THE EXTREMAL STRUCTURE OF LOCALLY COMPACT
CONVEX SETS

J. C. HANKINS AND ROY MARTIN RAKESTRAW
THE EXTREMAL STRUCTURE OF LOCALLY
COMPACT CONVEX SETS

J. C. HANKINS AND R. M. RAKESTRAW

Let X be a locally compact closed convex subset of a locally
convex Hausdorff topological linear space E. Then every ex-
posed point of X is strongly exposed. The definitions of denting
(strongly extreme) ray and strongly exposed ray are given for
convex subsets of E. If X does not contain a line, then every
extreme ray is strongly extreme and every exposed ray is
strongly exposed. An example is given to show that the hypothe-
sis that X be locally compact is necessary in both cases.

By a locally convex space we mean a real Hausdorff locally convex
topological linear space E. E^* will denote the topological dual of
E. The set of extreme points of X will be denoted by $\text{ext } X$. The
closed line segment between the points x and y in E will be denoted
$[x, y]$. The following definition was given by M. Rieffel [6, p. 75] for
subsets of a Banach space. I. Namioka also studied these points in [4].

Definition 1. If X is a subset of a locally convex space, then
$x \in X$ is called a denting (strongly extreme) point of X if for any nbhd U
of x, $x \notin \text{cl-conv}(X \setminus U)$. The set of all denting points of X will be
denoted by $\text{dent } X$.

Clearly, every denting point is an extreme point. It follows from
the separation theorem for convex sets that x_0 is a denting point of X iff
for each nbhd U of x_0 there exist $f \in E^*$ and $\alpha \in \mathbb{R}$ such that
$x_0 \notin \{x : f(x) < \alpha\} \cap X \subseteq X \cap U$. An example is given in [6, p. 75] to
show that not every extreme point is a denting point. However, this is
not the case in a locally compact set. For completeness we state the
following theorem due to J. Reif and V. Zizler [5, p. 64].

Theorem 1. Assume X is a locally compact closed convex set in a
locally convex space E. Then any extreme point of X is a strongly extreme
point of X with respect to the relative topology from E.

A point p of a set X in a locally convex space E is an exposed point
of X if there exists an $f \in E^*$ such that $f(x) > f(p)$ for each $x \in X \setminus \{p\}$. The following definition was given by J. Lindenstrauss [3, p. 140] for
subsets of a Banach space.
DEFINITION 2. A point \(x \in X \), where \(X \subseteq E \), is called a strongly exposed point of \(X \) whenever (i) there exists an \(f \in E^* \) such that \(f(y) > f(x) \) for each \(y \in X \setminus \{x\} \), and (ii) for any net \(\{x_n\} \subseteq X \), \(f(x_n) \to f(x) \) in \(R \) implies that \(x_n \to x \) in \(E \). The set of all strongly exposed points of \(X \) is denoted by \(\text{stexp} X \).

It is easy to see from the definition that every strongly exposed point is an exposed point. J. Lindenstrauss in [3, p. 145] gave an example of a set which has an exposed point that is not strongly exposed. However, this is not the case if the set is locally compact.

THEOREM 2. Let \(X \) be a locally compact closed convex subset of a locally convex space \(E \), then every exposed point of \(X \) is a strongly exposed point of \(X \).

Proof. Let \(U \) be a closed convex nbhd of \(x \) such that \(U \cap X \) is compact and assume \(f \in E^* \) such that \(f(x) < f(y) \), for all \(y \in X \setminus \{x\} \). Since \(x \) is an exposed point of \(X \), \(x \) is an extreme point of \(X \). By Theorem 1, \(x \) is a denting point of \(X \). Thus, there exist \(g \in E^* \) and \(\alpha \in R \) such that \(\{x: g(x) < \alpha\} \cap X \subseteq (\text{int } U) \cap X \).

If \(\{x: g(x) \geq \alpha\} \cap (X \cap U) \neq \emptyset \), then it follows immediately that \(U \cap X \subseteq \{x: g(x) < \alpha\} \cap X \subseteq (\text{int } U) \cap X \). Therefore \(U \cap X \) is a nonempty open and closed set in the connected set \(X \). Hence, \(U \cap X = X \) which implies \(X \) is compact. Let \(\{x_n\} \) be a net in \(X \) such that \(f(x_n) \to f(x) \) in \(R \). Since \(X \) is compact, there is a subnet \(\{x_\beta\} \) of \(\{x_n\} \) and a vector \(y \in X \) such that \(x_\beta \to y \). Thus, \(f(x_\beta) \to f(y) = f(x) \) in \(R \) and so \(y = x \). For any subnet \(\{x_\gamma\} \subseteq \{x_n\} \) there is similarly a subnet which converges to \(x \), which proves that \(x_n \to x \) in \(E \).

On the other hand, if \(W = \{x: g(x) \geq \alpha\} \cap (X \cap U) \neq \emptyset \), then \(W \) is a nonempty compact convex subset of \(X \) which does not contain \(x \). Hence, there is a \(w \in W \) such that \(f(x) < f(w) = \inf f(W) \). Let \(y \in X \setminus U \), then \([x, y] \subseteq X \). \(U \) is a closed convex nbhd of \(x \); hence, there exists a \(z \in \text{Bdry } U \) such that \(z \in [x, y] \). Since \(z \in \text{Bdry } U \), then \(z \not\in \text{int } U \) and \(z \not\in \{x: g(x) < \alpha\} \). Therefore, \(z \in \{x: g(x) \geq \alpha\} \cap (X \cap U) \) so \(f(z) \geq \inf f(W) \). But \(y - x = \lambda (z - x) \) where \(\lambda > 1 \). Hence, \(f(y - x) = \lambda f(z - x) > f(z - x) \) which implies \(f(y) > f(z) \geq f(w) \). Let \(\{y_n\} \) be a net in \(X \) such that \(f(y_n) \to f(x) \) in \(R \). Since \(\{y_n\} \subseteq X \) and \(f(y) > f(w) = f(x) \) for each \(y \in X \setminus U \), we may assume that \(\{y, y_n\} \subseteq U \cap X \). Since \(U \cap X \) is compact, it follows from the previous argument that \(y_n \to x \) in \(E \).

As V. Klee has shown in [1] and [2], it is possible to extend the Krein–Milman theorem to certain noncompact convex sets with the aid of the notion of extreme ray. An extreme ray of a closed convex set \(X \)
is a closed half-line $\rho \subseteq X$ such that whenever $x, y \in X$ and $\lambda x + (1 - \lambda)y \in \rho$ for some λ with $0 < \lambda < 1$, $x, y \in \rho$.

Definition 3. A ray $\rho = \{x + \lambda z : \lambda \geq 0, z \neq 0\}$ of a convex set X in a topological linear space E is a denting (strongly extreme) ray of X if for any nbhd U of 0, $\rho' \cap \text{cl-conv}[X'(x + \langle z \rangle + U)] = \emptyset$, where X' is any bounded convex subset of X, $\rho' = \rho \cap X'$ and $\langle z \rangle$ denotes the one-dimensional linear subspace generated by z. Denote the union of all denting rays of X by $r\text{dent} X$.

It is easy to show that every denting ray of a convex set X is an extreme ray of X. The following theorem and example show that extreme rays and denting rays coincide in some instances and are distinct in others.

Theorem 3. Let X be a locally compact closed convex subset of a locally convex space E, then every extreme ray of X is a denting ray of X.

Proof. Let ρ be an extreme ray of X. We may assume without loss of generality that $\rho = \{\lambda x_0 : \lambda \geq 0\}$, $x_0 \neq 0$. Let X' be a bounded convex subset of X and let f_0 be in E^* such that f_0 is positive on $K \setminus \{0\}$, where K is the union of all rays in X which emanate from 0, and $X \cap \{x : f_0(x) \leq t\}$ is compact, for each $t \in \mathbb{R}$. Such a functional exists by Theorem 3.2 in [1]. Since X' is bounded and convex, $\text{cl}(X')$ is bounded and convex. According to a result of Klee [1, p. 236], $\text{cl}(X')$ is compact which implies $\text{sup} f_0(\text{cl}(X')) < \infty$. Then we may assume $X' \subseteq \{x : f_0(x) \leq 1\} \cap X = X''$. Let $W = \{x : f_0(x) = 1\} \cap X$ and assume $f_0(x_0) = 1$. Then $x_0 \in \text{ext}(W)$ and W is compact, since X'' is compact. By Theorem 1, x_0 is a denting point of W. Let U be a nbhd of zero and let $g \in E^*$ and $\alpha > 0$ such that $x_0 \in \{x : g(x) < \alpha\} \cap W \subseteq (x_0 + U) \cap W$. Let $T = \{x : g(x) = \alpha\} \cap W$. Then T is compact, convex and $T \cap (x_0) = \emptyset$. Let $f \in E^*$ and $\beta > 0$ such that $f(\langle x_0 \rangle) < \beta < \inf f(T)$. Since $0 \in \langle x_0 \rangle$, we have $0 = f(\langle x_0 \rangle) < \beta < \inf f(T)$.

If $y \in W$ such that $f(y) < \beta$, then $f_0(y) = 1$ and $[x_0, y] \cap T = \emptyset$, since $f(x_0) < \beta$. It follows that $g(y) < \alpha$ and hence, $y \in (x_0 + U) \cap W \subseteq (x_0) + U$.

On the other hand, if $y \in X$ such that $f_0(y) < 1$ and $f(y) < \beta$, then there is a unique $\lambda > 0$ such that $f_0(y + \lambda x_0) = 1$. Again from Klee [1, p. 235] we have $y + \lambda x_0 \in X$. Hence, $y + \lambda x_0 \in W$ and $f(y + \lambda x_0) = f(y) < \beta$. By the previous argument, it follows that $y + \lambda x_0 \in x_0 + U$ and so $y \in (1 - \lambda)x_0 + U \subseteq (x_0) + U$.

In both cases we have $y \in \{x : f(x) < \beta\} \cap X''$ implies $y \in (x_0) + U$. Hence, $X'' \setminus \{(x_0) + U\} \subseteq X'' \setminus \{x : f(x) < \beta\} \subseteq \{x : f(x) \geq \beta\}$. Thus, $\text{cl-conv}[X'' \setminus \{(x_0) + U\}] \subseteq \{x : f(x) \geq \beta\}$. Now $f(p') < \beta$, since
f(⟨x_0⟩) < β and ρ' = (X' ∩ ρ), so ρ' ∩ cl-conv[X'\((x_0) + U)] = ∅. Therefore, ρ is a denting ray of X.

Example 1. Let the space be ℓ_2 with the canonical basis {e_n}, and X = cl-conv({e_n; n = 2, 3, · · ·}). Then 0 ∈ X and e_1 is in ℓ_2\X. Let C be the cone generated by X with vertex e_1, then C is a closed convex subset of ℓ_2. Let ρ be the ray of the cone through 0. Clearly, ρ is an extreme ray of C. Let S_1(0) be the open ball of radius 1/2 centered on 0. Clearly, e_n ∉ S_1(0) so e_n ∉ ⟨e⟩ + S_1(0) and it follows that e_n ∉ cl-conv[X\((⟨e⟩ + S_1(0))] for n ≥ 2. However, {e_n} converges weakly to 0 and cl-conv[X\((⟨e⟩ + S_1(0))] is weakly closed so 0 ∉ cl-conv[X\((⟨e⟩ + S_1(0))]. Hence ρ is not a denting ray of C.

A ray ρ in X, where X ⊆ E, is an exposed ray of X if there exist f ∈ E* and α ∈ R such that ρ = {x: f(x) = α} ∩ X and f(X\ρ) > α. The next definition was given by V. Zizler in [7, p. 55] for subsets of a Banach space.

Definition 4. Let X be a convex set in a locally convex space E and ρ a closed ray in X. Then ρ is a strongly exposed ray of X if (i) there exist f ∈ E* and r ∈ R such that ρ = {x: f(x) = r} ∩ X and f(X\ρ) > r for x ∈ X\ρ, and (ii) {x_n} is eventually in ρ + U, whenever U is a nbhd of 0 and {x_n} is a bounded net in X such that f(x_n) → r. The set of all strongly exposed rays will be denoted by rstrexp X.

Clearly every strongly exposed ray is an exposed ray. The following proposition, theorem, and examples show the relationships among denting ray, exposed ray and strongly exposed ray.

Proposition 1. Let ρ be a strongly exposed ray of a convex set X in a locally convex space E. Then ρ is a denting ray of X.

Proof. We may assume ρ = {λx_0: λ ≥ 0}, x_0 ≠ 0. Let f ∈ E* such that ρ = {x: f(x) = 0} ∩ X and f(x) > 0 for each x ∈ X\ρ. Let U be a nbhd of zero and X' a bounded convex subset of X. Assume for each positive integer n there is an x_n ∈ {x: f(x) < (1/n)} ∩ X' such that x_n ∉ (x_0) + U. Clearly {x_n} is bounded and f(x_n) → 0. Hence, there exists a positive integer N such that x_n ∈ ρ + U for n ≥ N. This is a contradiction; so there is a positive integer N' such that {x: f(x) < (1/N')} ∩ X' ⊆ (x_0) + U ∩ X'. Thus, cl-conv[X'\((x_0) + U)] ⊆ {x: f(x) ≥ (1/N')} which implies (ρ ∩ X') ∩ cl-conv[X'\((x_0) + U)] = ∅; so ρ is a denting ray of X.

Theorem 4. Let X be a locally compact closed convex subset of a locally convex space E, then every exposed ray of X is a strongly exposed ray of X.
Proof. Let \(\rho \) be an exposed ray of \(X \). We may assume that \(\rho \) emanates from the origin. Let \(f \in E^* \) such that \(\rho = X \cap \{x : f(x) = 0\} \) and \(f(x) > 0 \) for \(x \in X \setminus \rho \). Let \(\{x_\alpha\} \) be a bounded net in \(X \) such that \(f(x_\alpha) \to 0 \) in \(R \) and let \(U \) be a nbhd of 0. There exists a nbhd \(V \) of 0 such that \(V \) is closed, balanced and convex, \(V \subseteq U \) and \(V \cap X \) is compact. Let \(\{x_\beta\} \) denote the set of all vectors in the net \(\{x_\alpha\} \) which lie in \(X \setminus U \). If \(\{x_\beta\} \) is not a subnet of \(\{x_\alpha\} \), then \(\{x_\alpha\} \) is eventually in \(U = 0 + U \subseteq \rho + U \) and the conclusion follows.

If \(\{x_\beta\} \) is a subnet of \(\{x_\alpha\} \), then it suffices to show that \(\{x_\beta\} \) is eventually in \(\rho + U \). By Theorem 1, 0 is a denting point of \(X \), since 0 is an extreme point of \(X \). Let \(g \in E^* \) and \(\alpha > 0 \) such that \(\{x : g(x) < \alpha\} \cap X \subseteq V \cap X \). Since \(x_\beta \not\in V \), then \(g(x_\beta) \geq \alpha \), for each \(\beta \). The net \(\{x_\beta\} \) is bounded, so there exists a number \(b > 0 \) such that \(g(x_\beta) \leq b \), for each \(\beta \). Hence, \(0 < \alpha \leq g(x_\beta) \leq b \), for each \(\beta \). If \(y_\beta = \left(\frac{a}{g(x_\beta)}\right)x_\beta \), then \(y_\beta \in \{x : g(x) = \alpha\} \cap X \). Since \(\{x : g(x) < \alpha\} \cap X \subseteq V \cap X \) and \(V \cap X \) is compact, then \(\{x : g(x) = \alpha\} \cap X \) is compact; so there is a subnet \(\{y_\gamma\} \subseteq \{y_\beta\} \) and a point \(y \in \{x : g(x) = \alpha\} \cap X \) such that \(y_\gamma \to y \) in \(E \).

Since \(g(x_\beta) \) is bounded and \(f(x_\beta) \to 0 \) in \(R \), we have \(y \in \{x : f(x) = 0\} \cap X \) and thus, \(y \in \rho \). Hence, \(y \in \{x : g(x) = \alpha\} \cap \rho \). It follows immediately that \(\{y\} = \{x : g(x) = \alpha\} \cap \rho \). Let \(W = \{x : g(x) = \alpha\} \cap X \) and \(z \in W \setminus \{y\} \). Then \(z \in W \setminus \rho \) which implies \(f(z) > 0 \). Thus, \(y \) is exposed by \(f \) on \(W \). Since \(f(y_\beta) \to 0 = f(y) \), by Theorem 2 we have \(y_\beta \to y \) in \(E \). Hence, there is a \(\lambda_0 \) such that \(y_\beta \in y + (a/b)V \), for \(\beta \geq \lambda_0 \). If \(z_\beta = \left(\frac{g(x_\beta)}{\alpha}\right)y \), then \(z_\beta \in \rho \), for each \(\beta \). But \(y_\beta = \left(\frac{a}{g(x_\beta)}\right)x_\beta \), so \(x_\beta \in \left[\left(\frac{g(x_\beta)}{a}\right)y + \left[\left(\frac{g(x_\beta)}{a}\right)(a/b)\right]V \subseteq \rho + V \subseteq \rho + U \), for all \(\beta \geq \lambda_0 \). Therefore, the net \(\{x_\beta\} \) is eventually in \(\rho + U \) and it follows that \(\rho \) is a strongly exposed ray of \(X \).

Example 2. The ray \(\rho \) defined in Example 1 is exposed by \(f = (0, \frac{1}{3}, \frac{1}{3}, \cdots, 1/n, \cdots) \) on \(C \). Therefore \(\rho \) is an exposed ray of \(C \) that is not a denting ray of \(C \) so by Proposition 1 \(\rho \) is not a strongly exposed ray of \(C \).

Example 3. Let the space be \(R^3 \) and

\[
X = \text{conv}\{(x, y, z) : x^2 + y^2 \leq 1, -1 \leq y \leq 0 \text{ and } z = 1\} \cup (1, 1, 1)\].
\]

Let \(C \) be the cone generated by \(X \) with vertex \((0,0,0)\). Then \(C \) is a closed convex subset of \(R^3 \). Let \(\rho \) be the ray of the cone through the point \((1,0,1)\). It is easy to see \(\rho \) is not an exposed ray of \(C \), but \(\rho \) is a denting ray of \(C \).

From the preceding work we can restate two of Klee's theorems ([2, Th. 2.3, p. 91], [1, Th. 3.4, p. 237]) as follows:
THEOREM 5. Suppose X is a locally compact closed convex subset of a normed linear space, and X contains no line. Then $\text{ext } X \subseteq \text{cl}(\text{strexp } X)$ and $X = \text{cl-conv}(\text{strexp } X \cup \text{rstexp } X)$.

THEOREM 6. If X is a locally compact closed convex subset of a locally convex space, and X contains no line, then $X = \text{cl-conv}(\text{dent } X \cup \text{rdent } U)$.

REFERENCES

Received August 4, 1975 and in revised form November 3, 1975.

University of Missouri — Rolla
Richard Fairbanks Arnold and A. P. Morse, *Plus and times* 297
Edwin Ogilvie Buchman and F. A. Valentine, *External visibility* 333
R. A. Czerwinski, *Bonded quadratic division algebras* 341
William Richard Emerson, *Averaging strongly subadditive set functions in unimodular amenable groups. II* ... 353
Lynn Harry Erbe, *Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations* 369
Kenneth R. Goodearl, *Power-cancellation of groups and modules* 387
J. C. Hankins and Roy Martin Rakestraw, *The extremal structure of locally compact convex sets* .. 413
Burrell Washington Helton, *The solution of a Stieltjes-Volterra integral equation for rings* ... 419
Frank Kwang-Ming Hwang and Shen Lin, *Construction of 2-balanced
(n, k, λ) arrays* ... 437
Wei-Eihn Kuan, *Some results on normality of a graded ring* 455
Dieter Landers and Lothar Rogge, *Relations between convergence of series and convergence of sequences* 465
Lawrence Louis Larmore and Robert David Rigdon, *Enumerating immersions and embeddings of projective spaces* 471
Douglas C. McMahon, *On the role of an abelian phase group in relativized problems in topological dynamics* 493
Robert Wilmer Miller, *Finitely generated projective modules and TTF classes* ... 505
Yashaswini Deval Mittal, *A class of isotropic covariance functions* 517
Anthony G. Mucci, *Another martingale convergence theorem* 539
Joan Kathryn Plastiras, *Quasitriangular operator algebras* 543
John Robert Quine, Jr., *The geometry of p(S^1)* 551
Tsuan Wu Ting, *The unloading problem for severely twisted bars* 559