Vol. 64, No. 2, 1976

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Special Issues
Submission Guidelines
Submission Form
Contacts
Author Index
To Appear
 
ISSN: 0030-8730
The extremal structure of locally compact convex sets

J. C. Hankins and Roy Martin Rakestraw

Vol. 64 (1976), No. 2, 413–418
Abstract

Let X be a locally compact closed convex subset of a locally convex Hausdorff topological linear space E. Then every exposed point of X is strongly exposed. The definitions of denting (strongly extreme) ray and strongly exposed ray are given for convex subsets of E. If X does not contain a line, then every extreme ray is strongly extreme and every exposed ray is strongly exposed. An example is given to show that the hypothesis that X be locally compact is necessary in both cases.

Mathematical Subject Classification 2000
Primary: 46A99
Milestones
Received: 4 August 1975
Revised: 3 November 1975
Published: 1 June 1976
Authors
J. C. Hankins
Roy Martin Rakestraw