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A generalization of a theorem of Chacon is proved simply by
an application of a maximal inequality. A pointwise convergence
theorem and the submartingale convergence theorem are
immediate consequences.

Let (2, %, P) be a probability space, {X, } be a sequence of integrable
random variables adapted to the increasing sequence {#,} of sub o-fields
of #, B be the collection of all bounded stopping times (with respect to
{#.}), and D be the collection of random variables Y which are
measurable with respect to %.. = o({%.,}) and, for each w in £}, Y(w)isa
cluster value of the sequence {X,(w)}.

The main purpose of this note is to generalize (in Theorem 1) the
result stated as Corollary 1, due to Chacon ([3]). The result is a
reformulation of a result due to Baxter ([2]) but our method of proof is
much simpler than that in ([2]) and ([3]), and is just a simple application
of a maximal inequality due to Chacon and Sucheston ([4]). A point-
wise convergence theorem and the submartingale convergence theorem
are immediate consequences ([1] and [5]).

THEOREM 1. Suppose that sup,cs E(|X,|)<® and Y,, Y, are any
two random variables in D. Then there exist %, t% in B such that % = n,
t*=n, and

(1) lim E{[(X.;= Xz2)= (Y. = Y3)|}=0.

Proof. By Lemma 1 of [1] and the Borel-Cantelli lemma, for any
two random variables Y,, Y, in D, there exist two strictly increasing
sequences {7,} and {t,} in B such that lim,_.. X, = Y, almost surely and
lim,.. X, = Y, almost surely. By the condition that sup.cs E(] X, |) <
and the Fatou lemma, Y, and Y, are integrable.

To prove (1), we need a maximal inequality, which I learned from
Chacon and Sucheston.

(2) /\P([sup | X, |z )\D = sup E(]X.|) for each positive constant A.
n tEB

To see (2), let M be a fixed positive integer and define a bounded
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stopping time 7 by r(w)=inf{n[1=n =M, | X, (w)|Z A}, 7(w)=M +1
if no such n exists, w € ). Then

AP([ sup | X, | = A]) = E(|X.

I=n=M

) = sup E(|X.).

(2) follows immediately on letting M — oo,

Now, for each positive integer k and each positive constant d, define
jtk,dy=inf{n|k =n, |X,|=d}, j(k,d)=c if no such n exists. Let
A(k,d)=[j(k,d)<o]. Since, by (2), for fixed k, P(A(k,d))—0 as
d—o, E{|(Y,= Y.))xaws|}—0 as d — <. Therefore, for each positive
integer k, there exists a d, such that E{|(Y,— Y2)x awa|} = 1/k. Next,
for each fixed k, let Z=max{|X,[,|Xo|, | Xt|, diXacwant
| X e aoX accaolt Zo = Xurjwa for all nZ 1. Then it is easy to see that
|Z,|=Z forall n =1 and E{Z} < . Since lim,_..(X,, — X,.) = (Y, — Y>)
almost surely and, on A (k, d\), lim,_..(Z., ~ Z,)) = 0 (since {r,} and {t,}
are strictly increasing). lim,..(Z, - Z,)=(Y,— Y2)xacwa) almost
surely. Therefore, by the Lebesgue dominated convergence theorem,
E{(Z..— Z.,)= (Y= Y)X acwa|}— 0 as n— . Since j(k,d.)= k and
{r.}, {t.} are strictly increasing, we can and do choose, for each positive
integer k, two bounded stopping times 7% and ¢¥ in B such that 7§ = k,
tt =k, and E{|(X;;= X)) = (Y, — Y)X a<kao|} = 1/k. Therefore, 75 =k,
t¥= k, and E{|(X,;— X,;))— (Y, — Y,)|} = 2/k for all k = 1. (1) follows on
letting k — 2 and the proof of Theorem 1 now is complete.

CoroLLARY 1 (Chacon). Let {X,} be a sequence of integrable
random variables such that liminf, . E(] X, |) <. Then,

(3) limsup E(X, - X,)= E(X*— X,), where X*=limsup X,, and

T IEBR n—x

X4 = liminf X,.

n—x

Further, if sup,cs E(] X,|) <, then X* and X . are integrable.

Proof. 1f sup,cs E(]X,|) <, then, by Theorem 1, X* X, are
integrable and limsup, s E(X, — X)) Z E(X* - X,). lf sup.es E(| X, |) =
x, without loss of generality, we can and do assume that sup,cs E(X}) =
. Since liminf, .. E(] X, |) < «, there exists a strictly increasing sequence
{n,} of positive integers such that E(| Xn,|)= M for all j =1 and some
constant M. Now, for each bounded stopping time ¢ in B, let t' =t on
(X;>0} and +t'=n on {X;=0} where n=inf{n|nz=
sup{t(w)|w € {X; = 0}}}. We then have E(X,—- X,)=Z E(X;)— M and
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sup, E(X, - X,)=w= E(X*—- X,) and (3) follows immediately from
this fact. The proof of Corollary 1 now is complete.

CoroLLARY 2 (Theorem 2 of [1]). Under the conditions of Corol-
lary 1 and consider the following two assertions:

(@) The generalized sequence {E(X,)|t € B} is convergent.

(b) X, converges almost surely to a finite limit.
Then (a) implies (b).

CoroLLARY 3 (the submartingale convergence theorem). Suppose
that {X.,} is a sequence of L,-bounded random variables adapted to the
increasing sequence {%,} of o-fields. Suppose that E(X,.\|%.)= X,
almost surely for alln = 1. Then X, converges almost surely to a finite limit.

REMARK. Corollaries 1 and 2 also hold under any one of the
following two conditions.

(i) sup.E(X;) <.

(i) sup.E(X;)<ce.
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