NON-HAUSDORFF MULTIFUNCTION GENERALIZATION OF
THE KELLEY-MORSE ASCOLI THEOREM

GEOFFREY FOX AND PEDRO MORALES
The paper generalizes the Kelley-Morse theorem to continuous point-compact multifunction context. The generalization, which is non-Hausdorff, contains the Ascoli theorem for continuous functions on a k_3-space by the authors and the known multifunction Ascoli theorems of Mancuso and of Smithson.

1. Introduction. The Kelley-Morse theorem [3, p. 236] is central among the topological Ascoli theorems for continuous functions on a k-space. It generalizes to the k_3-space theorem of [1], which contains all known Ascoli theorems for k-spaces or k_3-spaces.

Obviously a multifunction generalization depends on a multifunction extension of "even continuity". One such extension is that of Lin and Rose [5], but this was not applied in Kelley-Morse context. Another which was so applied [7, p. 24] is two-fold and leads to a two-fold multifunction Kelley-Morse theorem which, however, does not contain the Mancuso theorem [6, p. 470], nor the Smithson theorem [9, p. 259]. This paper gives a natural multifunction extension of the definition and leads to a multifunction theorem containing all the above-mentioned theorems.

2. Tychonoff sets. Let X and Y be nonempty sets. A multifunction is a point to set correspondence $f: X \to Y$ such that, for all $x \in X$, fx is a nonempty subset of Y. For $A \subseteq X$, $B \subseteq Y$ it is customary to write $f(A) = \bigcup_{x \in A} fx$, $f^*(B) = \{x: x \in X$ and $fx \cap B \neq \emptyset\}$ and $f^+(B) = \{x: x \in X$ and $fx \subseteq B\}$. If Y is a topological space, a multifunction $f: X \to Y$ is point-compact if fx is compact for all $x \in X$.

Let $\{Y_x\}_{x \in X}$ be a family of nonempty sets. The m-product $P\{Y_x: x \in X\}$ of the Y_x is the set of all multifunctions $f: X \to \bigcup_{x \in X} Y_x$ such that $fx \subseteq Y_x$ for all $x \in X$. In the case $Y_x = Y$ for all $x \in X$, the m-product of the Y_x, denoted Y^{mx}, is the set of all multifunctions on X to Y. In particular, if Y is a topological space, the symbol (Y^{mx}), will denote the set of all point-compact members of Y^{mx}. For $x \in X$, the x-projection $pr_x: P\{Y_x: x \in X\} \to Y_x$ is the multifunction defined by $pr_x f = fx$. If the Y_x are topological spaces, the pointwise topology τ_p on $P\{Y_x: x \in X\}$ is defined to be the topology having as open subbase the sets of the forms $pr_i(U_i)$, $pr_i(U_i)$, where U_i is open in Y_x, $x \in X$.

For $F \subseteq Y^{mx}$, $x \in X$, we write $F[x] = \bigcup_{f \in F} fx$. Let Y be a topological space. A subset F of Y^{mx} is pointwise bounded if $F[x]$ has compact...
A subset T of Y^{mx} is Tychonoff if, for every pointwise bounded subset F of T, $T \cap P\{F[x] : x \in X\}$ is τ_p-compact. The following sets are Tychonoff:

1. Y^X, by the classical Tychonoff theorem.
2. Y^{mx}, by the theorem of Lin [4, p. 400].
3. The set of all point-closed members of Y^{mx}, by Corollary 7.5 of [7, p. 17].
4. $(Y^{mx})_b$, by Corollary 7.6 of [7, p. 17].

Lemma 2.1. If F is a pointwise bounded subset of a Tychonoff set T, then the τ_p-closure of F in T is compact.

Proof. Let \bar{F} denote the τ_p-closure of F in T. Since $T \cap P\{F[x] : x \in X\}$ is a τ_p-compact subset of T, it suffices to show that $\bar{F} \subseteq P\{F[x] : x \in X\}$. But this follows from Lemma 7.7 of [7, p. 17].

3. Even continuity. Let X and Y be topological spaces. A multifunction $f : X \to Y$ is lower semi-continuous (upper semi-continuous) if $f^-(U)(f^+(U))$ is open in X whenever U is open in Y. If f is both lower semi-continuous and upper semi-continuous it is called continuous. Henceforth, the set of all continuous multifunctions on X to Y will be denoted $\mathcal{C}(X, Y)$. The multifunction $(f, x) \mapsto fx$ on $Y^{mx} \times X$ to Y, or any restriction, will be denoted by the symbol ω. Let $F \subseteq Y^{mx}$. A topology τ on F is said to be jointly continuous if $\omega : (F, \tau) \times X \to Y$ is continuous.

A subset F of Y^{mx} is evenly continuous if, whenever $x \in X$, K is a compact subset of Y and V is a neighborhood of K, there exist neighborhoods U, W of x, respectively, such that

(a) $f \in F$ and $fx \cap W \neq \emptyset$ imply $U \subseteq f^-(V)$, and

(b) $f \in F$ and $fx \subseteq W$ imply $U \subseteq f^+(V)$.

This extends the original Kelley-Morse definition [3, p. 235] by the substitution of compact subsets of Y for points of Y. It is easily verified that every member of an evenly continuous subset of Y^{mx} is lower semi-continuous. Moreover, every member of an evenly continuous subset of $(Y^{mx})_b$ is also upper semi-continuous, hence continuous.

Lemma 3.1. Let Y be a regular space. If F is an evenly continuous subset of Y^{mx}, then the τ_p-closure of F in Y^{mx} is evenly continuous.

Proof. Let \bar{F} denote the τ_p-closure of F in Y^{mx}. Let $x \in X$, let K be a compact subset of Y and let V be a closed neighborhood of K. There exist open neighborhoods U, W of x, K, respectively, such that, for all $f \in F$, $fx \cap W \neq \emptyset$ implies $U \subseteq f^-(V)$ and $fx \subseteq W$ implies $U \subseteq f^+(V)$. Let $g \in \bar{F}$ be such that $gx \cap W \neq \emptyset$. Let $\{g_\alpha\}$ be a net in F
which is τ_p-convergent to g. Since $\{h: h \in Y^{mx} \text{ and } hx \cap W \neq \emptyset\}$ is a τ_p-neighborhood of g, $g_x \cap W \neq \emptyset$ eventually, so $U \subseteq g^*_a(V)$ eventually. Suppose that $U \not\subseteq g^*(V)$. Then, for some $u \in U$, $gu \subseteq Y - V$, so $g_au \subseteq Y - V$ eventually, which is a contradiction.

Now let $g \in F$ be such that $gx \subseteq W$. Let $\{g_n\}$ be a net in F which is τ_p-convergent to g. Since $\{h: h \in Y^{mx} \text{ and } hx \cap W \neq \emptyset\}$ is a τ_p-neighborhood of g, $g_{an} \subseteq W$ eventually, so $U \subseteq g^*_a(V)$ eventually. Suppose that $U \not\subseteq g^*(V)$. Then, for some $u \in U$, $gu \cap (Y - V) \neq \emptyset$, so $g_au \cap (Y - V) \neq \emptyset$ eventually, which is a contradiction.

Lemma 3.2. If F is an evenly continuous subset of $(Y^{mx})_0$, then τ_p on F is jointly continuous.

Proof. Let $\omega: (F, \tau_p) \times X \rightarrow Y$. Suppose that $(f, x) \in \omega^-(G)$, where G is open in Y. Choose $y \in fx \cap G$. There are neighborhoods U, W of x, y, respectively, such that $g \in F$ and $gx \cap W \neq \emptyset$ imply $U \subseteq g^*(G)$. Then $\{h: h \in F \text{ and } hx \cap W \neq \emptyset\} \times U$ is a neighborhood of (f, x) which is contained in $\omega^-(G)$.

Now suppose that $(f, x) \in \omega^+(G)$, where G is open in Y. There are neighborhoods U, W of x, fx, respectively, such that $g \in F$ and $gx \subseteq W$ imply $U \subseteq g^*(G)$. Then $\{h: h \in F \text{ and } hx \subseteq W\} \times U$ is a neighborhood of (f, x) which is contained in $\omega^+(G)$.

The following lemma generalizes an implicit lemma of Noble [8], stated explicitly as Lemma 1.4 in [7, p. 7]:

Lemma 3.3. Let $f \in \mathcal{C}(X \times Y, Z)$. If X is compact and Z is regular, then the set $F = \{f(x, \cdot): x \in X\}$ is evenly continuous.

Proof. Let $y \in Y$, let K be a compact subset of Z and let V be an open neighborhood of K. Let W be a closed neighborhood of K which is contained in V. We construct a neighborhood U of y as follows: Since $f(\cdot, y)$ is continuous, $K_1 = f(\cdot, y)^-(W)$ and $K_2 = f(\cdot, y)^+(W)$ are closed in X, therefore compact. Thus the second projections $\text{pr}_2: K_1 \times Y \rightarrow Y$, $\text{pr}_2: K_2 \times Y \rightarrow Y$ are closed, so that

$$U_1 = Y - \text{pr}_2[(K_1 \times Y) - f^-(V)], \quad U_2 = Y - \text{pr}_2[(K_2 \times Y) - f^+(V)]$$

are open in Y. Because $K_1 \subseteq f(\cdot, y)^-(V)$, $K_2 \subseteq f(\cdot, y)^+(V)$, we have $K_1 \times \{y\} \subseteq f^-(V)$, $K_2 \times \{y\} \subseteq f^+(V)$. Hence $y \not\in \text{pr}_2[(K_1 \times Y) - f^-(V)]$, $y \not\in \text{pr}_2[(K_2 \times Y) - f^+(V)]$, that is, $y \in U_1 \cap U_2 = U$.

We show that the neighborhoods U, W of y, K, respectively, satisfy the required implications: Let $g \in F$ be such that $gy \cap W \neq \emptyset$, so that $g = f(x, \cdot)$ for some $x \in K_1$. Let $u \in U$, so that $u \not\in \text{pr}_2[(K_1 \times Y) - f^-(V)]$. The proof then follows.
Then \((x, y) \in f^+(V)\), that is, \(g \cap V \neq \emptyset\). Now let \(g \in F\) be such that \(gy \subseteq W\), so that \(g = f(x, \cdot)\) for some \(x \in X\). Let \(u \in U\), so that \(u \notin \text{pr}_1((K \times Y) - f^+(V))\). Then \((x, u) \in f^+(V)\), that is, \(gu \subseteq V\).

Let \(X\) and \(Y\) be topological spaces. The **compact open topology** \(\tau_c\) on \(Y^mX\) is defined to be the topology having as open subbase the sets of the forms \(\{f : f(K) \subseteq U\}\), \(\{f : fx \cap U \neq \emptyset\text{ for all }x \in K\}\), where \(K\) is a compact subset of \(X\) and \(U\) is open in \(Y\). Obviously, \(\tau_c\) is larger than \(\tau_p\).

A subset \(F\) of \(Y^mX\) **satisfies the condition** \((G)\) if, for every \(\tau_c\)-closed subset \(F_0\) of \(F\), \(\bigcap_{f \in F_0} f^{-}(U)\) and \(\bigcap_{f \in F_0} f^+(U)\) are open in \(X\) whenever \(U\) is open in \(Y\). The following two lemmas relate this condition to even continuity:

Lemma 3.4. If \(Y\) is regular, then every subset of \(Y^mX\) satisfying the condition \((G)\) is evenly continuous.

Proof. Let \(F\) be a subset of \(Y^mX\) which satisfies the condition \((G)\). Let \(x \in X\), let \(K\) be a compact subset of \(Y\) and let \(V\) be an open neighborhood of \(K\). Let \(W\) be an open neighborhood of \(K\) such that \(K \subseteq W \subseteq \overline{W} \subseteq V\). Since \(F_1 = \{h : h \in F\text{ and }hx \cap \overline{W} \neq \emptyset\}\), \(F_2 = \{h : h \in F\text{ and }hx \subseteq \overline{W}\}\) are \(\tau_c\)-closed in \(F\), \(U_1 = \bigcap_{h \in F_1} h^{-}(V)\) and \(U_2 = \bigcap_{h \in F_2} h^+(V)\) are open in \(X\). Then \(U = U_1 \cap U_2\) is an open neighborhood of \(x\).

Let \(f \in F\) be such that \(fx \cap W \neq \emptyset\). Then \(f \in F_1\), so that \(U \subseteq U_1 \subseteq f^{-}(V)\). Now let \(f \in F\) be such that \(fx \subseteq W\). Then \(f \in F_2\), so that \(U \subseteq U_2 \subseteq f^+(V)\).

Lemma 3.5. Every \(\tau_c\)-compact evenly continuous subset of \((Y^mX)_0\) satisfies the condition \((G)\).

Proof. Let \(F\) be a \(\tau_c\)-compact evenly continuous subset of \((Y^mX)_0\). Since \(F\) is \(\tau_p\)-compact, it suffices, by Corollary 10.6 of [7, p. 23], to show that \(\tau_p\) on \(F\) is jointly continuous. For this we apply Lemma 3.2.

Let \(X\) be a topological space and let \(Y = (Y, \mathcal{U})\) be a uniform space. A subset \(F\) of \(Y^mX\) is **equicontinuous** if, for \((x, U) \in X \times \mathcal{U}\), there exists a neighborhood \(V\) of \(x\) such that, for all \(f \in F\), \(f(V) \subseteq U[f_x]\) and \(fz \cap U[y] \neq \emptyset\) whenever \((z, y) \in V \times fx\). The following two lemmas relate equicontinuity to even continuity:

Lemma 3.6. If \(Y = (Y, \mathcal{U})\) is a uniform space, then every equicontinuous subset of \(Y^mX\) is evenly continuous.

Proof. Let \(F\) be an equicontinuous subset of \(Y^mX\). Let \(x \in X\), let \(K\) be a compact subset of \(Y\) and let \(U\) be a symmetric member of \(\mathcal{U}\). There is a neighborhood \(V\) of \(x\) such that, for all \(f \in F\), \(f(V) \subseteq f_x \cap W \neq \emptyset\) whenever \((z, y) \in V \times fx\).
LEMMA 3.7. If Y is a uniform space, then every evenly continuous pointwise bounded subset of $(Y^m)^0_0$ is equicontinuous.

Proof. Let F be an evenly continuous pointwise bounded subset of $(Y^m)^0_0$. Let \bar{F} denote the τ_p-closure of F in $(Y^m)^0_0$. By the Lemmas 3.1, 3.2, τ_p on \bar{F} is jointly continuous. Since $(Y^m)^0_0$ is a Tychonoff set, by Lemma 2.1, \bar{F} is τ_p-compact. Then, by the Lemma 8 of Smithson [9, p. 258], \bar{F} is equicontinuous.

4. Ascoli theorem. Let $X = (X, \tau)$ be a topological space. The k-extension of τ is the family $k(\tau)$ of all subsets U of X such that $U \cap K$ is open in K for every compact subset K of X. It is clear that $k(\tau)$ is a topology on X which is larger than τ. The topological space $kX = (X, k(\tau))$ is called the k-extension of X. A topological space X is called a k-space if $kX = X$. For an arbitrary topological space X, $kkX = kX$, so kX is a k-space. Familiar examples of k-spaces are the locally compact spaces and the spaces satisfying the first countability axiom.

Let X and Y be topological spaces. A function $f: X \to Y$ is called k-continuous if its restriction to each compact subset of X is continuous. Henceforth, the set of all continuous (k-continuous) functions on X to Y will be denoted $C(X, Y)$ ($C_k(X, Y)$). It can be shown that a topological space X is a k-space if and only if $C_k(X, Y) = C(X, Y)$ for every topological space Y [7, p. 9]. A topological space X is a k_3-space if $C_k(X, Y) = C(X, Y)$ for every regular space Y. Thus a k-space is a k_3-space but not conversely. In fact, the product of uncountably many copies of the real line, which is not a k-space, is a k_3-space. We write $C_0(X, Y) = (Y^m)^0_0 \cap C(X, Y)$.

We note that if Y is regular, then $(C_0(X, Y), \tau_c)$ is a regular space for every topological space X.

In a regular space there was introduced in [7, p. 11] the following equivalence relation R: xRy if every open neighborhood of x contains y. For a subset F of such a space, F^* denotes its R-saturation, that is, the smallest R-saturated set containing F.

THEOREM 4.1. Let X, Y be topological spaces, let T be a Tychonoff subset of $(Y^m)^0_0$ and let $F \subseteq (T \cap C(X, Y), \tau_c)$. If Y is regular, the following conditions are sufficient for the compactness of F: $U[fx]$ and $fx \subseteq U[fz]$ for all $z \in V$. Write $W = U[K]$. Let $f \in F$ be such that $fx \cap W \neq \emptyset$. If $z \in V$ then $fx \subseteq U[fz]$, so that $U[fz] \cap W \neq \emptyset$, therefore $V \subseteq f(U^2[K])$. Now let $f \in F$ be such that $fx \subseteq W$. Then $f(V) \subseteq U[fx] \subseteq U^2[K]$, that is, $V \subseteq f(U^2[K])$.

(a) F^* is closed in $T \cap \mathcal{C}(X, Y)$.
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are necessary for the compactness of F.

Proof. Sufficiency. Let \bar{F} denote the τ_p-closure of F in T. Since $T \subseteq (Y^{=X})_p$, (c) implies, by Lemmas 3.1 and 3.2, that $\omega: (\bar{F}, \tau_p) \times X \rightarrow Y$ is continuous, and, in particular, that $\bar{F} \subseteq \mathcal{C}(X, Y)$. By Lemma 8.1 of [7, p. 18], $\omega: (\bar{F}, \tau_p) \rightarrow (\mathcal{C}(X, Y), \tau_c)$ is continuous. Since T is a Tychonoff set, (b) implies, by Lemma 2.1, that \bar{F} is τ_p-compact, so $\bar{\omega}(\bar{F}) = \bar{F}$ is a τ_c-compact subset of $T \cap \mathcal{C}(X, Y)$. But (a) implies $F \subseteq \bar{F} \subseteq F^*$, so, by Theorem 4.1 (b) of [7, p. 11], F is τ_c-compact.

Necessity. By Theorem 4.1 (c) of [7, p. 11], F^* is closed in $(T \cap \mathcal{C}(X, Y), \tau_c)$. It is clear that F is pointwise bounded. Since X is a k-space, by Theorem 9.4 of [7, p. 21], $\omega: (F, \tau_c) \times X \rightarrow Y$ is continuous. So by Lemma 3.3, $F = \{\omega(f, \cdot): f \in F\}$ is evenly continuous.

Corollary 1. Let $F \subseteq (\mathcal{C}_0(X, Y), \tau_c)$. If Y is regular, the following conditions are sufficient for the compactness of F:
(a) F^* is closed in $\mathcal{C}_0(X, Y)$,
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are necessary for the compactness of F.

Corollary 2. Let $F \subseteq (C(X, Y), \tau_c)$. If Y is regular, the following conditions are sufficient for the compactness of F:
(a) F^* is closed in $C(X, Y)$,
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k-space and Y is regular, then the conditions (a), (b) and (c) are necessary for the compactness of F.

Corollary 3. If Y is regular, a subset F of $(C_1(X, Y), \tau_c)$ is compact if and only if
(a) F^* is closed in $C_1(X, Y)$,
(b) F is pointwise bounded, and
(c) F is evenly continuous on compacta.

Proof. For the sufficiency, we note that $C_1(X, Y) = C(kX, Y)$ and apply the Lemma 3.4 of [7, p. 11]. For the necessity, we consider F as a subset of $(C(kX, Y), \tau_c)$ and deduce from Corollary 2 the conditions (a),
(b) and the even continuity of F. Then it is clear that F, considered as a subset of $(C_k(X, Y), \tau_c)$, is evenly continuous on compacta.

Corollary 4. ([1, p. 635]). Let $F \subseteq (C(X, Y), \tau_c)$. If Y is regular, the following conditions are sufficient for the compactness of F:

(a) F is closed in $C(X, Y)$,
(b) F is pointwise bounded, and
(c) F is evenly continuous.

If X is a k_γ-space and Y is regular, then the conditions (a), (b) and (c) are necessary for the compactness of F.

Proof. For the necessity, we note that, since Y is regular, $C_k(X, Y) = C(X, Y)$; then we apply Corollary 3 and Lemma 3.4 of [7, p. 11].

Remarks. (1) By Lemmas 3.4, 3.5, the Corollary 1 is equivalent to the Theorem 10.10 of [7, pp. 23–24], which contains the Ascoli theorem of Gale [2, p. 304] and the multifunction Ascoli theorem of Mancuso [6, p. 470].

(2) Let Y be a uniform space. By Lemmas 3.6, 3.7 and Theorem 12.2 of [7, p. 28], the Corollary 1 in this context is equivalent to the Theorem 12.8 of [7, p. 31], which contains the multifunction Ascoli theorem of Smithson [9, p. 259].

References

Received June 11, 1975.

Université de Montréal
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walter Allegretto</td>
<td>Nonoscillation theory of elliptic equations of order $2n$</td>
<td>1</td>
</tr>
<tr>
<td>Bruce Allem Anderson</td>
<td>Sequencings and starters</td>
<td>17</td>
</tr>
<tr>
<td>Friedrich-Wilhelm Bauer</td>
<td>A shape theory with singular homology</td>
<td>25</td>
</tr>
<tr>
<td>John Kelly Beem</td>
<td>Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature</td>
<td>67</td>
</tr>
<tr>
<td>Dennis K. Burke and Ernest A. Michael</td>
<td>On certain point-countable covers</td>
<td>79</td>
</tr>
<tr>
<td>Robert Chen</td>
<td>A generalization of a theorem of Chacon</td>
<td>93</td>
</tr>
<tr>
<td>Francis H. Clarke</td>
<td>On the inverse function theorem</td>
<td>97</td>
</tr>
<tr>
<td>James Bryan Collier</td>
<td>The dual of a space with the Radon-Nikodým property</td>
<td>103</td>
</tr>
<tr>
<td>John E. Cruthirds</td>
<td>Infinite Galois theory for commutative rings</td>
<td>107</td>
</tr>
<tr>
<td>Artatrana Dash</td>
<td>Joint essential spectra</td>
<td>119</td>
</tr>
<tr>
<td>Robert M. DeVos</td>
<td>Subsequences and rearrangements of sequences in FK spaces</td>
<td>129</td>
</tr>
<tr>
<td>Geoffrey Fox and Pedro Morales</td>
<td>Non-Hausdorff multifunction generalization of the Kelley-Morse Ascoli theorem</td>
<td>137</td>
</tr>
<tr>
<td>Richard Joseph Fleming, Jerome A. Goldstein and James E. Jamison</td>
<td>One parameter groups of isometries on certain Banach spaces</td>
<td>145</td>
</tr>
<tr>
<td>Robert David Gulliver, II</td>
<td>Finiteness of the ramified set for branched immersions of surfaces</td>
<td>153</td>
</tr>
<tr>
<td>Kenneth Hardy and István Juhász</td>
<td>Normality and the weak cb property</td>
<td>167</td>
</tr>
<tr>
<td>C. A. Hayes</td>
<td>Derivation of the integrals of $L^{(q)}$-functions</td>
<td>173</td>
</tr>
<tr>
<td>Frederic Timothy Howard</td>
<td>Roots of the Euler polynomials</td>
<td>181</td>
</tr>
<tr>
<td>Robert Edward Jamison, II, Richard O’Brien and Peter Drummond Taylor</td>
<td>On embedding a compact convex set into a locally convex topological vector space</td>
<td>193</td>
</tr>
<tr>
<td>Andrew Lelek</td>
<td>An example of a simple triod with surjective span smaller than span</td>
<td>207</td>
</tr>
<tr>
<td>Janet E. Mills</td>
<td>Certain congruences on orthodox semigroups</td>
<td>217</td>
</tr>
<tr>
<td>Donald J. Newman and A. R. Reddy</td>
<td>Rational approximation of e^{-x} on the positive real axis</td>
<td>227</td>
</tr>
<tr>
<td>John Robert Quine, Jr.</td>
<td>Homotopies and intersection sequences</td>
<td>233</td>
</tr>
<tr>
<td>Nambury Sitarama Raju</td>
<td>Periodic Jacobi-Perron algorithms and fundamental units</td>
<td>241</td>
</tr>
<tr>
<td>Herbert Silverman</td>
<td>Convexity theorems for subclasses of univalent functions</td>
<td>253</td>
</tr>
<tr>
<td>Charles Frederick Wells</td>
<td>Centralizers of transitive semigroup actions and endomorphisms of trees</td>
<td>265</td>
</tr>
<tr>
<td>Volker Wrobel</td>
<td>Spectral approximation theorems in locally convex spaces</td>
<td>273</td>
</tr>
<tr>
<td>Hidenobu Yoshida</td>
<td>On value distribution of functions meromorphic in the whole plane</td>
<td>283</td>
</tr>
</tbody>
</table>