Pacific Journal of Mathematics

A GENERALIZATION OF A THEOREM OF CHACON

ROBERT CHEN

Vol. 64, No. 1 May 1976

A GENERALIZATION OF A THEOREM OF CHACON

ROBERT CHEN

A generalization of a theorem of Chacon is proved simply by an application of a maximal inequality. A pointwise convergence theorem and the submartingale convergence theorem are immediate consequences.

Let (Ω, \mathcal{F}, P) be a probability space, $\{X_n\}$ be a sequence of integrable random variables adapted to the increasing sequence $\{\mathcal{F}_n\}$ of sub σ -fields of \mathcal{F}, B be the collection of all bounded stopping times (with respect to $\{\mathcal{F}_n\}$), and D be the collection of random variables Y which are measurable with respect to $\mathcal{F}_x = \sigma(\{\mathcal{F}_n\})$ and, for each w in Ω , Y(w) is a cluster value of the sequence $\{X_n(w)\}$.

The main purpose of this note is to generalize (in Theorem 1) the result stated as Corollary 1, due to Chacon ([3]). The result is a reformulation of a result due to Baxter ([2]) but our method of proof is much simpler than that in ([2]) and ([3]), and is just a simple application of a maximal inequality due to Chacon and Sucheston ([4]). A pointwise convergence theorem and the submartingale convergence theorem are immediate consequences ([1] and [5]).

THEOREM 1. Suppose that $\sup_{t \in B} E(|X_t|) < \infty$ and Y_1, Y_2 are any two random variables in D. Then there exist τ_n^* , t_n^* in B such that $\tau_n^* \ge n$, $t_n^* \ge n$, and

(1)
$$\lim_{n\to\infty} E\{|(X_{\tau_n^*}-X_{\tau_n^*})-(Y_1-Y_2)|\}=0.$$

Proof. By Lemma 1 of [1] and the Borel-Cantelli lemma, for any two random variables Y_1 , Y_2 in D, there exist two strictly increasing sequences $\{\tau_n\}$ and $\{t_n\}$ in B such that $\lim_{n\to\infty} X_{\tau_n} = Y_1$ almost surely and $\lim_{n\to\infty} X_{t_n} = Y_2$ almost surely. By the condition that $\sup_{t\in B} E(|X_t|) < \infty$ and the Fatou lemma, Y_1 and Y_2 are integrable.

To prove (1), we need a maximal inequality, which I learned from Chacon and Sucheston.

(2)
$$\lambda P\left(\left[\sup_{n}|X_{n}| \geq \lambda\right]\right) \leq \sup_{t \in B} E(|X_{t}|)$$
 for each positive constant λ .

To see (2), let M be a fixed positive integer and define a bounded

stopping time τ by $\tau(w) = \inf\{n \mid 1 \le n \le M, |X_n(w)| \ge \lambda\}, \tau(w) = M+1$ if no such n exists, $w \in \Omega$. Then

$$\lambda P\left(\left[\sup_{1\leq n\leq M}|X_n|\geq \lambda\right]\right)\leq E(|X_\tau|)\leq \sup_{t\in B}E(|X_t|).$$

(2) follows immediately on letting $M \to \infty$.

Now, for each positive integer k and each positive constant d, define $j(k,d)=\inf\{n\mid k\leq n,\ |X_n|\geq d\},\ j(k,d)=\infty$ if no such n exists. Let $A(k,d)=[j(k,d)<\infty]$. Since, by (2), for fixed k, $P(A(k,d))\to 0$ as $d\to\infty$, $E\{|(Y_1-Y_2)\chi_{A(k,d)}|\}\to 0$ as $d\to\infty$. Therefore, for each positive integer k, there exists a d_k such that $E\{|(Y_1-Y_2)\chi_{A(k,d_k)}|\}\leq 1/k$. Next, for each fixed k, let $Z=\max\{|X_1|,|X_2|,\cdots,|X_{k-1}|,\ d_k\chi_{A^c(k,d_k)}+|X_{j(k,d_k)}\chi_{A(k,d_k)}|\}$, $Z_n=X_{n\wedge j(k,d_k)}$ for all $n\geq 1$. Then it is easy to see that $|Z_n|\leq Z$ for all $n\geq 1$ and $E\{Z\}<\infty$. Since $\lim_{n\to\infty}(X_{\tau_n}-X_{l_n})=(Y_1-Y_2)$ almost surely and, on $A(k,d_k)$, $\lim_{n\to\infty}(Z_{\tau_n}-Z_{l_n})=0$ (since $\{\tau_n\}$ and $\{t_n\}$ are strictly increasing). $\lim_{n\to\infty}(Z_{\tau_n}-Z_{l_n})=(Y_1-Y_2)\chi_{A^c(k,d_k)}$ almost surely. Therefore, by the Lebsgue dominated convergence theorem, $E\{|(Z_{\tau_n}-Z_{l_n})-(Y_1-Y_2)\chi_{A^c(k,d_k)}|\}\to 0$ as $n\to\infty$. Since $j(k,d_k)\geq k$ and $\{\tau_n\}$, $\{t_n\}$ are strictly increasing, we can and do choose, for each positive integer k, two bounded stopping times τ_k^* and t_k^* in B such that $\tau_k^*\geq k$, $t_k^*\geq k$, and $E\{|(X_{\tau_k}-X_{t_k})-(Y_1-Y_2)\chi_{A^c(k,d_k)}|\}\leq 1/k$. Therefore, $\tau_k^*\geq k$, $t_k^*\geq k$, and $E\{|(X_{\tau_k}-X_{t_k})-(Y_1-Y_2)\chi_{A^c(k,d_k)}|\}\leq 1/k$. Therefore, $\tau_k^*\geq k$, $t_k^*\geq k$, and the proof of Theorem 1 now is complete.

COROLLARY 1 (Chacon). Let $\{X_n\}$ be a sequence of integrable random variables such that $\liminf_{n\to\infty} E(|X_n|) < \infty$. Then,

(3)
$$\limsup_{\tau, t \in B} E(X_{\tau} - X_{t}) \ge E(X^{*} - X_{*})$$
, where $X^{*} = \limsup_{n \to \infty} X_{n}$, and

$$X_* = \liminf_{n \to \infty} X_n$$
.

Further, if $\sup_{i \in B} E(|X_i|) < \infty$, then X^* and X_* are integrable.

Proof. If $\sup_{t \in B} E(|X_t|) < \infty$, then, by Theorem 1, X^* , X_* are integrable and $\limsup_{\tau, t \in B} E(X_\tau - X_t) \ge E(X^* - X_*)$. If $\sup_{t \in B} E(|X_t|) = \infty$, without loss of generality, we can and do assume that $\sup_{t \in B} E(X_t^+) = \infty$. Since $\liminf_{n \to \infty} E(|X_n|) < \infty$, there exists a strictly increasing sequence $\{n_j\}$ of positive integers such that $E(|Xn_j|) \le M$ for all $j \ge 1$ and some constant M. Now, for each bounded stopping time t in B, let t' = t on $\{X_t^+ > 0\}$ and t' = n on $\{X_t^+ = 0\}$ where $n = \inf\{n_j \mid n_j \ge \sup\{t(w) \mid w \in \{X_t^+ = 0\}\}\}$. We then have $E(X_{t'} - X_n) \ge E(X_t^+) - M$ and

 $\sup_{\tau,t} E(X_{\tau} - X_{t}) = \infty \ge E(X^* - X_*)$ and (3) follows immediately from this fact. The proof of Corollary 1 now is complete.

COROLLARY 2 (Theorem 2 of [1]). Under the conditions of Corollary 1 and consider the following two assertions:

- (a) The generalized sequence $\{E(X_t)|t\in B\}$ is convergent.
- (b) X_n converges almost surely to a finite limit. Then (a) implies (b).

COROLLARY 3 (the submartingale convergence theorem). Suppose that $\{X_n\}$ is a sequence of L_1 -bounded random variables adapted to the increasing sequence $\{\mathcal{F}_n\}$ of σ -fields. Suppose that $E(X_{n+1}|\mathcal{F}_n) \geq X_n$ almost surely for all $n \geq 1$. Then X_n converges almost surely to a finite limit.

REMARK. Corollaries 1 and 2 also hold under any one of the following two conditions.

- (i) $\sup_{n} E(X_{n}^{+}) < \infty$.
- (ii) $\sup_{n} E(X_{n}^{-}) < \infty$.

ACKNOWLEDGEMENTS. I would like to thank Professors Chacon and Sucheston for their valuable suggestions and comments.

REFERENCES

- 1. D. G. Austin, G. A. Edgar, and A. Ionescu Tulcea, *Pointwise convergence in terms of expectations*, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, **30** (1974), 17–26.
- 2. J. R. Baxter, Convergence of randomly stopped variables, (to appear).
- 3. R. V. Chacon, A "stopped" proof of convergence, Advances in Mathematics, 14 (1974), 365-368.
- 4. R. V. Chacon and L. Sucheston, On convergence of vector-valued asymptotic Martingales, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 33 (1975), 55-59.
- 5. Ch. W. Lamb, A short proof of the Martingale convergence theorem, Proc. Amer. Math. Soc., 38 (1973), 215-217.

Received November 25, 1975.

University of Miami

Pacific Journal of Mathematics

Vol. 64, No. 1

May, 1976

Walter Allegretto, Nonoscillation theory of elliptic equations of order 2n	1
Bruce Allem Anderson, Sequencings and starters	17
Friedrich-Wilhelm Bauer, A shape theory with singular homology	25
John Kelly Beem, Characterizing Finsler spaces which are	
pseudo-Riemannian of constant curvature	67
Dennis K. Burke and Ernest A. Michael, On certain point-countable	
covers	79
Robert Chen, A generalization of a theorem of Chacon	93
Francis H. Clarke, On the inverse function theorem	97
James Bryan Collier, The dual of a space with the Radon-Nikodým	
property	103
John E. Cruthirds, Infinite Galois theory for commutative rings	107
Artatrana Dash, Joint essential spectra	119
Robert M. DeVos, Subsequences and rearrangements of sequences in FK	
spaces	129
Geoffrey Fox and Pedro Morales, Non-Hausdorff multifunction generalization	
of the Kelley-Morse Ascoli theorem	137
Richard Joseph Fleming, Jerome A. Goldstein and James E. Jamison, <i>One</i>	
parameter groups of isometries on certain Banach spaces	145
Robert David Gulliver, II, Finiteness of the ramified set for branched	
immersions of surfaces	153
Kenneth Hardy and István Juhász, Normality and the weak copproperty	167
C. A. Hayes, Derivation of the integrals of $L^{(q)}$ -functions	173
Frederic Timothy Howard, Roots of the Euler polynomials	181
Robert Edward Jamison, II, Richard O'Brien and Peter Drummond Taylor, On	
embedding a compact convex set into a locally convex topological vector	
space	193
Andrew Lelek, An example of a simple triod with surjective span smaller than	
spanspan	207
Janet E. Mills, Certain congruences on orthodox semigroups	217
Donald J. Newman and A. R. Reddy, <i>Rational approximation of</i> e^{-x} <i>on the</i>	
positive real axis	227
John Robert Quine, Jr., Homotopies and intersection sequences	233
Nambury Sitarama Raju, <i>Periodic Jacobi-Perron algorithms</i> and fundamental	
units	241
Herbert Silverman, Convexity theorems for subclasses of univalent	
functions	253
Charles Frederick Wells, Centralizers of transitive semigroup actions and	
endomorphisms of trees	265
Volker Wrobel, Spectral approximation theorems in locally convex spaces	273
Hidenobu Yoshida, On value distribution of functions meromorphic in the	
whole plane	283