SUBSEQUENCES AND REARRANGEMENTS OF SEQUENCES IN FK SPACES

ROBERT M. DeVos
The purpose of this paper is to study FK spaces which contain all subsequences or all rearrangements of a given sequence. Using a result of Bennett and Kalton we are able to show that if a separable FK space contains all subsequences or all rearrangements of a sequence with two or more finite cluster points, then it contains m. We are also able to show that if ℓ^p contains all rearrangements of some sequence not in ℓ^p, then it is a wedge space. This leads to proofs that if X is a solid symmetric FK space, $X \setminus \ell^p \neq \phi$, $X \neq s$, then $X \neq \ell^p_A$ for any matrix A and if in addition X is not wedge then X and ℓ^p are not linearly homeomorphic, via a matrix, hence extending a result of Banach.

1. Recently there has been a large number of papers [8], [9], [11], [13], [14] and [15] considering subsequences and rearrangements of sequences in c_A and ℓ_A. In this paper we consider these operations in an FK space setting and are able to generalize many of these results.

The author would like to thank G. Bennett, F. W. Hartmann, A. K. Snyder and A. Wilansky for inspiration and many valuable conversations.

Let s denote the space of all complex-valued sequences. An FK space is a vector subspace of s which is also a Fréchet space, (complete linear metric) with continuous coordinates. A BK space is a normed FK space. Some discussion of FK spaces is given in [19]. Well-known examples of BK spaces are the spaces m, c, c_0 of bounded, convergent, null sequences respectively, all with $\|x\|_\infty = \sup |x_k|$, $E\times$ the set of all finite sequences; that is, sequences all but finitely many of whose terms are zero. We shall assume that all FK spaces contain $E\times$. Let m_0 be the linear span of all sequences of 0’s and 1’s and $E\times$ the set of all finite sequences; that is, sequences all but finitely many of whose terms are zero. We shall assume that all FK spaces contain $E\times$. Let A be a matrix, E an FK space, $E_A = \{x \in s: Ax \in E\}$ is well known to be an FK space.

Let $e = (1, 1, 1, \cdots)$, $e^i = (0, \cdots, 0, 1, 0, \cdots)$ (with 1 in rank j). We denote the nth section of an element $x \in E$ by $P_n x = \sum_{i=1}^n x_i e^i$ and say
that x has AK provided that $P_n x \to x$ in E. The FK space E is called wedge when $e^n \to 0$ in E.

The α and β duals of a subset X of s are defined by

$$X^\alpha = \left\{ y \in s : \sum_{j=1}^{x} |x_j| < \infty \text{ for each } x \in X \right\}$$

$$X^\beta = \left\{ y \in s : \sum_{j=1}^{x} x_j \text{ converges for each } x \in X \right\}.$$

E is solid if $x \in E$ implies $(a, x) \in E$ for each $a \in m$. Let Σ denote all permutations (rearrangements) of the positive integers. E is symmetric if $x \in E$ implies $x_\sigma = (x_{\sigma(i)}) \in E$ for each $\sigma \in \Sigma$.

In [6], R. C. Buck proved the Tauberian theorem that if x is nonconvergent, then no regular summability matrix can sum every subsequence of x. I. J. Maddox in [15] improved Buck's theorem by showing that if A sums every subsequence of a divergent real sequence then $c_A \supset m$.

In [11], J. A. Fridy proved a theorem analogous to Buck's, in which subsequence is replaced by rearrangement. T. A. Keagy in [13] extends Fridy's theorem as Maddox extended Buck's.

In the following two theorems, we consider subsequences and rearrangements of a sequence in an FK space. Theorem 2, along with the facts

(i) c_A is always separable;
(ii) if $x \in m$ and every subsequence (rearrangement) of x is in c_A then $\exists N$ such that $a_n = 0$ for $n \geq N$, and this implies that $c_A = s$; gives us their results.

Theorem 1. Let E be an FK space $\supset E^\circ$. The following are equivalent.

(a) There exists an $x \in E$ with the properties:

(i) for some p, q real numbers, $p \neq q$, pe and qe are subsequences of x,
(ii) E contains all subsequences of x.
(b) $E \supset m$
(c) $E \supset m_0$
(d) $e \in E$ and there exists a $y \in E$ with the properties:
(i) for some p, q real numbers, $p \neq q$, pe and qe are subsequences of y,
(ii) E contains all rearrangements of y.

Proof. Clearly (b) \Rightarrow (a), (b) \Rightarrow (c) and (b) \Rightarrow (d).
(c) ⇒ (b) Bennett and Kalton's extension of Seevers results Theorem 1, p. 513 of [5].
(a) ⇒ (c) \(E \) contains all sequences of \(p \)'s and \(q \)'s hence \(E \) contains all sequences of 0's and 1's.
(d) ⇒ (c) Let \(z \) be a sequence of 0's and 1's such that only finitely many \(z_i = 1 \) or \(= 0 \). Since \(e \in E \) and \(E^* \subseteq E \) then \(z \in E \). Let \(z \) be a sequence of 0's and 1's with an infinite number of \(z_i = 0 \) and an infinite number of \(z_i = 1 \).

Let \(r(k) \) and \(s(k) \) be such that \(z_{r(k)} = 1, z_{s(k)} = 0 \) for all \(k \) and \(\{r(k)\} \cup \{s(k)\} = \mathbb{Z}^+ \).

Let \(y^1, y^2, y^3, y^4 \) be rearrangements of \(y \) such that

\[
\begin{align*}
y^1_{r(2k)} &= p, & y^2_{s(2k)} &= q \\
y^2_{r(2k)} &= q, & y^2_{s(2k)} &= p, \\
y^3_{r(2k-1)} &= p, & y^3_{s(k)} &= q \\
y^4_{r(2k-1)} &= q, & y^4_{s(k)} &= p, \\
\end{align*}
\]

Hence

\[
\frac{1}{3(p-q)} [(y^1 - y^2) + (p-q)e + (y^3 - y^4) + (p-q)e] = z
\]

and so \(z \in E \). Since \(z \) was arbitrary it follows that \(E \supseteq m_0 \).

Using a form of the closed graph theorem due to Kalton, Bennett and Kalton as Theorem 25 p. 577 of [4] prove

Theorem (Bennett-Kalton). If \(E \) is a separable FK space \(\supseteq E^* \) and \(E + c_0 \supseteq m_0 \) then \(E \supseteq m \).

Using this theorem and arguments similar to those of Theorem 1, we have

Theorem 2. Let \(E \) be a separable FK space \(\supseteq E^* \). The following are equivalent.
(a) \(\exists x \in E \) with at least two distinct finite cluster points and \(E \) contains all subsequences of \(x \).
(b) \(E \supseteq m \).
(c) \(E \supseteq m_0 \).
(d) \(\exists y \in E \) with at least two distinct finite cluster points, \(E \) contains all rearrangements of \(y \) and \(e \in E \).

Lemma 1. Let \(Y \) be a linear sequence space, \(x \in Y \setminus \ell^p \) such that every rearrangement of \(x \) belongs to \(Y \). Then there exists a \(z \in Y \setminus \ell^p \) such...
that every rearrangement of \(z \) belongs to \(Y \) and \(|z_i| = 0 \) for an infinite number of subscripts.

Proof. Let \(y \) be a rearrangement of \(x \) such that the even coordinates form a sequence which is not in \(\ell^p \) and the sequence \((y_{4n} - y_{4n-2}) \notin \ell^p \). Let \(y' \) be the rearrangement of \(x \) which permutes the \(4n \)th and the \(4n-2 \)nd slots of \(y \). Let \(z = y - y' \). The odd coordinates of \(z \) are 0 and \(z \in Y \setminus \ell^p \). Clearly any rearrangement of \(z \) belongs to \(Y \).

Theorem 3. Let \(A = (a_{ij}) \) be a matrix, \(a^n \) the \(n \)th column of \(A \) and \(1 \leq p < \infty \). If there exists an \(x \in \ell^p_A \cap \ell^p \) such that every rearrangement of \(x \) belongs to \(\ell^p_A \) then \(\|a^n\|_p \to 0 \).

Proof. By a Lemma in [11], each row of \(A \) is in \(c_0 \). If \(x \notin m \) then the rows of \(A \) are in \(E^\infty \), for if \(\exists p \) such that \((a_{pn})_{n=1}^\infty \notin E^\infty \) then \(\exists \) a rearrangement of \(x \) such that \(\Sigma a_{p,k}x^\sigma(i) \) is not convergent. Let \(\beta^n \) be the \(n \)th row. If \(\exists N \) such that \(P_N \beta^n - \beta^n = 0 \) for all \(n \) then \(\ell^p_A = s \) and \(\|a^n\|_p = 0 \) for \(s \geq N \). If \(N \) does not exist then \(\exists \) a monotonic increasing sequence of positive integers \((p(k)) \) and a rearrangement \(x_\sigma \) of \(x \) such that

\[
\left| \sum a_{p(k),i}x_{\sigma(i)} \right| \geq 1,
\]

which implies \(x_\sigma \notin \ell^p_A \), a contradiction; so \(N \) exists. If \(x \in m \), we may assume \(\|x\|_\infty \leq \frac{1}{2} \). Suppose \(\|a^n\|_p \not\to 0 \), then there exists \(\epsilon > 0 \) and an increasing sequence of integers \(r \) such that \(\|a^n\|_p \geq \epsilon \), for all \(i \). We now define a subsequence \((\ell(k)) \) of \(r \) and \((m(k)) \) of positive integers. Let \(\ell(1) = r_1 \), \(m(0) = 0 \) and \(m(1) \) be such that \(\|a^{\ell(1)} - P_{m(1)}a^{\ell(1)}\|_p < \frac{1}{2}\epsilon \). Since the rows are in \(c_0 \), pick \(\ell(2) > \ell(1) \) such that \(\|P_{m(1)}a^{\ell(2)}\|_p < \frac{1}{4}\epsilon \). Pick \(m(2) > m(1) \) such that \(\|a^{\ell(2)} - P_{m(2)}a^{\ell(2)}\|_p < \frac{1}{4}\epsilon \).

Proceeding in this manner we inductively define increasing sequences \((\ell(k)) \) (a subsequence of \(r \)) and \((m(k)) \) such that

\[
\|a^{\ell(k)}\|_p \geq \epsilon
\]

\[
\|P_{m(k)}a^{\ell(k+1)}\|_p < \frac{1}{2^{k+1}} \epsilon
\]

\[
\|P_{m(k)}a^{\ell(k)} - a^{\ell(k)}\|_p < \frac{1}{2^k} \epsilon.
\]

Hence

\[
\|P_{m(k)} - P_{m(k-1)}a^{\ell(k)}\|_p \geq \frac{1}{2} \epsilon. \quad (k \geq 2)
\]
By Lemma 1, \(\exists \ z \in \ell_p^\lambda \setminus \ell^p \) such that \(|z_i| = 0 \) for \(i \neq \ell(k) \) for some \(k \) and \(\|z\|_\infty \leq 1 \) since \(\|x\|_\infty \leq \frac{1}{2} \). Hence

\[
\left(\left| \sum_{k=1}^\infty a_{n, \ell(k)} z_{\ell(k)} \right| \right) \in \ell^p
\]
call it \(\gamma^0 \). Let

\[
\gamma^1 = |\alpha^{\ell(1)} - P_m(\alpha^{\ell(1)})|
\]
(i.e. the absolute value of each term)

\[
\gamma^n = |\alpha^{\ell(n)} - (P_m(\alpha^{\ell(n)}) - P_m(\alpha^{\ell(n-1)}))\alpha^{\ell(n)}| \quad \text{for} \quad n \geq 1
\]

\[
\|\gamma^n\|_p \leq \frac{1}{2^n} \varepsilon + \frac{1}{2^n} \varepsilon = \frac{1}{2^{n-1}} \varepsilon.
\]

Let \(\delta = \sum_{i=0}^\infty \gamma^i \). Since \(\sum_{i=0}^\infty \|\gamma^i\|_p < \infty \), it follows that \(\delta \in \ell^p \). Let \(m(s-1) < q \leq m(s) \)

\[
|a_{q, \ell(s)} z_{\ell(s)}| \leq \left| \sum_{k=1}^\infty a_{q, \ell(k)} z_{\ell(k)} \right| + \sum_{k=1}^\infty \left| a_{q, \ell(k)} z_{\ell(k)} \right|
\]

\[
\leq \left| \sum_{k=1}^\infty a_{q, \ell(k)} z_{\ell(k)} \right| + \sum_{k=1}^\infty \left| a_{q, \ell(k)} \right|
\]

\[
\leq \delta_q.
\]

Hence the sequence

\[
\delta' = z_{\ell(1)} P_m(\alpha^{\ell(1)}) + \sum_{k=2}^\infty z_{\ell(k)} (P_m(\alpha^{\ell(k)}) - P_m(\alpha^{\ell(k-1)})) \in \ell^p.
\]

But

\[
\|\delta'\|_p = \|z_{\ell(1)} P_m(\alpha^{\ell(1)})\|_p + \sum_{k=2}^\infty \|z_{\ell(k)}\|_p \| (P_m(\alpha^{\ell(k)}) - P_m(\alpha^{\ell(k-1)})) \|_p
\]

\[
\geq |z_{\ell(1)}|^p \left(\frac{\varepsilon}{2} \right)^p + \sum_{k=2}^\infty |z_{\ell(k)}|^p \left(\frac{\varepsilon}{2} \right)^p
\]

which implies \(z \in \ell^p \), a contradiction. Hence \(\|\alpha^n\|_p \to 0 \).

This theorem was stated for \(p = 1 \) in the Notices by Keagy [14]. In [2] Bennett defined the concept of a wedge space. He then proves several equivalent conditions one of them being \(E \supset z^\alpha \) for some \(z \in c_0 \). As Theorems 36 and 41, he shows \(\ell^p_\lambda \) is wedge iff \(\|\alpha^n\|_p \to 0 \) where \(\alpha^n \) is the \(n \)th column of \(A \).
Corollary 1. Let X be a non-wedge FK space, $y \in X \setminus \ell^p$ such that $y_\sigma \in X$ for all $\sigma \in \Sigma$. Then $X \neq \ell^p_\Lambda$ for any matrix A.

Corollary 2. Let $X \neq s$ be a solid symmetric FK space $X \setminus \ell^p \neq \phi$. Then $X \neq \ell^p_\Lambda$ for any matrix A.

Proof. In [12] Garling proves that $X \subseteq m$; but all wedge spaces contain unbounded sequences hence X is nonwedge. Since ℓ^q is always solid symmetric we have

Corollary 3. If $q > p$ then $\ell^q \neq \ell^p_\Lambda$ for any matrix A.

This was proved using wedge spaces by Bennett in [2] and other techniques by DeVos in [10].

Theorem 4. Let X be a non-wedge FK space with AK, $y \in X \setminus \ell^p$ such that $y_\sigma \in X$ for all $\sigma \in \Sigma$. Then X cannot equal ℓ^p_Λ nor can it be a closed subspace of ℓ^p_Λ for any matrix A.

Proof. Let $z \in m_0$ be chosen such that $z_{n(k)} = 1$ and $z_i = 0$ for $i \neq n(k)$ where $(n(k))$ is an increasing sequence of positive integers such that !$e^{n(k)!} \geq c > 0$ where ! is the paranorm of X and $\|a^{n(k)}\|_p < 1/2^k$ where $a^{n(k)}$ is the $n(k)$ column of the matrix A. $z \notin X$ and $z \in \ell^p_\Lambda$ with AK hence z is the closure of X in ℓ^p_Λ. Hence X is not closed in ℓ^p_Λ.

Garling in [11] defines the spaces

$$\mu_z = \left\{ x \in s: \sup_{\sigma \in \Sigma} \sum_{i=1}^{\infty} |x_{\sigma(i)}z_i| < \infty \right\}$$

and shows that μ_z is a symmetric solid BK space. As Proposition 11 he shows for $z \in c_0$, $\mu_z \nsubseteq \ell'$. Combining these results we add another condition to Bennett's Theorem 36.

Theorem 5. The following conditions are equivalent for any matrix A.

(i) ℓ_A is a (weak) wedge space

(ii) $\|a^n\|_1 \to 0$

(iii) $\exists x \in \ell_A \setminus \ell$ such that $x_\sigma \in \ell_A$ for all $\sigma \in \Sigma$.

For $p > 1$, the converse of Theorem 3 is false. For the following example let all sequences be real. In [16] Ruckle defines the sequence h such that $h_n = n^{1/p} - (n - 1)^{1/p}$ and shows that $\mu_h \nsubseteq \ell^p$. Let A be the matrix such that

$$a_{1n} = h_n \quad \text{and} \quad a_{pn} = 0 \quad \text{for} \quad p > 1;$$
Thus, $\ell^p_A = s_A = h^b \supset \mu_h$. Let $x \in h^b$ such that $x_\sigma \in h^b$ for all permutations σ. Then $x_\sigma \in h^a$ for all permutations σ. Hence $x \in \mu_h$ which implies $x \in \ell^p$.

Banach in [1] shows that if $p \neq q, q \geq 1$ then ℓ^p and ℓ^q are not linearly homeomorphic. He does this by showing that their linear dimensions are incomparable. If X and Y are linear topological spaces then $\dim X \leq \dim Y$ iff X is isomorphic to a closed subspace of Y. The following theorems which follow easily from Theorem 3 are extensions of these results.

Theorem 6. Let X be a nonwedge FK space such that $\exists x \in X \setminus \ell^p$ with $x_\sigma \in X$ for all $\sigma \in \Sigma$. Then X and ℓ^p are not linearly homeomorphic via a matrix.

Theorem 7. Let X be a nonwedge FK space with AK such that $\exists x \in X \setminus \ell^p$ with $x_\sigma \in X$ for all $\sigma \in \Sigma$. Then $\dim_* X \nleq \dim_* \ell^p$.

References

Received September 8, 1975 and in revised form March 30, 1976.

VILLANOVA UNIVERSITY
Walter Allegretto, *Nonoscillation theory of elliptic equations of order $2n$* 1
Bruce Allem Anderson, *Sequencings and starters* .. 17
Friedrich-Wilhelm Bauer, *A shape theory with singular homology* 25
John Kelly Beem, *Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature* .. 67
Dennis K. Burke and Ernest A. Michael, *On certain point-countable covers* .. 79
Robert Chen, *A generalization of a theorem of Chacon* 93
Francis H. Clarke, *On the inverse function theorem* 97
James Bryan Collier, *The dual of a space with the Radon-Nikodým property* ... 103
John E. Cruthirds, *Infinite Galois theory for commutative rings* 107
Artatrana Dash, *Joint essential spectra* .. 119
Robert M. DeVos, *Subsequences and rearrangements of sequences in FK spaces* ... 129
Geoffrey Fox and Pedro Morales, *Non-Hausdorff multifunction generalization of the Kelley-Morse Ascoli theorem* .. 137
Richard Joseph Fleming, Jerome A. Goldstein and James E. Jamison, *One parameter groups of isometries on certain Banach spaces* 145
Robert David Gulliver, II, *Finiteness of the ramified set for branched immersions of surfaces* ... 153
Kenneth Hardy and István Juhász, *Normality and the weak cb property* 167
C. A. Hayes, *Derivation of the integrals of $L^{(q)}$-functions* 173
Frederic Timothy Howard, *Roots of the Euler polynomials* 181
Robert Edward Jamison, II, Richard O’Brien and Peter Drummond Taylor, *On embedding a compact convex set into a locally convex topological vector space* ... 193
Andrew Lelek, *An example of a simple triod with surjective span smaller than span* ... 207
Janet E. Mills, *Certain congruences on orthodox semigroups* 217
John Robert Quine, Jr., *Homotopies and intersection sequences* 233
Nambury Sitarama Raju, *Periodic Jacobi-Perron algorithms and fundamental units* ... 241
Herbert Silverman, *Convexity theorems for subclasses of univalent functions* ... 253
Charles Frederick Wells, *Centralizers of transitive semigroup actions and endomorphisms of trees* ... 265
Volker Wrobel, *Spectral approximation theorems in locally convex spaces* 273
Hidenobu Yoshida, *On value distribution of functions meromorphic in the whole plane* ... 283