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Osborn has shown that any quadratic algebra over a field of
characteristic not two can be decomposed into a copy of the field
and a skew-commutative algebra with a bilinear form. For any
nonassociative algebra G over a field of characteristic not two,
Albert and Oehmke have defined an algebra over the same
vector space, which is bonded to G by a linear transformation T.
In this paper this process is specialized to the class &/ of finite
dimensional quadratic algebras A over fields of characteristic
not two, which define a symmetric, nondegenerate bilinear form,
to obtain quadratic algebras B(A, T) bonded fo A. In the main
results T will be defined as a linear transformation on the
skew-commutative algebra V defined by Osborn’s decom-
position of A. An algebra in &/ is called a division algebra if
A #0 and the equations ax = b and ya = b, where a# 0 and b
are elements in A, have unique solutions for x and y in A.
Consequently, a finite dimensional algebra A # 0 is a division
algebra if and only if A has no divisors of zero. A basis for V is
said to be orthogonal, if it is orthogonal with respect to the above
mentioned bilinear form. An algebra in & is weakly flexible if
the ith component of the skew-commutative product of the ith
and jth members of each orthogonal basis of V is 0. If 9 ()
denotes the class of division algebras in &/ and I denotes the
identity transformation on V, then the main results are: (1)
A€ PD(A), T nonsingular and B(A,T) flexible imply
B(A, TYEZ(A), 2)if A€ D(A) and A is weakly flexible,
then B(A, T) is weakly flexible if and only if 7= 81 for § a
scalar, and (3) if A is a Cayley-Dickson algebra in &% (), then
B(A, T) is a Cayley-Dickson algebra in 2(s/) if and only if
T = = I. Finally, a class of nonflexible quadratic division alge-
bras bonded to Cayley-Dickson division algebras will be ex-
hibited.

1. Introduction. A finite dimensional algebra A with iden-
tity element 1 over a field F of characteristic not 2 is called a quadratic
algebra in case 1, a, and a” are linearly dependent over F for all a € A.
Following the conventions used by Osborn [6] we shall identify the field F
with the subalgebra F1 and refer to an element in F1 as a scalar.
Furthermore, if an element x € A squares to a scalar but x is not a
scalar, x is called a vector. If V is the set of all vectors in A, then A isa
vector space direct sum of F and V. For x and y € A, let (x, y) denote
the scalar component of xy. Clearly (x, y) is a bilinear form from A X A
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toF. Ifxandy € V, we define “X” byx Xy =xy~—(x,y), Visclosed
under this product and Osborn [6, p. 203] shows it is skew-
commutative. If «a +x and B+yE A =F+ V, where « and BEF
and x and y € V, then

(a+x)Br+y)=[ap+(x,y)]+[ay +Bx +x Xy]EF+ V.

This decomposition of A into a copy of the field and a skew-commutative
algebra with bilinear form makes it possible to restate questions about
quadratic algebras in terms of questions about bilinear forms and
skew-commutative algebras. For example, it is easy to show that A
satisfies the flexible law if and only if the bilinear form (x, y) is symmetric
and (x,x X y)=0 for all x and y in V, and that A is alternative if and
only if A is flexible and (y, x)x — (x,x)y +(y X x)X x =0 forall x and y
in V.

Let o denote the class of algebras satisfying: A is a finite dimen-
sional quadratic algebra over a field F of characteristic not two and A
defines a symmetric, nondegenerate bilinear form (x,y). We call an
algebra in o a division algebra if A # 0 and the equations ax = b and
ya = b, where a # 0 and b are elements in A, have unique solutions for x
and y in A. Consequently, a finite dimensional algebra A # 0 is a division
algebra if and only if A has no divisors of zero. Let @ (&) denote the
class of division algebras in &. In the case that (x, y) is defined by a
division algebra it will be nondegenerate, since otherwise there exists an
element @ + x € A such that (y,a +x)=0 for all y € A. But then
0=(x,a+x)=(x,a)+(x,x)=x? which contradicts the division prop-
erty of A.

The assumptions of finite dimensionality of A and symmetry of
(x,y) are sufficient to prove V has a basis u,, u,, -+, u, of mutually
orthogonal vectors with respect to (x, y). Henceforth, when we speak of
an orthogonal basis for V, we shall always mean orthogonal with respect
to the bilinear form (x,y). Moreover, we will let ui=ao, €F for
i=1,---,n; and for i#j, let uu; = 2%, &, so that the &;’s are the
multiplication constants of an orthogonal basis of V: Note that

n n
kE il = Ul = U, X Uy = — Uy X Uy = — Uy = — Z &jnlhi
=1 k=1

forall i,k =1,---,n and i#j. So
(1.1) &k = — &a  for all nonzero i, j, and k.

If (x, y) is nondegenerate, then a;# 0 for i = 1, - - -, n, since a; = 0 implies
0= (u, u;) which would imply (u, y)=0 for all y € A.
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For A € o let U be the subspace of A consisting of all finite linear
combinations of vectors of the form xy — yx for x and y € A. Let T be
a linear mapping from the subspace U into A and let B(A, T) be an
algebra with the same vector space as A and multiplication defined by

(1.2) x -y =z(xy +yx)+i(xy —yx)’,

where ‘xy denotes multiplication in A. T will be called a bonding
mapping ([2] and [5]) of A and B(A, T) will be said to be bonded to
A. Using (1.2) it is seen that powers in B(A, T) agree with those in A
and that the identity of A is also the identity in B(A, T). Thus B(A, T)
is also a quadratic algebra and we will let (x, y ) denote the bilinear form
defined as the scalar component of x -y in B(A,T) and let xX;y =
x-y—(x,y)r, for all x and y€ V. V is closed under this skew-
commutative product. Since (x, y) is assumed to be symmetric and x X y
is skew-commutative, we have for all x and y € V:

(1.3) d(xy +yx)=(x,y) and
2xy —yx)=x Xy.

So for all x and y € V:

(1.4) x-y=(xy)r+txxXry=(xy)+(xxXy)"
Clearly, for any basis u,,- -+, u, of V, the set of vectors {u; X y;|i,j =
1,---,n} spans the space UC V. Since most of our knowledge is

obtained under the assumption that T is a mapping into V, we will
henceforth make the restriction

(1.5) (w, X u)" = 2 BicUs-

The By ’s for i,j, k, =1,---, n are then the corresponding multiplication
constants for V in B(A, T) and (x,y)r = (x, y).

2. Lemma 2.1. Let A € A and let u,,-- -, u, be any orthogonal
basis of V. Then A is flexible if and only if

(@ ¢&i=0 forallijj=1,---,n and

(b) é&raw = &y = Eua for all i, j, k distinct in {1,---, n}.

Proof. By assumption (x, y) is symmetric, so it suffices to show that
the condition 0= (x,x Xy) for all x and y in V is equivalent to
conditions (a) and (b). The condition 0 = (x, x X y) is equivalent to the
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linearization 0 = (x,z X y)—(z,x X y), and by the linearity of this rela-
tion it is equivalent to the set of equations

O = (u,-, u]' X uk)+(uj’ U; X uk)
= (ui, fjkiui) + (uj1 fik/'ui)

= f‘kiai + fikjaj:
i

for all i, j,k €{1,---,n}. The latter conditions are condition (a) of the
theorem when k = i or j, and condition (b) when i, j, and k are distinct.

We shall call A € of weakly flexible if property (a) in Lemma 2.1 is
satisfied for each orthogonal basis of V. Osborn [6, pp. 204-206] calls a
skew-commutative algebra V division-like if there do not exist linearly
independent u and v € V such that u X v =0 or u X v = u and he shows
that A = F + V' is a division algebra if and only if V is division-like and a
certain condition is satisfied by its bilinear form.

LEmMMA 2.2. Let A € 9(oA). A is weakly flexible if and only if for
xandy € V such that (x,y) =0, there exists z € V such thatx =y X z.

Proof. Suppose first that A is weakly flexible. Since (x, y) = 0, there
exists an orthogonal basis u,=x, u,=y, us---,u, for V. Since
A € 9P (), there exists @ + z € A such that

w=ufa+z)=au,+ Uy z)t U, X 2 = au,+ u, X z.

Let z =2, y;u;. Then

n n n
U Xz = 3y (uy X 1) = kZl Z Y€l
i=t =li=

Since A is weakly flexible, &,,,=0forallj =1, - - -, n, so the coefficient of
U, in u, X z is 0, which then implies @ =0. Thus x =y X z.

Conversely, let u,, - - -, u, be an orthogonal basis of V. Fix i and let
z" = u; X z for z € V. The assumption implies u, is in the image of L
for all k#i V is division-like, so u,# u, X z for any z € V, which
implies the set of vectors {w, |K# i} spans the image of L. Hence
up=u; X u; = 2, ., &y, which implies &; =0 for all j=1,---,n. The
arbitrariness of i gives the desired conclusion.

We note that if A € o is weakly flexible and x, y € V are such that
(x,y)#0, then x =y Xz for z €V is impossible. There exists an
orthogonal basis y = uy, u,- -+, u, of V and x = yu,+w for w in the
span of {u,,- -+, u,} and y# 0. Since A is weakly flexible, for any z € V,
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y X z is in the span of {u,,---,u,}. Thus x = yu;+w =y X z is not
possible.

THEOREM 2.1. Let A € 9(A), T nonsingular on U, and B(A, T)
flexible. Then B(A, T)E 9(A).

Proof. Since (x,y)r = (x,y), B(A, T) will be a division algebra, if V
is division-like with respect to ‘“X;””. Suppose there exist linearly
independent x and y in V such that x X,y = x. The flexibility of B(A, T)
implies (x,x Xry)r =0. Now

x?=xx=x-(xX7y)=(x, xX7y)r + x X7 (xX7y) =0+ xX7x =0,

which contradicts the assumption that A € 9(). Suppose there exist
linearly independent x and y in V such that xX;y = 0. Then by (1.4),
0=xXry=(xXy)". But T is nonsingular, so x Xy =0 which also
contradicts A € ().

If 1, uy, us -, u, is an orthogonal basis of A € D (), then u, X
x# 0 for x in the span of {u, -, u,}. Thus the n —1 vectors u, X u,,
Uy X us, -+, u; X u, are linearly independent. Moreover, since V is
division-like, we cannot have

n n
u, = E ,Bi(ulx ui)= u X 22 Biuia
i=2 i=

so the n vectors u,, u; X u,, u, X us, - - -, u, X u,, are linearly independent.
Let v be any vector such that (u;,v)=0. If A were weakly flexible,
then by Lemma 2.2 there exists z € V such that u,= v X z which puts
u, € U. Thus U is a n-dimensional space contained in V, if n > 1. Hence
it is plausible to assume T is a linear transformation from V into V.

COROLLARY 2.1. Let A be flexible and in o but notin D (). Then
B(A,T) is not in () for any nonsingular T: V— V.

Proof. Since T is nonsingular on V,T™": V— V exists and it is
easily checked that A = B(B(A, T), T™'). So by Theorem 2.1, if B(A, T)
were in 9(«), then A would have to also be in 2 ().

THEOREM 2.2. Let A € o and suppose that for all x € U, there exist
y and z € V such that x = y X z. If T is singular on U, then B(A, T) is not
a division algebra.

Proof. T singular implies there exists x#0 in U such that
xT=0. Choose y and z € V such that x =y xz Then 0=x"=
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(y X z)" = y Xz, which implies B(A, T) is not a division algebra since V
is not division-like with respect to “X 1”

By Lemma 2.2 the condition on V in Theorem 2.2 holds in particular
if A € P(A)is weakly flexible and n >1. If n =1, then U=0. Thus
for A € (o) weakly flexible and B(A,T) flexible we have, by
Theorems 2.1 and 2.2, B(A, T) € 9(«) if and only if T is nonsingular on
V.

If we assume A € 9 () is flexible and that T is a scalar § times the
identity transformation I on V, then for any orthogonal basis u,, - - -, u,
of V we have

n n n
;?2 Bithe = X1 = (u; X w;)" = ,(Z St = ,Z & Oy
=1 =1 =1

So B = &xd forall i,j,k =1,---, n. Since A is flexible, the B, clearly
satisfy the conditions in Lemma 2.1 which make B(A, T) flexible and
then by Theorem 2.1 B(A, T)€ ().

THEOREM 2.3. Let A be weakly flexible in D(«f) and let T: V —>V
be such that B(A, T) is weakly flexible. Then T is a scalar multiple of I.

Proof. Let u,,---, u, be an orthogonal basis of V. Pick u, and u;
such that r# s. A is weakly flexible, so by Lemma 2.2 there exists z € V
such that u, = u, X z. Suppose u! =2/, 6 u, and z = Z_, yu;. Then

; Oy =(u, xz)" = 21 ¥, (4, X ui)T = ?_; ]21 YiBrithi-
= = = &

So 6, =2~ v;8,; =0, since B,, =0 forall r andj. Thus u= 6 u, = 8.u,

for each s = 1, - - -, n. The extra subscript is now dropped for the sake of
simplicity. To show T is a scalar multiple of the identity let u, be any
nonzero element of V. Then u, may be embedded in a basis u,, - -, u, of

V and we have u[= 8,u, for some 8, € F. Then also for any v € V,
v'=8v for some §,EF, and Su+dv=ul+v" =W +0v) =
8;(u, + v) = dsu, + 8;v for some 8, € F. Hence 6, = §,= 8;and T = §,1L

Since the Cayley-Dickson algebras are alternative, they are
flexible. So for A a Cayley-Dickson algebra in 9(«), B(A, T) is
flexible if and only if T is a scalar times I, the identity transformation on
V.

COROLLARY 2.2. Let A be a Cayley-Dickson algebra in & ().
B(A, T) is a Cayley-Dickson algebra in 9 () if and only if T= + 1.
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Proof. It is easily checked that a quadratic algebra is alternative if
and only if it is flexible and (y,x)x —(x,x)y +(y X x) X x =0 for all
vectors x and y in the algebra. All that remains to be shown is that in
B(A, T), (y,x)x —(x,x)ry + (yXrx)Xrx =0ifandonlyif T= £ 1. By
(1.4) and Theorem 2.3

(0 X)rx = (6, X)ry + (¥ Xrx)Xrx = (y, x)x — (x, x)y +[(y X x)" X x]"
=(y,x)x—(x,x)y+82(y ><x)><x

for some scalar 8. Since A is alternative, this expression is 0 if and only
if 62=1.

3. In this section the bonding mapping process is applied to a class
of Cayley-Dickson division algebras over formally real fields to obtain
nonflexible quadratic division algebras of dimension 8. We use the
definition, as given by Kleinfeld [4], of a Cayley-Dickson algebra in
terms of its multiplication table with respect to a basis 1, u,, - - -, u, and
parameters a, 3, and y. Exact conditions on a, 3, v, and the field F which
make the algebra a division algebra are given by Schafer [7]. We
consider only the Cayley-Dickson division algebras over formally real
fields with @ = B = y = — 1. (The Cayley numbers are in this class.) The
multiplication table for the nonidentity basis elements in such an algebra
A =F+ Vs given in Table I. It is clear by Table I that for such a

TABLE 1
U, u, Us Uy Us U U,

u, -1 Us - U, Us — Uy — U Ue

U, -~ Uy -1 U, Ue U, — U, - Us

Us U, - u, -1 U, — Ug Us — Ug

Uy ~ Us — Ug - U, -1 u, u, Us

Us U, - U, Ue - Uu, -1 —Us U,

U Usq Uy - Us —u, Us -1 - u,

U, -~ Ug Us U, — Uy - U, u, -1
Cayley-Dickson algebra u;, - - -, u, is an orthogonal basis for V, and that
each u; fori =1,---,7 is equal to u; X u, for some j, k €{1,---,7}, so that

the subspace U as defined in §1 is equal to V. Moreover, a; = (u;, u;) =
—1fori=1,---,7. A is the special case 7 =0 of the class of division
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algebras we are about to define. Let T be a bonding mapping from V to
V with matrix representation

T 0
010 0
(3.1) 1. |, where 7#0
S0
0 - - - - 0 1
is in F, with respect to the basis u,, - - -, u;. By (1.4) the multiplication in

B(A,T) of two nonidentity basis elements is given by u -y =
(us uj)+ (u; X y;)", where (x, y) is the bilinear form determined by A and
X7 is the skew-commutative multiplication in V determined by A. So
(3.2) weu = (g, )+ (u X u)"
=(w,u)=—-1 for i=1,---7
u - u; = (w, uy)+ (s X uy)"
= Xuw) for i#j;, iLj=1,---7.

Using (3.2) one obtains the multiplication table for B(A, T) given in
Table II.

TABLE II

u, 75 Us U, Us Us u,
u, -1 Us - U, Us — Uy — Uy U
U, —~ Uy -1 U, + U, Ug U, = Uy — Us
Us U, — Uy — TU; -1 u; — Ug Us — U,y
U, — Us — Ug — Uy -1 u, + Tu, u, Us
Us [TH - U, Ug — Uy — TU, -1 — Us u,
U U, Uy - Us - U, Us -1 — U, — TUy
u, — Ugq Us U, — U, - U, u, + 1u, ~1

We shall prove that B(A, T) is a division algebra for any T asin (3.1)
such that | 7| < 2, and we shall give examples of zero divisors when 7 = 2.
We take T in (3.1) such that [7|<2 and let
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X = auo+ bu, + cu, + dus + fu, + gus+ hug+ ku,

and

y=a'ug+b'ui+c'u,+d'us+flu,+g'us+ h'ug+ k'u,,
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where a,---,k,a’,---,k'EF be two aribtrary elements of B(A,T).
Using Table II we can express the relation x - y =0 in terms of the basis

elements 1, u,, - -, u, for B(A, T) in the following way:

0=(aa’'—bb'—cc'—dd'— ff'— gg'— hh' — kk')1

+(ab'+ ba'+ cd’' — dc' + fg' — gf' + kh' — hk")u,

+(ac'+ca'+db'—bd'+ rcd' — rdc' + 7fg’
—78f'+ ' = hf'+ gk’ = kg' + Tkh’ = 7hk )u,

+(ad'+da'+bc'—cb'+ fk'— kf'+ hg' — gh")u,
+(af' + fa'+ gb'— bg'+ hc' — ch' + kd' — dk")u,
+(ag'+ga'+ bf' — fb'+ k¢’ — ck'+ dh' — hd")u;
+(ah’'+ ha'+bk'— kb’ + cf' — fc' + gd' — dg")us
+ (ak'+ ka'+ hb'— bh' + cg'— gc' + df' — fd")u,.

This gives eight homogeneous bilinear equations in the elements
a, -+, k,a',---, k'. The equation x -y =0 has a solution in B(A, T) if
and only if these eight equations can be made to equal zero simultane-

ously. We way think of the primed letters a’,---, k' as variables and
consider the coefficient matrix M; of the set of eight equations. We
have
a -b -c¢ -d -f -g —h -k
b a —d c -8 f k —h
c d a-1d -b+tc —-h—-1g —k+1f f+7k g—7h
d -c¢ b a —k h - g f
= | f g h k a -b -c —d
g —f k —h b a d -
h -k ~—f g c -d a b
Lk h -3 ~-f d c - a
It suffices to show this matrix is nonsingular for all choices of a, - - -, k not

all zero. To show M; is nonsingular for |7| <2 we utilize a technique

found in [6]. Let
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a b c d
-b a d -—-c
-c —d a b
-d c —b a
-k a b c d
-g f -k h —b a —d c
—h k f —-g§ -c¢ d a -b
L—k ~—h g f —-d -—c b a |

= 3> 0 Tw
|
~-
|
w
}

<
Il
I
~~
|
S
I
>

If we set '=a’+b*+c*+d*+ f*+g>+ h*>+k? then

MM} =
r 0 0 0 0 0 0 0
r 0 0 0 0 0 0
0 7(T—a*-b? I'—r(ad +bc) 7(ac — bd) — 7(ag + bf) (af — bg) 7(ak —bh) r(ah — bh)
0 0 0 r 0 0 0 0
0 0 0 0 r 0 0 0
0 0 0 0 0 r 0 0
0 0 0 0 0 0 r 0
0 0 0 0 0 0 0 r

Any choice of r which makes M;M ; nonsingular will clearly make M;
nonsingular. We have

(3.3) det M;M}=T"[T - 7(ad + bc)].

Since F is a formally real field, T >0in Funlessa =b=c=d=f=g =
h =k =0. We expand the other factor of det M;M 1 to obtain

(3.4) I'-7(ad + bc)=a’—tad + d*+ b*>— 7bc + ¢’
+f+g*+h*+ k%

We want to show the expression in (3.4) is nonzero for any 7 € F such
that |7| < 2. Consider the quadratic form q = A}+ 7A,A,+ A} and the
nonsingular linear transformation given by A, = u, — u, and A, = u,; + u,.
This transformation applied to g gives a new quadratic form p =
(2+ 7)ui+ (2— 1)ui Since the transformation connecting them is non-
singular, q and p are congruent. Therefore, they have the same range of




BONDED QUADRATIC DIVISION ALGEBRAS 351

values when Ay, A, and uy, u, assume all values in the formally real field
F. But|7| <2 implies 2+ 7>0 and 2— 7 >0. So p >0 which implies
q>0 for |7| <2. Applying this conclusion to (3.4) shows I'—
7(ad + bc)>0 for |r|<2. Thus MM} and M; are nonsingular and
B(A, T) has no nontrivial zero divisors.

Let T, be the nonsingular linear transformation obtained by setting
r=21in (3.1). B(A, T,) will have divisors of zero. The multiplication
table for B(A, T)is Table Il with  =2. Let My, be the matrix obtained
from M; by setting 7 =2. It is easily seen that det My, =0 for a =4,
b=c, and f =g =h =k =0, so that nontrivial solutions to x -y =0 do
exist in B(A, Ty). (E.g.x =1+ u,+u,+u; and y =1+ u,+ u,— u; have
product 0 in B(A, T)).)

Albert [1], Bruck [3], and Osborn [6] have constructed classes of
quadratic division algebras. A full determination of quadratic division
algebras obtainable by this bonding mapping process has not been made
even when A is taken to be a Cayley-Dickson algebra. The class of
division algebras obtained above with 7# 0 does not contain any flexible
algebras, since u,-u;= u,+ tu, with 77#0 violates condition (a) of
Lemma 2.1. Moreover, for T as in (3.1) with 7# 0 one obtains u,Xru, =
Us, UsXTUs= U+ TUy, U XTU, = Us, UpX Uy = Ug, and U, X+ Us = U, SO that
the skew-commutative algebra generated in V by u; and u, is V
itself. This shows that no B(A, T) obtained as above with 7#0 is a
division algebra of dimension 8 in the class discovered by Osborn [6],
since in his class of examples every two independent elements in V
generate a subalgebra in V of dimension 3.
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