SOME RESULTS ON NORMALITY OF A GRADED RING

Wei-Eihn Kuan
Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded domain and let \(p \) be a homogeneous prime ideal in \(R \). Let \(R_p \) be the localization of \(R \) at \(p \) and \(R_p = \{ r/s \mid r, s \in R_i \text{ and } s \notin p \} \). If \(R_i \cap (R - p) \neq \emptyset \), then \(R_p \) is a localization of a transcendental extension of \(R_{(p)} \). Thus \(R_p \) is normal (regular) if and only if \(R_{(p)} \) is normal (regular). Let \(\text{Proj}(R) = \{ p \mid p \text{ is a homogeneous prime ideal and } p \not\subset \bigoplus_{i=0} \cdots \} \). Under certain conditions a Noetherian graded domain \(R \) is normal if \(R_p \) is normal for each \(p \in \text{Proj}(R) \). If \(R = \bigoplus_{i \geq 0} R_i \) is reduced and \(F_0 = \{ r/s \mid r, s \in R_i \text{ and } u_i \in U \} \) where \(U \) is the set of all nonzero divisors is Noetherian, then the integral closure of \(R \) in the total quotient ring of \(R \) is also graded.

1. Introduction. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded integral domain. Let \(\text{Spec}(R) \) be the set of all prime ideals in \(R \). Let \(R_+ = \bigoplus_{i=0} R_i \). \(R_+ \) is an ideal in \(R \). An ideal \(\mathfrak{A} \) in \(R \) is said to be irrelevant if \(R_+ \subset \mathfrak{A} \), the radical of \(\mathfrak{A} \). Let \(\text{Proj}(R) = \{ p \in \text{Spec}(R) \mid p \subset R_+ \text{ is homogeneous and nonirrelevant} \} \). For each \(p \in \text{Spec}(R) \), let \(R_p = \{ r/s \mid r, s \in R \text{ and } s \notin p \} \), and for each homogeneous prime ideal \(p \), let \(R_{(p)} = \{ r/s \mid r, s \in R_i \text{ and } s \notin p \} \). (Note: \(R_{(p)} \) in [1] is defined for \(p \in \text{Proj}(R) \) only.) According to the terminology of Seidenberg [9], \(R_p \) is called the arithmetical local ring of \(R \) at \(p \) and \(R_{(p)} \) the geometrical local ring of \(R \) at \(p \). I prove that if \(R_i \cap (R - p) \neq \emptyset \) then \(R_p \) is the ring of quotients of a transcendental extension of \(R_{(p)} \) relative to a multiplicative set, \(R_p \) is normal (regular) if and only if \(R_{(p)} \) is normal (regular); see Theorem 2. In the case of an irreducible projective variety \(V \) over a field \(k \) in a projective \(n \)-space \(P^n_k \), \(V/k \) is normal if the geometrical local ring of \(V \) at each \(p \in V \), \(\mathcal{O}(p) \) is integrally closed. \(V \) is arithmetically normal if the ring of strictly homogeneous coordinates \(k[V] \) is integrally closed. The latter implies the former. For the converse, various cohomological criteria are developed; see [3], [8], [9]. I attempt to study the normality of a graded domain \(R \) if \(R_{(p)} \) is normal for every \(p \in \text{Proj}(R) \). In this paper, I also obtain the following theorem: Let \(R \) be a Noetherian graded domain, say \(R = R_0[x_1, \ldots, x_n] \) and \(x_1, \ldots, x_n \) are of homogeneous degree 1. Assume that \(R_0 \) contains a field \(k \) over which \(R_0 \) and \(k(x_1, \ldots, x_n) \) are linearly disjoint and separable. Let \(\mathfrak{B} \) be the kernel of the canonical map from the polynomial ring \(R_0[x_1, \ldots, x_n] \). Then \(R \) is normal if \(R_0 \) is normal, \(R_{(p)} \) is normal for every \(p \in \text{Proj}(R) \) and \(\text{coh.d.} \mathfrak{B} \cdot K[X_1, \ldots, X_n] < n - 1 \), where \(K \) is the quotient field of \(R_0 \).
In the §4, we prove that under certain conditions on a graded ring \(R \) (not necessarily integral domain) the integral closure \(\hat{R} \) of \(R \) in the total quotient ring of \(R \) is also graded; see Theorem 6.

Our references on the elementary well known facts about graded rings can be found in [1] and [10].

I would like to thank Professor A. Seidenberg for many valuable discussions and suggestions during preparation of the research, while I was on sabbatical leave visiting Berkeley.

I would like also to thank the referee for his comments.

2. Normality and regularity of local domains. Let \(R \) be a commutative ring with identity \(1 \). Let \(p \) be a prime ideal in \(R \). By height of \(p \), we mean the supremum of the length of chains of prime ideals \(p_0 \supsetneq p_1 \supsetneq \cdots \supsetneq p_n \) with \(p_0 = p \) and denote it by \(h(p) \). Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded integral domain. Let \(K \) be the quotient field of \(R \). We say that \(R \) is integrally closed if \(R \) is integrally closed in \(K \).

The following theorem was originally proved in [9] for projective varieties. We observe that the same holds true for non-Noetherian graded domain also.

Theorem 1. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded domain. Let \(p \in \text{Spec}(R) \) be nonhomogeneous. If \(h(p) = 1 \) then \(R_p \) is integrally closed.

Proof. Let \(p^* \) be the ideal generated by all the homogeneous elements of \(p \). By [10, Lemma 3, p. 153] \(p^* \) is a prime ideal and \(p \not\subseteq p^* \subseteq p \). Since \(h(p) = 1 \), \(p^* = 0 \). Therefore \(p \) contains no homogeneous element. Thus every nonzero homogeneous element \(u \) is in \(R - p \). It follows therefore \(\bigoplus_{q \in \mathbb{Z}} K_q \subseteq R_p \). Let \(f \in K \) be integral over \(R_p \). Then there exists \(h \in R - p \) such that \(fh \) is integral over \(R \). It follows from [10, Theorem 11, p. 157] that each of the homogeneous components is integral over \(R \). By the preceding, each homogeneous component of \(f \cdot h \) is in \(R_p \). Therefore \(f \cdot h \in R_p \) and \(f \in R_p \). Thus \(R_p \) is integrally closed.

Let \(y \in K \) be any nonzero element. If \(\xi \in K_p \), then \(\xi/y^q \in K_p \). Moreover \(R \subseteq K_p[y] \), \(K = K_p(y) \), \(y \) is transcendental over \(K_p \), \(K_q = K_q[y] \) and \(\bigoplus_{q \in \mathbb{Z}} K_q = K_p[y, 1/y] \). We have the following theorem.

Theorem 2. Let \(R = \bigoplus_{i \geq 0} R_i \) with that \(R_1 \neq 0 \). Let \(p \) be a homogeneous prime ideal such that there exists an element \(r_i \in R_i - p \). Then

Professor A. Seidenberg remarks that the present Theorem 2 strengthens Lemma 2 of [9; p. 618] and corrects its proof.
(a) \(K_\theta \) is the quotient field of \(R(p) \) and \(K_\theta \cap R_p = R(p) \).
(b) \(R(p) \) is integrally closed in \(K_\theta \) implies that \(R(p) \) is integrally closed in \(K \).
(c) \(R_p = (R(p)[r_t])_S \), where \(S = R - p \); \(r_t \) is transcendental over \(R(p) \).
(d) \(R_p \) is integrally closed in \(K \) if and only if \(R(p) \) is integrally closed in \(K_\theta \).
(e) \(R(p) \) is regular if and only if \(R_p \) is regular.

Proof. By definition \(R(p) \subset K_\theta \). Let \(x \in K_\theta \), \(x = f_i/g_i \) for some \(f_i, g_i \in R_i \) and \(g_i \neq 0 \). Then \(x = f_i/g_i = (f_i/r_i')(g_i/r_i') \), since \(f_i/r_i' \) and \(f_i/r_i' \) are both in \(R(p) \).

Therefore \(x \) is in the quotient field of \(R(p) \). For the second part of (a) we need only to prove that \(K_\theta \cap R_p \subset R(p) \). Let \(x \in K_\theta \cap R_p \). Then \(x = f_i/g_i \), for some \(f_i, g_i \in R_i \) with \(g_i \neq 0 \). On the other hand \(x = (f_i/r_i') \), \((f_i/r_i') \), \(s_i + s_{r+t} + \cdots + s_{r+t+m} \) with \(s_i + s_{r+t} + \cdots + s_{r+t+m} \) \(\subset p \). Then there exists an index \(l + t \) such that \(s_i + s_{r+t} + \cdots + s_{r+t+m} \) \(g_i(r_i + r_{i+1} + \cdots + r_{i+m}) \) implies that \(l = j, m = k \) and \(f_i \cdot s_{r+t} = g_i \cdot r_{i+t} \). Thus \(x = f_i/g_i = r_{i+t}/s_{r+t} \) i.e. \(x \in R(p) \). Therefore \(K_\theta \cap R_p = R(p) \).

(b) If \(R(p) \) is integrally closed in \(K_\theta \), then, since \(K = K_\theta (r_t) \) and \(r_t \) is transcendental over \(K_\theta \) as noted in the preceding, \(K_\theta \) is algebraically closed in \(K \) and \(R(p) \) is thus integrally closed in \(K \).

(c) As noted in (b), \(r_t \) is transcendental over \(R(p) \). Let \(f \in R \) be an element. Then \(f = f_r + f_{r+1} + \cdots + f_n \) where \(f_i \in R_i \) for some nonnegative integers \(r \) and \(n \). But \(f = (f_i/r_i')r_i' + (f_{r+t}/r_{i+t}')r_{i+t}' + \cdots + (f_n/r_n')r_n' \). Therefore \(R \subset (R(p)[r_t])_S \). Thus \(S = R - p \) is a multiplicative set in \(R(p)[r_t] \). Now let \(f/g \in R_p, g \in R - p \). Then for some nonnegative integer \(t \) and \(m \),

\[
\frac{f}{g} = \frac{f_t}{g} + \cdots + \frac{f_m}{g} = \frac{1}{g} \left(\left(\frac{f_t}{r_t} \right) r_t' + \left(\frac{f_{r+t}}{r_{i+t}'} \right) r_{i+t}' + \cdots + \left(\frac{f_m}{r_{r+t}'} \right) r_{r+t}' \right).
\]

Therefore \(f/g \in (R(p)[r_t])_S \) i.e. \(R_p \subset (R(p)[r_t])_S \). The other inclusion is obvious. Thus \(R_p = (R(p)[r_t])_S \).

(d) Now, if \(R(p) \) is integrally closed in \(K \), then clearly \(R_p = (R(p)[r_t])_S \), being a localization of transcendental extension of an integrally closed domain, is integrally closed. Conversely if \(R_p \) is integrally closed in \(K \), let \(f \in K_\theta \) be an integral element over \(R(p) \). Then \(f \in R_p \). Thus \(f \in R_p \cap K_\theta = R(p) \), and \(R(p) \) is integrally closed.

(e) Recall that a ring \(A \) is said to be regular if \(A_\mathfrak{m} \) is a regular local ring for each maximal ideal \(\mathfrak{m} \) in \(A \). It follows from Serre's theorem [5; p. 139] that \(A \) is regular if and only if \(A_\mathfrak{p} \) is regular for every \(\mathfrak{p} \in \text{Spec}(A) \).

If \(R(p) \) is a regular local ring, then by [5; Theorem 40, p. 126] the polynomial ring \(R(p)[r_t] \) is regular. Since localization of a regular ring is regular therefore \(R_p = (R(p)[r_t])_S \) is a regular local ring.
Conversely assume that \(R_p = (R_p[r_1])_s \) is a regular local ring. Since \(R_p[r_1] \) is a polynomial ring over \(R_p \) therefore \(R_p[r_1] = R_p \)-flat. \((R_p[r_1])_s \) is \(R_p \)-flat therefore \(R_p \) is \(R_p \)-flat. Thus \(R_p \) is Noetherian. The inclusion map \(R_p \rightarrow R_p \) is obviously a local homomorphism. Therefore it follows from [1; IV, 17.3.3 (i), p. 48] that \(R_p \) is a regular local ring.

There are graded rings in which there are homogeneous prime ideals \(p \) such that \(p \cap R \neq R \). For example: (1) graded rings which are homogeneous coordinate rings of projective varieties. In this case \(p \cap R \neq R \) for \(p \in \text{Proj}(R) \). (2) \(R = R_0[x] \), a graded ring generated over \(R_0 \), (3) Let \(k[x, y] \) be a polynomial ring in two indeterminates over a field \(k \). Let \(R = k[x, y] \) be a polynomial ring in two indeterminates over a field \(k \). Let \(R = k[Y] + (X \cdot Y) \cdot k[X, Y] \). \(R \) has a graded structure \(R = R_0 \oplus R_1 \oplus R_2 \oplus \cdots \) with \(R_0 = k, R_1 = k \cdot Y; R_2 = kY^2 + k(X \cdot Y), \ R_3 = kY^3 + kX^2Y + kXY^2, \) etc. It follows from the observation that \((X' \cdot Y')^2 \in R_y \) if \(j \geq 1 \) that \(p \cap R_i = 0 \) for every \(p \in \text{Proj}(R) \).

3. Normality of a graded domain. In this section, a graded domain \(R \) is normal if it is integrally closed in its field of fractions.

Recall [6; Theorem 8, p. 400]: Let \(\mathcal{O} \) and \(\mathcal{O}' \) be two normal rings which contain a field \(k \). If \(\mathcal{O} \) and \(\mathcal{O}' \) are separably generated over \(k \) and if \(\mathcal{O} \otimes_k \mathcal{O}' \) is an integral domain, then \(\mathcal{O} \otimes_k \mathcal{O}' \) is a normal ring.

Theorem 3. Let \(R_0 \) be a normal integral domain containing a field \(k \) such that \(R_0 \) is separable over \(k \). Let \(R = R_0[x] = R_0[x_1, \ldots, x_n] \) be an integral domain finitely generated over \(R_0 \) as an \(R_0 \)-algebra such that the quotient field \(K \) of \(R_0 \) and the quotient field \(k(x) \) of \(k[x_1, \ldots, x_n] \) are linearly disjoint over \(k \), and \(k(x) \) separable over \(k \). Then \(k[x] \) is normal if and only if \(R \) is normal.

Proof. Let \(X_1, \ldots, X_n \) be \(n \) indeterminates over \(R_0 \). Let \(\mathcal{A} \) be the prime ideal in \(k[X] = k[X_1, \ldots, X_n] \) such that \(k[x_1, \ldots, x_n] \subseteq k[X_1, \ldots, X_n] / \mathcal{A} \) and let \(\mathcal{B} \) be the prime ideal in \(R_0[X] = R_0[X_1, \ldots, X_n] \) such that \(R = R_0[X] / \mathcal{B} \). Then \(\mathcal{B} \cdot K[X] \cap R_0[X] = \mathcal{B} \) and \(\mathcal{A} = \mathcal{B} \cap k[X] \). Since \(K \) and \(k(x) \) are linearly disjoint over \(k \), it is well known that \(\mathcal{A} \cdot K[X] = \mathcal{B} \cdot K[X] \) and \(\mathcal{A} \cdot R_0[X] = \mathcal{B} \), [4; Corollary 1, p. 67]. We shall use \(\mathcal{B} \) in both \(R_0[X] \) and \(K[X] \) as the prime ideal determined by \((x) = (x_1, \ldots, x_n) \). Since \(R_0 \otimes_k k[X] = R_0[X] \), it follows that \(R_0 \otimes_k k[x] = R_0[x] \), i.e. \(R_0 \otimes_k k[x] \) is an integral domain. It follows from [6; Theorem 8, p. 400] that \(R_0[x] \) is normal. Conversely if \(R_0[x] \) is normal, then \(R_0[x] \) is normal for each \(p \in \text{Spec}(R_0[x]) \). Let \(p' = p \cap k[x] \) for \(p \in \text{Spec}(R_0[x]) \) and \(p \cap R_0 = \{0\} \). Then \(k[x]_{p'} \) is also normal. Indeed let \(\xi \in k(x) \) be integral over \(k[x]_{p'} \). Since \(k[x]_{p'} \subseteq R_0[x]_{p'} \), therefore \(\xi \in R_0[x]_{p'} \). Thus \(\xi \in R_0[x] \cap k(x) \). It is sufficient to show that \(R_0[x]_{p} \cap k(x) \subseteq k[x]_{p'} \). Let \(S = R_0 - \{0\} \). \(K[x] = S^{-1}R_0[x] \) and
$S^{-1}p$ is a prime ideal in $K[x]$. $S^{-1}p \cap k[x] = p \cap k[x]$. Since K and $k(x)$ are linearly disjoint over k, it follows from [4; Proposition 6, p. 92] that $k[x]_{S^{-1}p} \cap k(x) = k[x]_p$. Thus $k[x]_p \supset R_0[x]_p \cap k(x)$, and $k[x]_p = R_0[x]_p \cap k(x)$. So $\xi \in k[x]_p$ and $k[x]_p$ is therefore normal.

We shall finish the proof by showing that $\text{Spec}(k[x]) = \{p \cap k[x] | p \in \text{Spec}(R_0[x]) \text{ and } p \cap R_0 = 0\}$. Let q_x be a prime ideal. There exists a prime ideal Q_x in $K[X]$ such that $Q_x \cap k[X] = q_x$. Indeed, using Zariski's terminology [10; pp. 21-22 and pp. 161-176], we consider an algebraically closed field Ω containing K and Ω is of infinite transcendence degree over K.

Let \mathbb{A}^n be the n dimensional affine space, i.e. $\mathbb{A}^n = \{(a_1, \ldots, a_n) | a_1, \ldots, a_n \in \Omega\}$. Every prime ideal P in $K[X]$ defines an irreducible algebraic variety V over K in \mathbb{A}^n. Every irreducible algebraic variety V over K carries a generic point $(\xi) = (\xi_1, \ldots, \xi_n) \in \mathbb{A}^n$ over K, and $P = \{g(X) \in K[X] | g(\xi) = 0\}$. Let $(\eta) = (\eta_1, \ldots, \eta_n) \in \mathbb{A}^n$ be a generic point of q_x over k, i.e. $q_x = \{f(X) \in k[X] | f(\eta) = 0\}$. Let $Q_\eta = \{F(X) \in K[X] | F(\eta) = 0\}$. Then Q_η is a prime ideal and $Q_\eta \cap k[X] = q_x$. Let $Q_x = Q_\eta \cap R_0[x]$, $Q_x \cap R_0 = 0$ and $Q_x \cap k[x] = q_x$. Since $\mathbb{A} \subset q_x \iff \mathbb{B} \cdot K[X] \subset Q_x \iff \mathbb{B} \subset Q_x$. Let $Q' = Q_x/\mathbb{B} \subset R_0[x]$. Then $Q' \cap k[x] = q$. Thus each prime ideal in $k[x]$ is the contraction of a prime ideal in $R_0[x]$ intersecting R_0 at 0.

As the assertion in the last part of the proof of the above theorem will be referred later, we would like to state it as a corollary.

Corollary. Let R_\circ be an integral domain containing a field k. Let $R = R_\circ[x_1, \ldots, x_n]$ be an integral domain finitely generated over R_\circ as an algebra such that the quotient field K of R_\circ and the quotient field $k(x)$ of $k[x] = k[x_1, \ldots, x_n]$ are linearly disjoint over k. Then $\text{Spec}(k[x]) = \{p \cap k[x] | p \in \text{Spec}(R_\circ[x]) \text{ and } p \cap R_\circ = 0\}$. Moreover if R is graded with R_\circ as the component of homogeneous degree 0, then $\text{Proj}(k[x]) = \{p \cap k[x] | p \in \text{Proj}(R_\circ[x])\} = \{p \cap k[x] | p \in \text{Proj} K[x]\}$.

Proof (of the last part). Let $\mathbb{A}, \mathbb{B}, q, q_x$, and Q_η be the same as those in the proof of Theorem 3. If R is a graded domain, then both \mathbb{A} and \mathbb{B} are homogeneous ideals. If q is a nonirrelevant and homogeneous prime ideal in $k[x]$, then so is q_x. Let Q_η^x be the ideal in $K[x]$ generated by the homogeneous elements belonging to Q_η. Then, by [10; Lemma 3, p. 153], Q_η^x is a prime ideal and clearly $Q_\eta^x \cap k[X] = q_x$. Since q_x is nonirrelevant, Q_η^x is also nonirrelevant, and $Q_\eta^x \supset \mathbb{B}$. Let $Q^x = Q_\eta^x/\mathbb{B}$. We have $Q^x \cap k[x] = q$. Therefore $\text{Proj}(k[x]) = \{p \cap k[x] | p \in \text{Proj}(R) \text{ and } p \cap R_\circ = 0\}$.

Let us recall some definitions and facts: Let $R = \bigoplus_{i=0} R_i$ be a graded integral domain. R is Noetherian if and only if R_\circ is Noetherian and R is an R_\circ-algebra of finite type. Let \bar{R} be the integral closure of R in its field of quotients K. Let K_\circ be the homogeneous component of K of...
To be processed
for all \(p \in \text{Proj}(R_0[x]) \), and coh.d.\(S^{-1}\mathfrak{B} < n - 1 \) then \(R_0[x] \) is normal.

(3) If \(R_{(p)} \) is normal for each \(p \in \text{Proj}(\mathfrak{B}) \) and if coh.d.\(\mathfrak{B} \cdot S^{-1}R_0[X] = n - 1 \) then \(R_0[x] \) is not normal.

Proof. (1) Both \(\mathfrak{A} \) and \(\mathfrak{B} \) are homogeneous ideals, \(k[x] \) is graded. As projective scheme \(\text{Proj}(R_0[x]) \equiv \text{Proj}((S^{-1}R_0)[x]) \) [1, Prop. (2.4.7), p. 30]. Therefore \((S^{-1}R_0)[x] \) is locally normal, i.e. \((S^{-1}R_0)[x]_{(p)} \) is normal for each \(p \in \text{Proj}(S^{-1}R_0[x]) \). Since tr.deg.\(S^{-1}R_0[x] > 0 \), if coh.d.\(S^{-1}\mathfrak{B} < n - 1 \), by [9, Theorem 3, p. 619], \(S^{-1}R_0[x] \) is normal. Therefore \(S^{-1}R_0[x]_{(p)} \) is normal for every \(p \in \text{Spec}(S^{-1}R_0[x]) \). Since \((S^{-1}R_0)[x]_{(p)} \cap k(x) = k[x]_{(p)} \) as shown in the preceding, where \(p^c = p \cap k[x] \), \(k[x]_{(p)} \) is normal. By the Corollary to Theorem 3, \(\text{Spec}(k[x]) = \{ p^c \mid p \in \text{Spec}(S^{-1}R_0[x]) \} \), we have that \(k[x] \) is normal for every \(q \in \text{Spec}(k[x]) \). Therefore \(k[x] \) is normal.

(2) By (1), \(k[x] \) is normal. \(R_0 \) is normal. It follows from Theorem 3, \(R_0[x] \) is normal.

(3) If coh.d.\(\mathfrak{B} \cdot S^{-1}R_0[X] = n - 1 \), then it is well known that for a form \(l \) in \(R_0[X] \) prime to \(\mathfrak{B} \) i.e. \(\mathfrak{B} : l = \mathfrak{B}, \) coh.d.\((\mathfrak{B}, l) \cdot S^{-1}R_0[X] = n \). Therefore \((\mathfrak{B}, l) \cdot S^{-1}R_0[X] \) has \((X) \cdot S^{-1}R_0[X] \) as an associated prime ideal. Since \(\dim \mathfrak{B} \cdot S^{-1}R_0[X] > 0 \), \((\mathfrak{B}, l)S^{-1}R_0[X] \) has an embedded associated prime. On the other hand, it is easy to see that \((X)S^{-1}R_0[X] \cap R_0[X] = (X)R_0[X] \). Therefore it follows from [5, Lemma 7c, p. 50] that \((\mathfrak{B}, l)R_0[X] \) has \((X)R_0[X] \) as an embedded associated prime ideal. Let \((\bar{I})R_0[X] = (\mathfrak{B}, l)R_0[X]/\mathfrak{B} \). Therefore \((\bar{I})R_0[x] \) is a principal homogeneous ideal having \((X) \cdot R_0[x] \) as an embedded associated prime ideal. It follows from Theorem 4 that \(R \) is not normal.

4. Integral closure of a graded ring

In this section, we study a general graded ring, \(R = \bigoplus_{i \geq 0} R_i \). Let \(F \) be the total quotient ring of \(R \), and let \(\bar{R} \) be the integral closure of \(R \) in \(F \). In case of a graded domain, the integral closure \(\bar{R} \) of \(R \) in its quotient field \(K \) is again graded and \(\bar{R}_i = \bar{R} \cap K_i \) for \(i \geq 0 \). We investigate \(\bar{R} \) when \(R \) is not an integral domain. A ring \(R \) is normal if \(R_\wp \) is an integral domain and integrally closed in its quotient field for each \(\wp \in \text{Spec}(R) \).

Let \(R = \bigoplus_{i \geq 0} R_i \). Let \(U \) be the set of all nonzero divisors of \(R \). Let \(F \) be the total quotient ring and let \(F_i = \{ r_i/u_i | r_i \in R_i, u_i \in R_i \cup U, i - j = i \} \). These are the notations going to be used in the sequel.

Theorem 6. Assume \(U \cap R_i \neq \emptyset \) and let \(u_i \in U \cap R_i \). Then (1) the ring \(\Sigma_{i \in \mathbb{Z}} F_i \) is a direct sum, and \(\bigoplus_{i \in \mathbb{Z}} F_i = F_0[u_i, 1/u_i], F = F_0[u_i], u_i \) is algebraically independent over \(F_0 \), and \(F_i = F_0 \cdot u_i \) for all \(i \in \mathbb{Z} \). If \(F_0 \) is Noetherian then so is \(F \). (2) \(F_0 \) is reduced, i.e. \(F_0 \) has no nonzero nilpotent element, if and only if \(R \) is reduced. (3) If \(R \) is reduced and \(F_0 \) is
Noetherian, then $F_0[u_t]$ is integrally closed in F. (4) If R is reduced and F_0 is Noetherian, then R is a graded subring of $\bigoplus_{i \in \mathbb{Z}} F_i$.

Proof. (1) It follows from the definition of F_i's that each F_i is an additive group and $F_i : F_j \subset F_{i+j}, \Sigma_{i \in \mathbb{Z}} F_i$ is a ring. Let $f_k + \cdots + f_i \in \Sigma_{i \in \mathbb{Z}} F_i$. Suppose $f_k + \cdots + f_i = 0$. Let $f_m = r_m/u_m$ where $l_m - j_m = m$ and $m = k, \cdots, s$. Let $u = \Pi_{m=k}^s u_{m}$. Then $uf_k + \cdots + uf_i = 0$ in R, and uf_k, \cdots, uf_i are homogeneous elements of distinct degrees. Therefore $uf_k = \cdots = uf_i = 0$. Thus $f_k = \cdots = f_i = 0$, and the sum ΣF_i is therefore a direct sum. Let $f_k \in F_k$. Then $f_k/u_t \in F_0$. Therefore $f_k \in F_0 \cdot u_t^i$ and $F_k = F_0 \cdot u_t^i$. Hence $\bigoplus_{i \in \mathbb{Z}} F_i = F_0[u_t, 1/u_t]$. For any $f \in F$,

$$f = (f_k + \cdots + f_i)/u = \frac{1}{u} \left(\frac{f_k}{u_t^i} + \cdots + \frac{f_i}{u_t^i} u_t^i \right).$$

Therefore $F = F_0[u_t, 1/u_t] \subset F_0[u_t]$. u_t is algebraically independent over F_0. Indeed, let $a_o u_t^o + a_i u_t^{i-1} + \cdots + a_s = 0$, where $a_i \in F_o$ and $a_o \neq 0$. Writing $a_i = r_i/u_i$ with $l_i - j_i = i$, we have $a_i u_t^{i-1} \in F_{n-i}$. Therefore $a_i u_t^{i-1} = 0$, and $a_i = 0$ for $i = 0, 1, \cdots, n$. Therefore u_t is algebraically independent over F_0.

If F_0 is Noetherian, then so is $F_0[u_t]$. Now $F = F_0[u_t]$ Therefore F is also Noetherian.

(2) It is obvious that R is reduced implies that F_0 is reduced. Conversely, we note if $(x_m/u_t^m)^* = 0$, then $x_m = 0$. Also if $y_m \in R_m$ such that $y_m^m = 0$ then $(y_m/u_t^m)^* = 0$. Thus $y_m = 0$. Now let y be a nilpotent element in R. Write $y = y_k + \cdots + y_s$. For some positive integer b, $y^b = (y_k + \cdots + y_s)^b = 0$. Thus $y_k^b = 0$ and then $(y_{k+1} + \cdots + y_s)^b = 0$ and so on we get $y_{k+1}^b = \cdots = y_s^b = 0$, so $y_m = \cdots = y_s = 0$. Therefore $y = 0$ and R is reduced.

(3) F_0 is reduced. It follows from that $F = F_0[u_t]$ and that u_t is transcendental over F_0, the nonzero divisors of F_0 are the same as the nonzero divisors of R in F_0. Let U_0 be the set of all nonzero divisors of F_0. Let $u_o \in U_0$, then $u_o = r_m/u_m$ where $u_m \in U$ and $r_m \in R_m$. Moreover $r_m \in U$ also. Thus u_o is a unit i.e. U_0 is a multiplicative group in F_0. Hence the total quotient ring $(F_0)_{U_0} = F_0$. Since F_0 is Noetherian and reduced, therefore, $F_o = \bigoplus_{i \in \mathbb{Z}} G_i$, where G_i's are fields. It follows from [2; Proposition (6.5.2), p. 146] that F_0 is normal.

It follows from [5; Proposition (1.7.8), p. 116] that $F_0[u_t]$ is normal. Since $F_o[u_t]$ is a polynomial ring in u_t, and F_0 is reduced, therefore $F_o[u_t]$ is also reduced. F_0 is Noetherian implies that F is Noetherian. Then $F = \bigoplus_{i \in \mathbb{Z}} H_i$ where H_i's are fields. Thus it follows from [2; Proposition (6.5.2), p. 146] that $F_0[u_t]$ is integrally closed.

Note: Let $A = Z/(4)[X]$, the polynomial ring in X over $Z/(4)$. $Z/(4)$ is integrally closed, while A is not. Indeed, let $y = (x + 1)/(x - 1), y^2 - 1 = 0, y \notin A$.

(4) Let \(x \in \bar{R} \). Since \(R \subset R_0[u_t] \), \(x \) is integral over \(F_0[w/u] \). By (3), \(\bar{R} \subset F_0[u_t] \). The rest of the proof is practically the same argument used in the proof of [10; Theorem 11, p. 157]. We summarize the proof: Let \(x \in \bar{R} \), \(x = x_k + \cdots + x_s, k \leq s \), \(x_k \neq 0 \) is called the initial homogeneous term. We want to show that each \(x_i, i = k, \ldots, s \), is integral over \(R \) also. Since \(x \in \bar{R} \subset \Sigma F_0 \) there exists \(u_m \in R_m \cap U \) for some positive integer \(m \), such that \(u_m x \in R \). Case (a), if \(R \) is Noetherian, then \(R[x] \) is a finite \(R \)-module. There exists an integer \(\lambda > 0 \) such that \(u_{m+i}^{d+i} \in R \) for all integer \(i \geq 0 \). Let \(d = u_m^k \). Then \(dR[x] \subset R \). The initial homogeneous term \(dx^k \) is \(dx^i \subset R \) implies \(dx^i \in R \). Therefore \(x_k \in (1/d)R \), a Noetherian \(R \)-module. Therefore \(R[x_k] \subset R \cdot 1/d \) is a Noetherian \(R \)-submodule. Therefore \(x_k \) is integral over \(R \). Repeating that argument to \(x - x_k = x_{k+1} + \cdots + x_s \), we conclude that \(x_i \in \bar{R} \) for \(i = k, \ldots, s \). Therefore \(\bar{R} \) is graded in this case. Next we look at case (b): \(R \) is not Noetherian. Let \(x \in \bar{R} \), and \(x^n + a_1 x^{n-1} + \cdots + a_n = 0 \) where \(a_1, \ldots, a_n \in R \). As in case (a), there is a homogeneous nonzero divisor \(d \in R \) such that \(dx_k^i \in R \). Let \(\{y_1, \ldots, y_s\} = \{d, dx_k, \ldots, dx_s \} \), homogeneous components of \(a_i \)'s. Let \(A = k[y_1, \ldots, y_s] \), where \(k = \mathbb{Z} \) or \(\mathbb{Z}/(n) \) according to whether \(R \) is of characteristic \(0 \) or \(n > 0 \). \(A \subset R \). Let \(A_k = A \cap R_k \). Then \(A = \Sigma A_k \) is a graded subring of \(R \). \(U \cap A \) contains \(d \). Therefore \(A_{U \cap A} \), the total quotient ring of \(A \), contains \(x_k \) and hence contains \(x \) also. Thus the above integral relation takes place in \(A_{U \cap A} \). Since \(A \) is Noetherian, therefore case (a) is applicable. Therefore \(x_k \) is integral over \(A \). hence \(x_k \) is integral over \(R \).

References

Received November 10, 1975 and in revised form December 2, 1975.

Michigan State University
Richard Fairbanks Arnold and A. P. Morse, *Plus and times* 297
Edwin Ogilvie Buchman and F. A. Valentine, *External visibility* 333
R. A. Czerwinski, *Bonded quadratic division algebras* 341
William Richard Emerson, *Averaging strongly subadditive set functions in
unimodular amenable groups. II* .. 353
Lynn Harry Erbe, *Existence of oscillatory solutions and asymptotic behavior
for a class of third order linear differential equations* 369
Kenneth R. Goodearl, *Power-cancellation of groups and modules* 387
J. C. Hankins and Roy Martin Rakestraw, *The extremal structure of locally
compact convex sets* ... 413
Burrell Washington Helton, *The solution of a Stieltjes-Volterra integral
equation for rings* ... 419
Frank Kwang-Ming Hwang and Shen Lin, *Construction of 2-balanced
(n, k, \(\lambda \)) arrays* ... 437
Wei-Eihn Kuan, *Some results on normality of a graded ring* 455
Dieter Landers and Lothar Rogge, *Relations between convergence of series
and convergence of sequences* .. 465
Lawrence Louis Larmore and Robert David Rigdon, *Enumerating
immersions and embeddings of projective spaces* 471
Douglas C. McMahon, *On the role of an abelian phase group in relativized
problems in topological dynamics* .. 493
Robert Wilmer Miller, *Finitely generated projective modules and TTF
classes* ... 505
Yashaswini Deval Mittal, *A class of isotropic covariance functions* 517
Anthony G. Mucci, *Another martingale convergence theorem* 539
Joan Kathryn Plastiras, *Quasitriangular operator algebras* 543
John Robert Quine, Jr., *The geometry of \(p(S^1) \)* 551
Tsuan Wu Ting, *The unloading problem for severely twisted bars* 559