sufficient to show $M' \cap R^+ \subset Q'_M$. To this end, we show that $Q^+ \subset Q'_M$ and, after defining the concept of $Q$-approximability, we show how $Q$-approximability of $M'$ implies $M' \cap R^+ \subset Q'_M$.

Step 4. We show that $\alpha$ is $Q$-approximable, that every element of $M$ is $Q$-approximable and that the $Q$-approximable elements of $M'$ constitute a subring and therefore must be $M[\alpha] = M'$ itself.

Details of Step 1. We let $\gamma$ be such that $M' = M[\gamma]$ and its minimal polynomial is $h(x)$. We suppose $\gamma = \gamma_1, \gamma_2, \ldots, \gamma_n$ are all the (necessarily distinct) roots of $h$ in $C$. We show below how to construct a non-singular linear fractional transform $T$ with rational coefficients so that $\beta = T(\gamma) > 1$ (wrt $R^+$) and for $2 \leq i \leq n$ the $\beta_i = T(\gamma_i)$ are "sufficiently close" to $-1/n$. Since the coefficients are continuous in the roots, a comparison with $(x + 1/n)^{n-1}$ shows that $(x - \beta_1) \cdots (x - \beta_n) = x^{n-1} + c_{n-2}x^{n-2} + \cdots + c_0$ satisfies $1 = c_{n-1} > c_{n-2} > \cdots > c_0 > 0$. (See [3, L. 6.2, p. 40] for details, including proof that "sufficiently close" means "within $\varepsilon = 1/n^2$".) Therefore $g(x) = (x - \beta_1) \cdots (x - \beta_n) = x^n - b_n x^{n-1} - \cdots - b_0$ where $b_i = c_i \beta - c_{i-1} > c_i - c_{i-1} > 0$ for $1 \leq i \leq n - 1$ and $b_0 = c_0 \beta > 0$. We note that $g(x)$ is the minimal polynomial of $\beta$ over $M$ and is computed by clearing the denominators of $h(T^{-1}(x))$ and scaling.

To construct $T$ we let $\varepsilon = 1/n^2$ as above and choose rationals $t$ and $s$ such that $0 < t(1/\varepsilon + 1/2) < \min |\beta - \beta_i|$ for $i \geq 2$ and $0 < \beta/t - s < 1/2$. Then $T$ is the composition of the following maps: $x \rightarrow x/t; x \rightarrow x - s; x \rightarrow 1/x; x \rightarrow x - 1/n$. (After the first two the image of $\gamma$ is in the interval $(0, 1/2)$ and the rest of the roots are outside a circle of radius $1/\varepsilon$ centered at 0, and after the last $\beta = t/(\gamma - ts) - 1/n > 1$ and the other $\beta_i$ are within $\varepsilon$ of $-1/n$.)

Details of Step 2. Using quotient-representability, we choose $d \in P_M$ so that $db_i \in P_M$ for $0 \leq i \leq n - 1$ and so that $d > 1$ (wrt $R^+$). (The latter Condition may be achieved by positive integer scaling without affecting the former conditions.) Then $\alpha = d\beta$ has $f(x) = d^ng(x/d) = x^n - a_{n-1}x^{n-1} - \cdots - a_0$ as its minimal polynomial over $M$ and $a_i = d^{-i}b_i \in P_M$ for $0 \leq i \leq n - 1$. That is, $\alpha$ satisfies (ii). Clearly $M[\alpha] = M[\beta] = M[\gamma] = M'$.

Details of Step 3. Let $r \in Q^+$ and $p \in P_M$. We may scale $p$ by
positive integers, as above, and by reciprocals of such using [1, Thm. 3, p. 293] with the result $rp$ in $P_M$. Since we may write $r = rp/p$ for any non-zero $p$, we see that $r \in Q'_M$.

We say that $m \in M'$ is $Q$-approximable if for each positive rational $t$ there is a rational $s$ such that $m < s < m + t$ (wrt $Q'_M$). (Of course, $m - t < s - t < m$ (wrt $Q'_M$) also.)

Now if $m > 0$ (wrt $R^+$) and $m$ is $Q$-approximable, we choose a positive rational $t$ so that $m - t > 0$ (wrt $R^+$) and rational $s$ so that $m < s < m + t$ (wrt $Q'_M$). By $R$-compatibility

$$s - t > m - t > 0 \text{ (wrt } R^+),$$

and since $Q^+ \subset Q'_M$, $s - t \in Q'_M$. Thus $m = ((m + t) - s) + (s - t) \in Q'_M$ by the additive closure of $Q'_M$.

**Details of Step 4.** To show $M$ is $Q$-approximable, we arbitrarily choose $m$ in $M$ and $t$ positive in $Q$. By density of $Q$ in $R$, there is a rational $s$ such that $m < s < m + t$ (wrt $R^+$) and with the quotient-representability of $M \cap R^+$ by $P_M$ these inequalities hold wrt $Q_M$. But $Q_M \subset Q'_M$ so $m < s < m + t$ (wrt $Q'_M$), which is $Q$-approximability.

To verify that $\alpha$ is $Q$-approximable, we again choose an arbitrary positive $t$ in $Q$. Since $f(x) = 0$ and $f$ is separable, the derivative $f'(\alpha)$ is non-zero. Because $\alpha > 1$ (wrt $R^+$) this implies there is a rational $s > 1$ (wrt $R^+$) such that $0 < f(s) < t$ (wrt $R^+$). For such $s$ we show $\alpha < s < \alpha + t$ (wrt $Q'_M$) and hence that $\alpha$ is $Q$-approximable:

First, since $s$, $f(s)$, and $t$ are in $M$ and $M$ is quotient-representable, we see that $s > 1$ and $0 < f(s) < t$ (wrt $Q_M$) and hence (wrt $Q'_M$). Next we note that $Q'_M$ is closed under division and $s - \alpha = f(s)/(f(s)/(s - \alpha))$, so, to show $s - \alpha > 0$ (wrt $Q'_M$), we need only show $f(s)/(s - \alpha) \in Q'_M$. Now $f(s) = f'(s) - f'(\alpha) = (s^n - \alpha^n) - a_{n-1}(s^{n-1} - \alpha^{n-1}) - \cdots - a_0(s - \alpha)$. Thus $f(s)/(s - \alpha) = s^{n-1} + d_{n-2}s^{n-2} + \cdots + d_0$, where the $d_i = \alpha^{n-i-1} - a_{n-i-1} \cdot \alpha^i - \cdots - a_{i+1}$ are "scaled truncations" of $f'(\alpha)$. In fact, $d_i = (f'(\alpha) + a_i\alpha^i + \cdots + a_0)/\alpha^{i+1} = (a_i\alpha^i + \cdots + a_0)/\alpha^{i+1} \in Q'_M$. Since $s^i > 1 > 0$ (wrt $Q'_M$), $f(s)/(s - \alpha) > 1 > 0$ (wrt $Q'_M$). Thus $0 < s - \alpha < f(s) < t$ (wrt $Q'_M$) so that $\alpha < s < \alpha + t$ (wrt $Q'_M$).

To finish Step 4 and thus the proof of the Main Lemma, we need to show the set of $Q$-approximable elements of $M'$ is a subring. The proof of closure under subtraction is straightforward, after recalling that we can approximate below also. The proof of closure under multiplication, though resembling the proof of the product rule for derivatives, takes some care. At several points when dealing with the rationals used as "epsilon and deltas" by the approximating process it is necessary to switch from $R^+$ to $Q'_M$ using $Q^+ \subset Q'_M$ or from $Q'_M$ to $R^+$ using $R$-compatibility.
Alternate theorem, examples and questions. By a slight modification in the proof of Theorem 1 we can prove Theorem 1*, which differs from Theorem 1 in that (1) and (2) are replaced by their complete opposites (1*) and (2*) and in that (0*), which has no counterpart in Theorem 1, is added.

(0*) There are no totally ordered subfields of L under \( \leq \).

(1*) The order \( \leq \) restricted to K is the trivial partial order. (In particular, \( 1 \not> 0 \).)

(2*) K is the largest trivially ordered subfield of L under \( \leq \).

Before we prove Theorem 1*, we note that Corollaries 1.1 and 1.2 also hold for this type of order. In the proof of Theorem 1* we indicate by * the changes from the proof of Theorem 1.

We again start with \( P_K = K \cap R^+ \) and seek \( B^* \subset L \cap R^+ \) satisfying (a), (b) and (c) as before, but

\[
(d^*) 1 \in P_K(B^*)
\]

instead of (d). Now (3), (4) and (5) follow as before and (d*) implies (1*). To see this, we suppose (1*) false and pick \( k \in K \cap P_K(B^*) \) with \( k \neq 0 \). Then \( 0 < k(\text{wrt } R^+) \) by \( R \)-compatibility and so \( k^{-1} \in K \cap R^+ \). Thus \( 0 < (k^{-1})k = 1(\text{wrt } P_K(B^*)) \), contradicting (d*).

The fact that every \( b \in B^* \) satisfies \( 0 < b(\text{wrt } P_K(B^*)) \) gives (2*) while (1*) shows that Q must be trivially ordered and this gives (0*).

The Main Lemma is unaltered and applies as before during the inductive step to show that (a), (b), (c) and (d*) are preserved by finite extensions. Thus, in order to achieve (d*), we start the induction so that the first nontrivial finite extension has basis \( B^* = \{ \alpha, \alpha^2, \ldots, \alpha^n \} \) rather than \( \{1, \alpha, \ldots, \alpha^{n-1} \} \). Then we note that, in the proof of the Main Lemma, the \( b_i \) in step 1 and hence the \( a_i \) in step 2 are all nonzero. Thus \( 1 = (\alpha^* - a_n \alpha^{n-1} - \cdots - a_1 \alpha)/a_0 \in P_K(B^*) \), which is (d*).

The following examples illustrate how bases are constructed using the Main Lemma. Of course, all of them satisfy (a), (b), and (c) and either (d) or (d*).

**Example 4.1.** We let \( M = Q, M' = Q(\gamma) \) where \( \gamma^2 = 2 \) and \( \gamma \geq 0(\text{wrt } R^+) \) and choose \( t = 1, s = 1 \). This gives \( \beta \) satisfying \( \beta^2 = 2\beta + 1 \) and choosing \( d = 1 \) gives \( \alpha = \beta \). Thus \( B = \{1, \alpha\} \) satisfies (d) and \( B^* = \{\alpha, \alpha^2\} \) satisfies (d*). Note that \( \gamma \) is neither in \( P_q(B) \) nor in \( P_q(B^*) \).

**Example 4.2.** We let \( M = Q(\alpha), M' = Q(\gamma') \) where \( \gamma'^2 = \gamma \) and \( \gamma' > 0(\text{wrt } R^+) \), and choose \( t = 1/2, s = 2 \). This gives \( \beta' \) satisfying \( \beta'^2 = \).
(α - 1)β' + (3α - 1)/4. The coefficients, while positive wrt R+ are not positive in either order of 4.1. If \( P_x = P_q(1, α) \), then \( α - 1 = (α + 1)/α \) and \( 3α - 1 = (5α + 3)/α \). Thus we choose \( d = α \) and get \( α' \) satisfying \( α'^2 = (α + 1)α' + (5α^2 + 3α)/4 \). This gives \( B = \{1, α, α', αα'\} \). On the other hand, if \( P_x = P_q(α', α^2) \), then \( α - 1 = (α^2 + α), 3α - 1 = (5α^2 + 3α)/α^2 \) and we choose \( d = α^2 \). This gives \( α' \) satisfying \( α'^2 = (α^2 + α)α' + (5α^2 + 3α)/4 \) and \( B^* = \{α, α^2, αα', α^2α'\} \).

We note that Corollaries 1.1 and 1.2 fail to determine the cardinality of the class of lattice orders for those countable subfields \( L \) which are algebraic over only countably many subfields \( K \). For instance, Corollary 1.1 only accords finitely many lattice orders to simple extensions \( L \) of \( Q \), but:

**COROLLARY 4.3.** If \( L \) is a simple extension of \( Q \) then \( L \) admits at least \( \aleph_0 \) lattice orders.

*Proof.* We recall from the proof of Theorem 1* that in \( f(x) = x^n - a_nx^{n-1} - \cdots - a_0 \), the minimal polynomial of \( α \), the (rational) \( a_i \) are greater than 0 (i.e., \( α \) satisfies (ii)). Thus there are \( \aleph_0 \) distinct sufficiently small rationals \( r \) such that the minimal polynomial of \( α - r \) still satisfies (ii).

**Questions 4.4.**

(a) Do any countable subfields \( L \) of \( R \) which are algebraic over no more than \( \aleph_0 \) subfields have \( 2^{\aleph_0} \) orders?

(b) Are there any \( R \)-compatible lattice orders on subfields \( L \) of \( R \) which do not quotient-represent \( L \cap R^\ast \)?

(c) Besides the \( R \)-compatible orders constructed here and those on subfields related to \( R \)-compatible orders by automorphisms, what other lattice orders are there? In particular, are there any non-\( R \)-compatible orders on \( R \) itself?

**REFERENCES**


Received August 20, 1974 and in revised form June 11, 1975.

CALIFORNIA STATE UNIVERSITY—LONG BEACH
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH  B. H. NEUMANN  F. WOLF  K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA
UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY
WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
UNIVERSITY OF OREGON
* * *
OSAKA UNIVERSITY
AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics

Manufactured and first issued in Japan
Joseph Anthony Ball and Arthur R. Lubin, *On a class of contractive perturbations of restricted shifts* .......................................................... 309
Joseph Becker and William C. Brown, *On extending higher derivations generated by cup products to the integral closure* ........................................ 325
Andreas Blass, *Exact functors and measurable cardinals* .................................................. 335
Joseph Eugene Collison, *A variance property for arithmetic functions* .................. 347
Craig McCormack Cordes, *Quadratic forms over nonformally real fields with a finite number of quaternion algebras* ........................................ 357
Freddy Delbaen, *Weakly compact sets in $H^1$* ................................................................. 367
G. D. Dikshit, *Absolute Nörlund summability factors for Fourier series* ............ 371
Edward Richard Fadell, *Nielsen numbers as a homotopy type invariant* ........... 381
Josip Globevnik, *Analytic extensions of vector-valued functions* ......................... 389
Robert Gold, *Genera in normal extensions* ................................................................. 397
Solomon Wolf Golomb, *Formulas for the next prime* ................................................... 401
Robert L. Griess, Jr., *The splitting of extensions of $SL(3, 3)$ by the vector space $F^3_3$* .................................................. 405
Thomas Alan Keagy, *Matrix transformations and absolute summability* .......... 411
Kazuo Kishi, *Analytic maps of the open unit disk onto a Gleason part* ................. 417
Kwangil Koh, Jiang Luh and Mohan S. Putcha, *On the associativity and commutativity of algebras over commutative rings* .................. 423
John Alan MacBain, *Local and global bifurcation from normal eigenvalues* ........ 445
Anna Maria Mantero, *Sets of uniqueness and multiplicity for $L^p$* ....................... 467
J. F. McClendon, *Embedding metric families* .............................................................. 481
L. Robbiano and Giuseppe Valla, *Primary powers of a prime ideal* .................... 491
Wolfgang Ruess, *Generalized inductive limit topologies and barrelledness properties* .......................................................... 499
Judith D. Sally, *Bounds for numbers of generators of Cohen-Macaulay ideals* .... 517
Helga Schirmer, *Mappings of polyhedra with prescribed fixed points and fixed point indices* ........................................................................ 521
Cho Wei Sit, *Quotients of complete multipartite graphs* ........................................ 531
S. Sznajder and Zbigniew Zielezny, *Solvability of convolution equations in $\mathbb{K}_p$, $p > 1$* ........................................................................ 539
Mitchell Herbert Taibleson, *The existence of natural field structures for finite dimensional vector spaces over local fields* ............. 545
William Yslas Vélez, *A characterization of completely regular fields* ................ 553
P. S. Venkatesan, *On right unipotent semigroups* .............................................. 555
Kenneth S. Williams, *A rational octic reciprocity law* ........................................ 563
Robert Ross Wilson, *Lattice orderings on the real field* ........................................ 571
Harvey Eli Wolff, *$V$-localizations and $V$-monads. II* ........................................... 579