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ROOTS OF THE EULER POLYNOMIALS
F. T. HowarD

In this paper we prove some new theorems about the real
and complex roots of the Euler polynomials. For each n we show
how the real roots of E, (x) are distributed in the closed interval
[1, 3]. We also shew how the real roots of E,(x) are distributed
in the arbitrary interval [m, m + 1] for n sufficiently large.
Finally, we prove that if a and b are nonzero rational numbers
and c is a square-free integer, then E,(x) has no roots of the
form aVe, c#1, or a+ bV, even, or a + bi, a and b
integers.

1. Introduction. The Euler polynomial E,(x) degree n can
be defined as the unique polynomial satisfying

1.1 E.(x+ 1)+ E, (x)=2x" (n=0).

These polynomials have been extensively studied; see [3, Chapter VI]
and [4, Chapter 1I] for example. The first fifteen Euler polynomials are
listed in [5, p. 477].

In this paper we are primarily concerned with the real roots of E, (x),
though we also prove a few results about the complex roots. It is well
known that if n is even, n >0, then the only real roots of E,(x) in the
closed interval [0, 1] are 0 and 1, while if n is odd the only real root in
[0, 1] is 1/2. Brillhart [1] has pointed out that these are the only complex
roots in the “‘critical strip” of all complex numbers x +iy, 0=x =1. In
the same paper Brillhart proved that Es(x) is the only Euler polynomial
with a multiple root and that the Euler polynomials have no rational
roots other than 0, 1, 1/2.

The main results in this paper are:

(1) On the closed interval [1, 3] we show how the real roots of
E,(x) are distributed for each n.

(2) On eachinterval [m, m + 1}, m >0, we show how the real roots
of E,(x) are distributed for n sufficiently large.

(3) Let a and b be nonzero rational numbers and let ¢ and d be
square-free integers. The polynomial E,(x) has no roots of the form
aVe, (c#1), a+bVec (c even), aVd+bVeci (c and d of different
parity); or a + bi (a, b integers).

It is pointed out that results similar to (3) are also true for the
Bernoulli polynomials.
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182 F. T. HOWARD

2. Preliminaries. Throughout this paper we use the notation
of Norlund [4]. The following are well-known identities:

2.1) E(x)=nE,_(x) (n>0),
22) E,(1-x)=(-1)E.(x),

23) E() =3 (1) 2rcxr
where

C_, = 2__(.1_;&) B..

In formula (2.3), B, is the s'th Bernoulli number (see [4, pp. 17-23]). If s
isodd, s >1,then B, =0. Ifsiseven, s >0, then the denominator of B,
is even and square-free.

The Euler polynomials are related to, and often studied in conjunc-
tion with, the Bernoulli polynomials B,(x) [3, Chapter V], [4, Chapter
I]. The Euler and Bernoulli polynomials are related by

2.4) nE, (x)=2" [B,. (x—;il) _ B, (g)] .

The numbers E,, defined by
(2.5) E» =2*E, (1/2)
are known as the Euler numbers and have the following properties:

(2.6) (= 1)*Ey >0,
27 (= 1) @m)* ' Ea = 247K Y (~ 1y @n+ 1)

The first sixty Euler numbers, as well as the first sixty Bernoulli numbers
and the first fifteen Bernoulli polynomials are listed in [5, pp. 477-479].

From (2.7) and inequalities proved in [3, pp. 294-295, 302], it follows
that for k >0

(2.8) 2k — 1)1/4%*71 < | Ey,(0)] <22k — 1)1/3%",
(2.9) (2k)!/2* < |Ey|,
(2.10) Q7| Ex | > 16(2k) 2k — 1)| Ez s
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Finally, we shall use the following formulas which are derived by
expanding E,(x) into a series about x = a and then using (2.3).

(2.11)  E,(a + bV d)/(2k)!
k 2r
=> > d*b* ¥arC,[2* 2k — 2r)! s!(2r — s)!
r=0 s=0
. k=1 2r+1
+VdD D dErip* g G2 2k — 2r — 1) s!2r +1—5)!
r s=0

(2.12) Ey.i(a+bVd)/ @2k +1)!

k  2r+1
=> > d b C 2 2k — 2r)s! 2r+1—5)!
r=0 s=0

+VAdY D d b e C 20 2k +1-2r)! s 2r — 5)!
s=0

M-

0

The numbers C; in (2.11) and (2.12) are defined by (2.3).

3. Distribution of the real roots of E,(x). Inkeri [2] has
shown how the positive real roots of the Bernoulli polynomials are
distributed outside of the interval [0, 1]. To the author’s knowledge this
has not been attempted for the Euler polynomials. By (2.2), if we restrict
our attention to the positive real roots we can determine how all the
roots are distributed. Thus we shall only consider the positive real roots
and we shall use (1.1), which tells us that if E,(a) <0 then E,(1+ a)>0.

First we note that if m is a positive integer we have, by (1.1),

G1) E(m)=(~IVE0)+2 % (~1)(n—1-kY,
(32) E,(m+12)=(~1VE(U2)+2 3 (=1 (m— k- 172

Since E,.(0)=0 if n is even and E,(1/2)=0 if n is odd, we see that

(3.3) E.(m)>0 if n is even,
(3.4) E.(m +1/2)>0 if n is odd.

Furthermore, by (2.3) and (3.1),

(3.5) Euyn(m)>0 if m is odd,



184 F. T. HOWARD
(3.6) Eu(m)>0 if m is even.
By (2.6) and (3.2), we see that

3.7) Ey.(m+1/2)>0 if m is odd,
(3.8) E,.o(m +1/2)>0 if m is even.

THEOREM 3.1. Let k >0. Then E, (x) has exactly one real root a;
in the open interval (1,2) and 3/2 < a, <2;

E...(x) has exactly one real root a, in (1,2) and 3/2<a,<2;

E..(x) has no real roots in (1,2);

E, .:(x) has exactly one real root a; in (1,2) and 1< a;<3/2.

Proof. The proof for E, (x) is due to Brillhart [1]. By (3.1), (3.3)
and (3.8), we know that E,(1)=0, E«(2)=2, E«(3/2)<0. Further-
more, since E,;_,(x)<0 for 0 <x <1, we know E  ,(x)>0for1<x <
2. Thus, by (2.1), E4(x) is concave up for 1 < x <2 and has exactly one
real root «, in (1,2), 3/2< a,<2.

Now the theorem is true for Es(x)=(x —1/2) (x*— x — 1)}, so we
examine E, ., (x) for k =2. We know that E,;,,(1)>0, E,.,(3/2)>0 and
Eu(2)=2+ Ey.1(0). Since by (2.3) E..1(0)<0 and since Ey0)=
—15.5, we see from (2.8) that E,..,(2) <0. We know there is exactly one
number «, in (1,2) such that E,.,(«;) = 0. Hence E,.,(x) has exactly one
real root a, in (1,2) and a, > 3/2.

We know E.,(x)>0for1 <x <2since Ey.(x)<0for0<x <1.

We know E.5(1) <0, Ey.5(3/2) >0, Eu:3(2)>0. Also Ej.s(x) >0
for 1 <x <2. Hence E,.s(x) has exactly one real root «; in (1,2) and
a; < 3/2.

It is clear from this proof that a; < a, < a;.

THEOREM 3.2. Let k = 4. Then E, .(x) has exactly one real root
a1 in the closed interval [2,3] and 2 < a1 <5/2;

E...»(x) has exactly two real roots af).,, a@ls, in [2,3] and af}., <
512 <afio;

E...+«(x) has exactly one real root a.; in [2,3] and 5/2 < au.s;

E.i(x)>0 for 2=x =3.
Furthermore, o, < a0 <52 < ays < a@es.

Proof. We know E. .,(2)<0, E4.(5/2)>0, E4..(3)>0. By
Theorem 3.1 we know that E,, (xJ <0 for 1 < x < a, and thus E j.,(x) >
0for2<x <1+ a,. Since E,;.,(x)<0 for ;< x =2 and since a, < a,
we see that E,;,(x)>0 for 1 + @, < x = 3. Thus E,.,(x) has exactly one
real Toot @y, in [2,3]) and 2 < @y, < 5/2.

We know that E,,,(2) >0, E.2(3)>0 and we now show that for
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k =3, E,..(5/2) <0. We shall use (3.2) and (2.10). We first observe that
— E,= 199,360,981 > 2-3" so E4(5/2) <0. Now by (2.10) we see that if
| Eo | >2(3* - 1) then | E,,.5| > 2(3**2 = 1). Thus we have E,;.,(5/2) <0 for
k = 3. Now since Ei.,(x)<0 for 2<x < ay., and Emz(x) >0 for
e < x <3, we see that E4k+2(x) has exactly two real roots a{{,,, «@,,in
[2 3] and a4k+2 <A < 5/2 < a4k+2

We know that E,.3(2)>0, Eu.3(5/2)>0, and we now show that
E..+(3)<0 for k =4. We shall use (3.1) and (2.8). We first note (by
using tables) that E 4(0) > 2%, so by (3.1) E4(3) < 0. For k =5 we use (2.8)
and we see that |E,;(0)|>2*, and it is clear that for k >5 we have
| Ei5(0)] >2***. Thus by (3.1) we see that E4M(3)< 0 for k=4, We
know that Eim(x) >0 for 2<x <afl., and for a@..<x <3, while
Ei:a(x) <0 for afl, <x < afl.,. It follows that E . .;(x) has exactly one
real root au.; in [2,3] and 5/2 < ay < a @

We know E..4(2)>0, Ey.(5/2)>0, E...(3)>0. Furthermore
Elis(x)>0for2 < x < ay.;and Ej . (x) <0 for ay,.; < x <3.It follows
that Ey.4(x)>0 for 2=x =3.

Since we assume k = 4 in Theorem 3.2, we now look at the Euler
polynomials E,(x)for2=x=3and n <17. If n =8, E,(x)isa positive
increasing function on [2,). With the aid of (2.1), (3.1)-(3.8) and an
electronic calculator, we have the following results for 9 = n = 16 and the
interval [2,3]:

Eq(x) has one real root @ < 5/2 and is a positive, increasing function
for x > a.

E,(x) has two real roots «, 8 such that a« < 8 <5/2 and Ei(x) is a
positive increasing function for x > .

E.(x)>0 and is a positive, increasing function for x >5/2.

E\,(x) is a positive, increasing function for x = 2.

E :(x) has one real root @ < 5/2 and is a positive, increasing function
for x > a.

E ,(x) has two real roots a, 8 such that a <5/2< 8 and E.(x) is a
positive increasing function for x > .

Es(x) has two real roots a, B such that 5/2<a < B and E;s(x) is a
positive, increasing function for x > S.

E(x)>0 and is a positive, increasing function for x > 3.

In examining the real roots of E,(x) on a fixed positive interval
[m, m +1] we shall use the fact that if n is sufficiently large, E,(0) and
E,(1/2) dominate (3.1) and (3.2).

THEOREM 3.3. If k > m?, then on the interval [m, m +1]:

E....(x) has exactly one real root ay.\(au., < m +1/2) if m is even.
E.:(x) has exactly one real root By, (m +1/2< B4k+1) if m is odd.

E....(x) has exactly two real roots afl.,, afi, (@l <m +1/2<
afl,) if mis even. Eg.(x)>0 if m is odd.
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E.s(x) has exactly one real root au.; (m+1/2<ay.) if m is
even. Eu.i(x) has exactly one real root By.; (m +1/2<By.) if m is
odd.

Eul(x)>0 if m is even. Ey.«(x) has exactly two real roots Bf..,

D (BRu<m+12<BR.) if m is odd. Furthermore, af),, < ay.i <
Ay < afls, and Bfillc)+4 < B3 < Bk < Bfazk)

Proof. We have proved the theorem for m =2. Assume the
theorem is true for any integer ¢ such that 2=t <m.

Case 1. m odd. We first examine the interval [m — 1, m]; since
k>m? it is clear that k—1>(m —1). Thus, by our induction
hypothesis, E, ;(x) has one real root a4 _; in [m —1,m] and a4 ;<
m —1/2. Also Ey5(m)>0, so Ey_s(m —1)<0. Hence E, _5(x)>0 for
m =x =1+ ay-;. Also by our induction hypothesis, E_,(x) has two
real roots a{l_,, afl-, in [m — 1, m] such that e}, < au,<m—12<
af),, and since E, ,(m)>0, E,_o(m —1)>0, we have E,,(x)>0 for
1+al,=x=1+af,. Also by our induction hypothesis, E,_,(x) has
one real root ay-, in [m — 1, m] such that m — 12 < ay-, < af)-,. Also,
Ey_i(m —=1)>0, so E;_,(m)<0. Thus E;_(x)>0 for 1+ ey =x =
m + 1. Furthermore, E,_,(x) is concave up for m = x =1+ a5 and is
increasing for 1+ af) ,=x =1+ a@., with e, <ay < au < afl.
Hence E.,,_,(x) has exactly one real root By, in [m, m + 1] and By, <
m+1/2. Also, Ey-i(x) <0 for m = x < Bu-i, Eu-i(x)>0 for By, <
x=m+1.

Now that we know the behavior of E,_i(x) on [m,m + 1] we are
ready to prove the theorem. We know that E;(m)>0, E,(m +1)>0
and by (3.2) and (2.9) we have E, (m +1/2)<0. This last inequality
follows from the fact that if k = m? then (4k)! > 2(4m)*, which can be
proved in a straightforward elementary way. Also Ey(x)<0form =x <
Bu-, and Ej(x)>0 for B, <x =m + 1. It follows that E, (x) has
exactly two real roots B¢}, B@ such that B < Bu-,<m +1/2<B{.

We now continue in the same way for E,.,(x). We have Ey.,(m)>
0, Esooi(m +1/2)>0 and Ey(m + 1)< 0. Also Ef(x)>0form =x <
B and BR<x=m+1, while Ej.,(x)<0 for B <x <BR. Thus
E..(x) has exactly one real root By, in [m,m +1] and m +1/2<
Bu<BR.  We know that Eg;..(m)>0, Eu.(m+1/2)>0,
E4k+2(m + 1) >0, Eikn(x) >0 for m = x < Bukss Eﬁmz(x) <0 for Ban <
x=m+1. Thus E;.(x)>0 for m=x=m+1. We know that
Eiuis(m) <0, Eyis(m +1/2)>0, Ejys(m +1)>0, Efs(x)>0 for m =
x = m + 1. Thus E,.5(x) has exactly one real root By.;in [m, m + 1] and
Bu<m+1/2. We  know  Eu.u(m)>0, Eu..(m+1/2)<0,
E4k+4(m + 1) >0, Ezllk+4(x) <O0form=x< Baks, Ezlzk+4(x)>0 for Baris <
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x =m +1. Hence E,..x) has exactly two real roots B{.,, BR. in
[m, m + 1] and «(411()+4 < Bdk+3< m + 1/2 < Bdk+1 < Bz(tzk)-

Case 2. m even. In this case we first prove the theorem for
E,..\(x), treating E,,,(x) in exactly the same way we treated Eg,(x)
when m was odd. The rest of the proof is entirely analogous to the
proof of Case 1. That is, we first examine Ey-,(x) and E,(x) on the
interval [m —1,m] and then show E,.,(x) satisfies the theorem on
[m, m +1]. Once we know the behavior of E.., on [m, m +1] we can
easily determine the behavior of E.x(x), Eu.s(x) and Eu..(x) on
[m,m +1].

It is known that E,(x) is a positive increasing function when x is
sufficiently large, i.e., x >x,. The next theorem gives us an upper
bound for x,.

THEOREM 3.4.  The polynomials E,, . (x), s =1,2,3,4, are positive
increasing functions on [k + 1, ).

Proof. We have seen that the theorem is true for k =1,2,3.
Assume it is true for all m < k, and suppose k is even. By (3.3) and (3.5)
we see that Ey,(k +1)>0for s = 1,2,4 and we are assuming E, (k + 1)
is a positive increasing function on [k,). Thus the only difficulty is to
show that E.;(k +1)>0. We shall use (3.1), inequality (2.8) and the
inequality

k-1
2(/( _ 1)4k+3< 2 2 (__ 1)r(k _ r)4k+3'
r=0
Thus if we can show that
(3.9) (4k +3) <[3(k — D]**, k=4,

then it follows that E,.;(k +1)>0. We prove (3.9) by first verifying the
case k =4 from tables and then observing that

Bk =2+ a)(k +6—a)< 3k — 3

fora =0,1,---,k +5,with k 5. The proof for k odd is very similar.

Theorem 3.4 can almost certainly be improved. In fact we conjecture
that the polynomials Ey,.,(x), 1 = s = 8, are positive, increasing functions
on [k +2,).

Because of (2.4), we see that if B,(x) has no root in (m,) then
E,_(x) has no root in (2m, »). Inkeri [2] has shown that if (M, M + 1) is
the largest interval in which B,(x) has real roots then M ~ n/2em as n
approaches «.
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4. Restrictions on the roots of E, (x). Inkeri [2] has shown
that the only possible rational roots of E,(x) are 0, 1, and 1/2. In this
section we show that other types of real and complex numbers cannot be
roots of En(x). We shall use the following lemma.

LEmmA 4.1. Suppose f(x) is a polynomial and

fla+bVe=(a+ - -+a)+Velb+ --+b),

where each a, and b, is a rational number and c is a square-free integer,
¢ >1 orc <0. Suppose there is a prime number p and positive integers j and
m such that either

(@) pma,#0 (modp) and pma, =0 (mod p) for h# |
or

(b) p"b#0(mod p) and p™b, =0 (mod p) for h# |.
Then we can conclude that f(a + bV c) # 0.

THEOREM 4.1. If a is a nonzero rational number and c is a nonzero
integer, c# 1, then E,(aV¢c) # 0.

Proof. Brillhart [1] has proved that E,(x) has no roots of the form
ai where « is real, so we may assume [¢|>1. By (2.3) we see that if n is
even the only nonzero term of E.(x) with an even exponent is
x". Dividing E,(aV ¢) into its rational and irrational parts, we see that
the rational part is a"c"?# 0. If n is odd, then x" is the only term of
E.(x) with an odd exponent and in this case the irrational part of

E.(aVc)#0.

Tueorem 4.2, If a and b are nonzero rational numbers and ¢ is an
even square - -free’ integer, then E,(a + bV ¢)# 0.

Proof. First suppose ¢ >0. If n=2k we use (2.11) to break
Ex(a+ bV )/Q2k)! into its rational and irrational parts. Let b’c =
b\/b2% a = a,/a,2?, g.c.d. (b, b)) =1 =g.c.d.(a, a,) (anegative value of g
or z indicates a power of 2 in the numerator). Note that ¢ must be
odd. We now use Lemma 4.1 with p = 2.

Case 1. z<0,q <0.From (2.11) we see that the maximum power
of 2 occurs in the denominator of the irrational part of

Ey(a+bVe)QRk) when r=k-1, s=2k-1.

To see this, first replace C, in (2.11) by 2°*' (1 —2°"")B,../(s + 1), keeping
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in mind that 2B,, =1(mod2) for m >0. Since q and z are both
negative, we see that (b°c)* " and a**"* contribute the smallest possible
power of 2 to the numerator when r = k — 1 and s = 2k — 1. Notice that
in this case the power of 2 dividing the product (s +1)! 2k —2r —1)!
(2r+1—ys)! in the denominator is maximum. This is the kind of
reasoning we use in the remaining two cases and in Theorems 4.3 and 4.4.

Case 2. z>0, 2z >q. The maximum power of 2 occurs in the
denominator of the rational part when r =k, s =0.

Case 3. q>0, g >2z. The maximum power of 2 occurs in the
denominator of the rational part when r =0, s =0.

When n = 2k + 1 we use the irrational part of (2.12) and the proof is
similar. If ¢ <0 we divide E,(a + bV ¢)/n! into its real and imaginary
parts and proceed as before.

THEOREM 4.3.  Suppose c is an odd square-free integer, c# 1, and
suppose a and b are rational numbers reduced to their lowest terms,
a=a/a, b=b/b, IfE,(a+bVc)=0 then a,= b, and g.c.d. (ac)=
1=g.c.d.(by ).

Proof. We shall use the notation p* ||y to mean p* divides y while
p**' does not divide y. First suppose n = 2k. Suppose p is a prime
z>0. We want to show that p*|/b, and g.c.d.
(as, ¢)=1. Suppose p?| b3c™'. We shall show that g = 2z, so p does not
divide c.

Case 1. 2z >gq. Using (2.11), we examine the rational (or real)
part of E, (a + b\/c)/(2k)' and we see that the maximum power of p in
the denominator occurs when r =k, s =0. Note that in this case if
p™ [|(2k)! then p™||(s + 1)! (2k —2r)! 2r —s)!. If p*||2k + 1, there are
some terms having the property that if p™ |[(2k + 1)! then p™ | (s + 1)!
(2k —2r)! (2r — s)! For terms of this type the highest power of p in the
denominator occurs when r = k, s = p* — 1, but this power of p is still less
than the power occurring when r =k, s = 0.

Case 2. q >2z. The maximum power of p occurs in the de-
nominator of the rational (or real) part of E(a+ bV c)/(2k)! when
r=0,s=0.

Thus, by Lemma 4.1, if p* | a,, z >0, we must have g.c.d. (a, c)=
1. Also we have shown that p®|b,, Now suppose p?|b.,c™' q>
0. We want to show p? | a..

Case 1. 2z >gq. The maximum power of p in the denominator of
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the rational (or real) part of Ey(a+ b\/z)/(Zk)! occurs when r =k,
s=0.

Case 2. q >2z. The maximum power of p in the denominator of
the rational (or real) part of E,(a+ bV ¢)/(2k)! occurs when r =0,
s =0. Thus by Lemma 4.1 we must have z=q. If n=2k+1 we
examine the irrational (or complex) part of Ey., (a + bV ¢)/(2k +1)! and
the proof is similar.

It is perhaps worth noting that E;(x) has the roots (1 +1/3)/2 and
E.(x) and Es(x) both have the roots (1 + \/5)/2 Thus there are polyno-
mials E,(x) having roots of the form a + bV¢, ¢ odd.

THEOREM 4.4. Ifa and b are nonzero integers then E, (a + bi) # 0.

Proof. Suppose Ey(a + bi)=0andlet a = a,2°, b = b2% a, and b,
odd. Again we use Lemma 4.1.

Case 1. q=0. We can assume z >0 by (2.2). Examining the real
part of E, (a + bi)/(2k)!, we see that the highest power of 2 occurs in the
denominator when r =0, s =0.

Case 2. q>0. Again, by (2.2), we can assume z >0. We look at
the imaginary part of E,, (a + bi)/(2k)! and the highest power of 2 occurs
in the denominator when r=k -1, s=2k~—~1. The proof for
E. .\(a + bi) is similar.

Using the same method, we can prove the following theorem.

THEOREM 4.5. If a and b are rational numbers and ¢ and d are
square - free positive integers of different parity, then E, (a Vd+bVei)#0.

It should be pointed out that Theorems 4.1, 4.2, 4.4 and 4.5 also hold
for the Bernoulli polynomials B,(x). The proofs are entirely analogous
to the proofs in this paper.

Of course many questions remain unanswered. We have not been
able to determine, for example, whether or not a + bi can be a root of
E,(x)if a and b are rational numbers. The writer also feels that Theorem
3.4 and the lower bound m? in Theorem 3.3 can both be improved. It
would also be interesting to know how the roots of E,(x) are distributed
in the last interval for which it has real roots.

5. Acknowledgement. 1 wish to thank the referee for his
helpful suggestions. In particular, he has pointed out that the paper
“Computation of tangent, Euler, and Bernoulli numbers” by D. E.
Knuth and T. J. Buckholtz (Mathematics of Computation, vol. 21, Oct.



ROOTS OF THE EULER POLYNOMIALS 191

1967, pp. 663-688) contains a more extensive listing of Euler and
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