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JouNn E. CRUTHIRDS

Let S be a commutative ring with identity. A group G of
automorphisms of S is called locally finite, if for each s € S, the
set {o(s): o € G} is finite. Let R be the subring of G-invariant
elements of S. An R-algebra T is called locally separable if every
finite subset of T is contained in an R-separable subalgebra of T.
For an R-separable subalgebra T of S and for G a locally finite
group of automorphisms it is shown that T is the fixed ring for a
group of automorphisms of S. If, in addition, it is assumed that S
has finitely many idempotent elements, then it is shown that any
locally separable subring T of S is the fixed ring for a locally
finite group of automorphisms of S. Examples are included
which show the scope of these theorems.

Asin [6] the closure of G with respect to a G-stable subalgebra E of
the Boolean algebra of all idempotent elements of S is the set of all
automorphisms p of S for which there exist a positive integer n and
idempotents e, € E and automorphisms o, € G, such that U ,e, =1and
e, -p=e 0o forl1=i=n Theclosure of G with respect to the set of all
idempotent elements of S will be called the Boolean closure of G.

1. Infinite Galois theory. Throughout this section, G will
be a locally finite group of automorphisms of a commutative ring S and R
will be the subring of G-invariant elements of S. The following
definition will be needed in §3.

DEFINITION. A ring S is called a Galois extension of a ring R with
Galois group H if H is finite with R = S, and if there exist a positive
integer n and elements x,y, of S, 1 =i = n, such that 2., x;,a(y,) = 6.,
for all ¢ € H.

LemMa 1.1. Let G be a locally finite group of automorphisms of S
with R=S° If T is an R-separable subalgebra of S and H =
{od € G|la|r=1;}, then [G: H] <.

Proof. Let 2, x, @y be a separability idempotent for T over
R. Then X% xy,=1,and, forevery tE T, 2/t x, ®y. = 2/_, x, Q yit
in TQT [4]. Let K={c€G:0(y.)=y, 1=i=n}. Then HCK.
But if 0 € K and ¢ € T, then
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where 7 is the ring multiplication for T. So o € H and H = K. But
K =M~ K, where K, ={c € G: a(y;)=y.}. Since G is locally finite,
[G: K/]<x for 1=i=n. So K, and hence H, has finite index in G.

THEOREM 1.1. Let G be locally finite with R = S€ and let T be an
R-separable subalgebra of S. Then there is an R -separable subalgebra T'
of S containing T which is G-stable. Moreover, G restricts to a finite group
of automorphisms of T'.

Proof. Let H={0 € G:0o|r =1;}. Then by Lemma 1.1 [G: H] is
finite, i.e., G/H has finitely many elements, say o,H, -, o.H. Then
,eco(T) =11k, 0,(T). Since T is R-separable, o (T) is R-separable for
o € G. Since IIf_, 0,(T) is a homomorphic image of the tensor product of
the o,(T), it follows from [1, Propositions 1.4, 1.5] that II*., ¢,(T) is an
R-separable subalgebraof S. Let T'=1l,cc0(T). Then TC T' and T’
is G-stable. The moreover statement follows from Lemma 1.1 applied to
T

CoroLLARY 1.1. If G is locally finite with R =S¢ and T is R-
separable, then T is finitely generated and projective as an R-module.

Proof. By the Theorem T C T' where T' is R-separable and G
restricts to a finite group of automorphisms of T'. The corollary follows
from the Theorem of [6].

OBSERVATION. Suppose T is an R-separable subalgebra of S and
let s € S\T. 1f§' denotes the subring of S generated by s and T, then S’
is generated as an R-algebra by {s, t,---,t.} where t,--- t, are the
R-module generators of T. So if o0 € G, o(S’) is determined by
o(s),o(t), -+, o(t,). Since G is locally finite it follows that S’ has only
finitely many distinct images under G, say o,(S’), -+, oy(S'). Let T'=
[l,eco(S’). Then T'=11._,0.(S') and T' is generated as an R-algebra by
{o(s), o(t), -, 0(t.): ¢ € G} which is finite since G is locally finite. T”
is also G-stable. If K ={oc € G: 0| = 1.}, then K is precisely the set of
all ¢ in G which leave every R-algebra generator of T’ fixed. Since G is
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locally finite, this latter group has finite index in G. So G restricts to a
finite group of automorphisms of T'. So T'is a G-stable subalgebra of
S containing s and T, and G restricts to a finite group on T".

CoroLrary 1.2. If G is locally finite with R = S° and T is an
R -separable subalgebra of S, then there is a subgroup H of G with T = S"
where G denotes the Boolean closure of G.

Proof. Let s € S\T. By the observation there is a G-stable sub-
algebra T’ of S containing s and T, and G |, is finite. By the Theorem
of [6] there is a finite subgroup K of the closure of G | with respect to
the idempotent elements of T such that T = (T')*. In particular, there
is p € K such that p(s) #s. By Proposition 2 of [6] this element p of K
is of the form p = 2, e,(0,)|r where E ={e,,- -+, ¢,} is a G |r-stable set
of pairwise orthogonal idempotent elements of T’ such that 2, e, = 1.
Since T’ is G-stable, it follows from Propositions 1 and 2 of [6] that
2, eo; is an element of G. But (21, e0,)(s) = p(s) # s. Since s was any
element of S\T, it follows that T = S* for H={c € G: a|r = 1;}.

It should be noted here that none of the preceding results has had
any restriction on the number of idempotent elements in the ring S. In
Theorem 1.2 below it is assumed that S has only finitely many idempo-
tent elements. Example 2 in §3 of this paper shows that this assumption is
needed.

The proof of Theorem 1.2 requires that the Krull topology be placed
on $° = Map(S, S), the set of single-valued mappings of S into itself. If
H is a group of automorphisms of S and f is an element of the closure of
H in S* with respect to the Krull topology and s and ¢ are elements of S,
then there is o € H such that o (s) = f(s), o(¢t) = f(t), o(s + t) = f(s + 1),
o(s-t)y=f(s-t). Since o(s+t)=a(s)+ () and o(s-t)=o0(s) a(t),
the same properties hold for f and it follows that f is in fact a ring
homomorphism of S. Taking s# ¢ in the above argument also shows f is a
monomorphism. If H is also locally finite and y € S, then {o(y)| o € H}
is finite, say {o(y)|o € H}={s,, -, s,}. So there is an element o € H,
with o(s)=f(s,), 1=i =n. Since '€ H, there is a j,1 =] = n, with
o7 '(y)=s. Then f(s))=o(s)=y and f is an automorphism of S. If
(x;, -+, x;) are any k elements of S, there is 0 € H such that o(f'(x)) =
x, because f(f'(x,))=x, 1=i=k. So f'(x)=07"(x), each i, and it
follows that f~'is also in the closure of H. It now follows readily that the
closure of a locally finite group of automorphisms of § is again a locally
finite group of automorphisms of S.

THEOREM 1.2. Let G be a locally finite group of automorphisms of S
with R = S°. Assume S has only finitely many idempotent elements. If T is
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a locally separable R -subalgebra of S, then there is a locally finite group H
of automorphisms of S with T = S".

Proof. Let G be the closure of G with respect to the Boolean
algebra of all idempotent elements of S. Since S has only finitely many
idempotent elements, G is a locally finite group of automorphisms of
S. Let G€ be the closure of G in the Krull topology on S%. G€ is a
locally finite group of automorphisms of S, and the usual argument shows
that @C is compact. Now take y € S\T. For t€T, let A =
{c€E G :a(t)=1t o(y)# y} Since T is locally separable, Corollary 1.2
can be applied to show that if ¢,---, ¢ are any elements of T, then
N A, ={cEG :0(t)=t,1si=n o(y)Ay}#D. S0 {A}er is a
collection of closed subsets of G€ which have the finite intersection
property. Since G€ is compact, it follows that M, A,# @. So there
exists ¢ € G° such that o|r=1; and o(y)#y. Letting H=
{c€G : o|r=1;}, T=S" and H is locally finite since it is a subgroup
of G-

THEOREM 1.3. Let G be a locally finite group of automorphisms of S
with R = S°. Let S be locally separable over R with finitely many
idempotents. Then an R-subalgebra T of S is the fixed ring of a locally
finite group of automorphisms of S if and only if T is locally separable.

Proof. The implication one way follows from Theorem 1.2.

Now let H be a locally finite group of automorphisms of S with
T=S" Let {t,---,t,} be a finite subset of T. Since S is locally
separable, there exists an R-separable subalgebra S’ of S such that
{t,-, .} CS". Let §"=1l,.,0(S’) be the subalgebra of S generated by
{d(S'): o € H}. Then, as in the proof of Theorem 1.1, $” is an R-
separable subalgebra of S, and S$" is clearly H-stable. By Corollary 1.1,
S”1s also finitely generated and projective as an R-module. Corollary 1.2
now says that $”"=S’, where J = Auts(S). Proceeding now as in the
proof Theorem 1.10(b) of [9], it can be shown that $" N S* is a separable
R-algebra. But S¥" =T, so S"NS"=S"NT2D2S'NTD2{t, -t}
Therefore, T is locally separable.

It has been noted that Theorem 1.2 has the hypothesis that the ring S
have only finitely many idempotent elements. This hypothesis was used
in the proof of Theorem 1.2 to show that the group G was a locally finite
group. The following question naturally arises: Is there some weaker
condition on S which will still give G locally finite? Theorem 1.4, below,
answers this question negatively in the case where the ring R has no
nontrivial idempotent elements.
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In the following, weakly Galois is used as in definition 3.1 of [11],
and G is the Boolean closure of G.

LemMMA 1.4. Let S be weakly Galois over R with R =S¢ and G a
finite group of automorphisms of S.  Suppose R is connected, i.e., R has no
nontrivial idempotents. Let T be an R -separable subalgebra of S, such that
T is G-stable. Then either T is connected or T contains all the idempotent
elements of S.

Proof. Since_(_} is its own Boolean closure in S, it follows by (3.9 d),
p. 93 of [11] that G = Aut (S). So T is normal in the sense of Definition
2.1 of [9], and the lemma follows from Proposition 2.3 of [9].

THEOREM 1.4. Assume R is connected and let S be a locally
separable R-algebra with R = S, where G is a locally finite group of
automorphisms. Then S has finitely many idempotent elements if and only
if G is locally finite.

Proof. If S has finitely many idempotent elements, then it is clear
that G is locally finite since G is locally finite. Conversely, suppose G is
locally finite. Let e be a nontrivial idempotent elementin S. Let T be a
separable subalgebra of S containing e. Let T'=1Il,.¢0(T). Then T'is
a separable subalgebra of S since G is locally finite. Let f be any other
idempotent element in S. As with T’ above, there is a separable
subalgebra U of S containing both T and f which is also G-stable. The
locally finite group G induces a finite group of automorphisms on the
separable subalgebra U. So U is weakly Galois over R, and it follows
from Lemma 1.4 that T’ contains all the idempotent elements in U. In
particular, T’ contains f. T’ then contains all the idempotent elements
in S. But since T’ is weakly Galois over the connected ring R, T’ can
contain only finitely many idempotent elements (Theorem 2.1 gives an
easy proof of this).

2. Applications to the finite Galois theory. In this
section it will be assumed that S is a commutative ring and G is a finite
group of automorphisms of S. Since a finite group is clearly locally
finite, an attempt will be made to apply some of the results of §1 to the
case where G 1is in fact a finite group. R will again be the subring of
G-invariant elements of S. Lemma 2.1, and Theorem 2.1 belong to the
author’s major professor, H. F. Kreimer, and are included here with his
permission. They show that S has finitely many idempotents if, and only
if, R has finitely many idempotents.

Note that if p is a prime ideal of R then it follows by [2, Ch. 5, §2,
Thm. 2] that G acts transitively on the set of prime ideals of S which lie
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over p. Since G is finite, it can also be concluded that the set of prime
ideals of S which lie over a given prime ideal of R is finite.

DEFINITION. A commutative ring will be called semi-local if it has
only finitely many maximal ideals.

LeEmMA 2.1. S is semi-local if, and only if, R is semi-local.

Proof. If M is a maximal ideal of S, then R N M is a maximal ideal
of R, and if m is a maximal ideal of R, then there exists a maximal ideal
of S which lies over m by [2, Chapter 5, §2, Prop. 1 and Thm. 1]. Soif S is
semi-local, R is also. Also, only a finite number of maximal ideals'of S
can lie over a given maximal ideal of R. So S is semi-local if R is
semi-local.

THEOREM 2.1. S has finitely many idempotent elements if, and only
if, R has finitely many idempotent elements.

Proof. 1t is clear, of course, that R has finitely many idempotent
elements if § does. If E is the Boolean algebra of all idempotent
elements of S, then the elements of G restrict to automorphisms of E
and the subset of G-invariant elements of E is the Boolean algebra of
idempotent elements of R. The theorem is an immediate consequence
of Lemma 2.1 and the fact that a Boolean algebra is semi-local if and only
if it is finite by Stone’s Representation Theorem [10, p. 351].

LEmmA 2.2.  If R has finitely many idempotent elements and G is a
finite group of automorphisms of S such that R = S, then there is a unique
maximal R-separable subalgebra of S.

Proof. Since R has only finitely many idempotent elements, S has
only finitely many idempotent elements by Theorem 2.1. Let G be the
closure of G with respect to the Boolean algebra of idempotent elements
of S. Then G is a finite group. For an R-algebra T such that
R C T CS and T is separable over R, let H(T)={o € G: o|, = 1;}. By
Corollary 1.2, T = S¥™. Pick an R-separable subalgebra T, of S such
that H(T,) has smallest order. Let T be any R-separable subalgebra of
S. Then T-T, is a separable subalgebra of S containing T,, hence
H(T-T,)C H(T,). But |H(T,)|=|H(T°T,)|. Therefore, H(T - T,) =
H(T,)and TC T - T,= S"™ ™ = T,. It follows then that T, is the unique
maximal separable subalgebra of S.

It can be noted here that it is a straightforward Zorn’s lemma
exercise to show that S always contains a maximal locally separable
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subalgebra, and this requires no restrictions on the number of idempo-
tent elements of S.

THEOREM 2.2.  If R has finitely many idempotent elements and G is
a finite group of automorphisms of S such that R = S, then every locally
separable subalgebra of S is in fact separable over R.

Proof. S has only finitely many idempotent elements by Theorem
2.1. Lemma 2.2 says that S contains a unique maximal R-separable
subalgebra, say T;,. Let T be any locally separable subalgebraof S. If¢
is any element of T then ¢ is contained in some R -separable subalgebra
of T, say T'. But T'C T, by the maximality of T,. So t€& T, and,
hence, T C T,. Since G is finite and S has only finitely many idempotent
elements, Theorem 1.2 can be used to show that there is a finite group H
of automorphisms of S with T as fixed ring, i.e., T = S". Since the image
of T, under an automorphism of S would be separable, T, must be
H-stable. So H can be considered as a finite group of automorphisms
of Ty and T = S" = T. By Theorem 1.1 and Corollary 1.1, T, is weakly
Galois over R. T is then separable over R by [11, 3.10, p. 93].

3. Examples. In this section three examples are given in an
attempt to show that the major results of §81 and 2 are in some sense as
sharp as might be hoped for.

ExampLE 1. Corollary 1.2 shows that if G is locally finite with
R =S¢, then a separable intermediate algebra T is the fixed ring for a
subgroup H of the closure of G with respect to a certain collection of
idempotent elements. This example shows that, in general, G must be
enlarged in order to find the group H, even in the rather nice case where
S is a Galois extension of R. Rings R, S, T are given such that
R CTCS, S is Galois over R, T is separable over R, and T is not the
fixed ring of a subgroup of any Galois group for S over R, where a
Galois group is a group for which statement (b) of Theorem 1.3 of [3] is
satisfied.

Let C be the field of complex numbers and let R be the field of real
numbers. All tensoring here will be done over the ring R.  Since C is a
Galois extension of R, C Q) C is a Galois extension of R. A Galois group
for CQC over Ris G={1Q1, 1QRo0, c@®1, 0 Qac}, where o is
conjugation on C. The separability idempotent for C @ C over R is
e=H{IRQIRIRI-1IRIRIRi-iRIRIRI+iRQi®iQi). Let
7 be the element of Autg(C®C) given by r(w ® z)=zQw. If e is
viewed as Z{_, x;, ® y, then Zi, x;7(y,)=i[1®1-iQi]# 0. So 7 can-
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not be an element of any Galois group for C & C over R by [3, Theorem
1.3(b)]. Take S tobe CRQC, R tobe R, and T = (CQC)™". Since T is
the fixed ring of a locally finite group of automorphisms of S, T is locally
separable over R by Theorem 1.3. But C & C has only two nontrivial
idempotent  elements, namely, e =3(1Q1-i®i) and e,=
I1®1+i®i). Therefore, Theorem 2.2 says T is in fact separable over
R. By [3, Cor. 3.3] every ring endomorphism of the R-algebra S is of
the form n = e,0, + e,0, for o,,0,€ G. A direct check shows that the
only automorphisms of § over R are 1Q1, 1R®0o, c®1, 0o,
7, 7(1Q ), To(c ®1), To(od @ o). It is also easy to show that 1 Q)1
and 7 are the only automorphisms which fix (1+i)&(1+1i). Thus
{1®1, 7} is the only group for which T is the subring of invariant
elements.

ExampLE 2. Theorem 1.2 shows that if the ring S has finitely many
idempotent elements and G is locally finite then any locally separable
intermediate ring is the fixed ring for a locally finite group of automorph-
isms of S. This example shows that the restriction that S have only
finitely many idempotent elements is needed. Rings R, S, T and a locally
finite group G of automorphisms of S are given such that R = S,
R CTCS, and T is locally separable over R, but T is not left fixed by
any nonidentity automorphism of S. In fact, the ring R in this example
has no nontrivial idempotent elements. Therefore, it does not even look
like a generalized version of Theorem 1.2 without restrictions on the
number of idempotents in S could be obtained by reducing to the case
where the bottom ring is connected as is done in [11].

The example deals with certain sequences of complex numbers
under coordinate-wise addition and multiplication. Fori=0and 0=j <
2 let e, be the sequence with a one in the entries of the form j + k -2' +1
for k =z 0, and all other entries zero. Then each e, is an idempotent
element and e; = e..,, + €., . for all ij.

DEeriNiTION.  Let S be the ring consisting of all the sequences of
complex numbers which are finite linear combinations over C of the e,.

Let oy, i =20 and 0 = j <2', be the element of Aut(S) which acts on a
sequence by interchanging the j+ k -2*'+1 and j+ k -2+ 2' + 1 en-
tries for k = 0. Then o, (e..,) = €. ;. and o;(e,) = e;. In fact, if i =k
then oy, (e,) = e; for all possible / and j.

DEerFiNiTION.  Let G be the subgroup of Aut(S) generated by the o,
along with the automorphism = which acts on a sequence by conjugating
every entry in the sequence.

Let R =S¢ Then if (x,) € R, it must be the case that each x,, is a
real numbersince r € G. If n > 1, let i be the smallest integer such that
n=2"" Letting j=n—-2"-1, n=j+2'+1 and 0=j<2. Then oy
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interchanges the nth and (j + 1)st entries of (x,). Since j+1<mn, an
easy induction argument will show that x, = x, for all n = 1. Therefore,
S¢ is exactly the subring of S consisting of all constant sequences of real
numbers.

An element s € S can be written as s = 2’ ¢cie, with ¢, € C for
sufficiently large i. If i =k then oy, fixes the e, and hence s. So the
distinct images of s under G are the distinct images of s under the
subgroup of G generated by 7 and the oy, for k <i. Butif k <i, oy, will
map e; to e, some p such that 0 = p <2’ Since there are only finitely
many e; s can have but a finite number of distinct images under this
subgroupof G. So G is alocally finite group of automorphisms of S.

DerFiNITION.  Let T be the subring of S consisting of all the
elements s € § which have ¢, a real number when s is expressed in the
form s = 275/ ¢ e, some i >0.

Then T is an ‘R-subalgebra of S and T contains all the ¢, Let
t, -, t beelementsof T. Fix an integer p so thateach t,1 =i = n, can
be written as a linear combination of the e,, 0 = j = 2? — 1. The subring of
T generated over R by the e; for i = p is isomorphic to

ChH---PHCPHR
2r—1

and hence is separable over R. So T is in fact locally separable over R.

At this stage G is a locally finite group of automorphisms of the ring
S, R = §¢ has no nontrivial idempotent elements, and T is locally
separable over R with RCT CS. That T is not left fixed by any
nonidentity automorphism of S follows from the

LEmMMA. If y is any automorphism of S such that y|+ = 1;, then
Y= 15.

Proof. Let x € S be arbitrary. Let i be a positive integer. Let p
be an integer so that x can be written as x = 277" e, ,, ¢, € C. Since, in
general, e, ., begins with 2/ — 1 zeros, it is possible to choose an integer
q > p so that (e,,;), = 0. View x as a linear combination of the e, , say
x =2 de, . Then

Il

() d-e) + Y(do e, |

O

~ m
|
[N]

s eq,s + O ¢ equq,l)] + ['Y(dzq_l . eq,zq—l)]x

\IM

(8
b

s T 0 e, ]+[‘Y(d2"1'30,0)")'(eq.2“-1)]l'
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But [X¥7d, -e,.+0-e,204] =x since (;221) =0, and [y(e,21)] =
(€420-1), = 0 since y | = 1. It follows then that (y(x)), = x.. Since x and i
were arbitrary, y = 1.

ExamMpLE 3. Theorem 2.2, shows that,.in the finite case, the as-
sumption of finitely many idempotent elements in R (or S, Theorem 2.1)
will give locally separable implies separable. This example shows that, in
general, the result fails even in the setting where S is a Galois extension
of R. The rings R, S, T are given as follows:

S — all sequences of complex numbers which are eventually con-
stant.

T —all sequences of complex numbers which are eventually a
constant real number.

R —all sequences of real numbers which are eventually constant.

Let o be the automorphism of S which acts on a sequence by conjugating
each term. Then a group of automorphisms of S with fixed ring R is
obtained by considering 15 and 0. Let G = {15, 0}. Let x,=(1,1,1,---),
;=050 ), yin=(3,4,--+),and y,=(—13, —4, —4,---). It is readily
verified that 27, x;y, = (1,1,1,---) and 22, x,0(y,) = (0,0,0, - - -). It fol-
lows then by [3, Theorem 1.3(b)] that S is in fact a Galois extension of R,
and by [7, Example 1] T is not separable over R. It remains to be seen
that T is locally separable. Let F be a finite subset of 7. Then there is a
positive integer N such that if i, j = N and ¢t € F then ¢, = ¢, i.e., all the
elements of F are constant past the Nth slot. Let T' be the subalgebra
of S which consists of all sequences in § which have real entries past the
Nthslot. Then FCT'C T and R C T'C T. Let e, denote the element
of S whose ith entry is one and whose other entries are zero, and let f be
the element of S given by f, =1 if n > N, f, = 0 otherwise. Then T" is
isomorphic to Se, P Se, P - - - P Sex D Rf, and it follows that T' is a
separable R -algebra because S and R are separable R-algebras. There-
fore, T is locally separable over R.
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