SOME RESULTS ON NORMALITY OF A GRADED RING

Wei-Eihn Kuan
SOME RESULTS ON NORMALITY
OF A GRADED RING

WEI-EIHN KUAN

Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded domain and let \(p \) be a homogeneous prime ideal in \(R \). Let \(R_p \) be the localization of \(R \) at \(p \) and \(R_{(p)} = \{ r/s | r, s \in R_i \text{ and } s \notin p \} \). If \(R_i \cap (R - p) \neq \emptyset \), then \(R_p \) is the localization of a transcendental extension of \(R_{(p)} \). Thus \(R_p \) is normal (regular) if and only if \(R_{(p)} \) is normal (regular). Let \(\text{Proj}(R) = \{ p | p \text{ is a homogeneous prime ideal and } p \notin \bigoplus_{i \geq 0} R_i \} \). Under certain conditions a Noetherian graded domain \(R \) is normal if \(R_{(p)} \) is normal for each \(p \in \text{Proj}(R) \). If \(R = \bigoplus_{i \geq 0} R_i \) is reduced and \(F_0 = \{ r_i/u_i | r_i, u_i \in R_i \text{ and } u_i \in U \} \), where \(U \) is the set of all nonzero divisors, then the integral closure of \(R \) in the total quotient ring of \(R \) is also graded.

1. Introduction. Let \(R = \bigoplus_{i \geq 0} R_i \) be a graded integral domain. Let \(\text{Spec}(R) \) be the set of all prime ideals in \(R \). Let \(R_+ = \bigoplus_{i > 0} R_i \); \(R_+ \) is an ideal in \(R \). An ideal \(\mathfrak{a} \) in \(R \) is said to be irrelevant if \(R_+ \subseteq \sqrt{\mathfrak{a}} \), the radical of \(\mathfrak{a} \). Let \(\text{Proj}(R) = \{ p \in \text{Spec}(R) | p \subseteq R_+ \text{ is homogeneous and nonirrelevant} \} \). For each \(p \in \text{Spec}(R) \), let \(R_p = \{ r/s | r, s \in R_i \text{ and } s \notin p \} \). (Note: \(R_{(p)} \) in [1] is defined for \(p \in \text{Proj}(R) \) only.) According to the terminology of Seidenberg [9], \(R_p \) is called the arithmetical local ring of \(R \) at \(p \) and \(R_{(p)} \), the geometrical local ring of \(R \) at \(p \). I prove that if \(R_i \cap (R - p) \neq \emptyset \) then \(R_p \) is the ring of quotients of a transcendental extension of \(R_{(p)} \) relative to a multiplicative set, \(R_p \) is normal (regular) if and only if \(R_{(p)} \) is normal (regular); see Theorem 2. In the case of an irreducible projective variety \(V \) over a field \(k \) in a projective \(n \)-space \(P^n_k \), \(V/k \) is normal if the geometrical local ring of \(V \) at each \(p \in V \), \(\mathcal{O}^*_V(p) \) is integrally closed. \(V \) is arithmetically normal if the ring of strictly homogeneous coordinates \(k[V] \) is integrally closed. The latter implies the former. For the converse, various cohomological criteria are developed; see [3], [8], [9]. I attempt to study the normality of a graded domain \(R \) if \(R_{(p)} \) is normal for every \(p \in \text{Proj}(R) \). In this paper, I also obtain the following theorem: Let \(R \) be a Noetherian graded domain, say \(R = R_0[x_0, \ldots, x_n] \) and \(x_0, \ldots, x_n \) are of homogeneous degree 1. Assume that \(R_0 \) contains a field \(k \) over which \(R_0 \) and \(k(x_0, \ldots, x_n) \) are linearly disjoint and separable. Let \(\mathfrak{B} \) be the kernel of the canonical map from the polynomial ring \(R_0[x_0, \ldots, x_n] \). Then \(R \) is normal if \(R_0 \) is normal, \(R_{(p)} \) is normal for every \(p \in \text{Proj}(R) \) and \(\text{coh.d.} \mathfrak{B} \cdot K[X_0, \ldots, X_n] < n - 1 \), where \(K \) is the quotient field of \(R_0 \).
In the §4, we prove that under certain conditions on a graded ring R (not necessarily integral domain) the integral closure \tilde{R} of R in the total quotient ring of R is also graded; see Theorem 6.

Our references on the elementary well known facts about graded rings can be found in [1] and [10].

I would like to thank Professor A. Seidenberg for many valuable discussions and suggestions during preparation of the research, while I was on sabbatical leave visiting Berkeley.

I would like also to thank the referee for his comments.

2. Normality and regularity of local domains. Let R be a commutative ring with identity 1. Let p be a prime ideal in R. By height of p, we mean the supremum of the length of chains of prime ideals $p_0 \supsetneq p_1 \supsetneq p_2 \supsetneq \cdots \supsetneq p_n$ with $p_0 = p$ and denote it by $ht(p)$. Let $R = \bigoplus_{i \geq 0} R_i$ be a graded integral domain. Let K be the quotient field of R. We say that R is integrally closed if R is integrally closed in K.

The following theorem was originally proved in [9] for projective varieties. We observe that the same holds true for non-Noetherian graded domain also.

Theorem 1. Let $R = \bigoplus_{i \geq 0} R_i$ be a graded domain. Let $p \in \text{Spec}(R)$ be nonhomogeneous. If $ht(p) = 1$ then R_p is integrally closed.

Proof. Let p^* be the ideal generated by all the homogeneous elements of p. By [10, Lemma 3, p. 153] p^* is a prime ideal and $p \not\supsetneq p^* \supsetneq 0$. Since $ht(p) = 1$, $p^* = 0$. Therefore p contains no homogeneous element. Thus every nonzero homogeneous element u is in $R - p$. It follows therefore $\bigoplus_{q \in \mathbb{Z}} K_q \subset R_p$. Let $f \in K$ be integral over R_p. Then there exists $h \in R - p$ such that fh is integral over R. It follows from [10, Theorem 11, p. 157] that each of the homogeneous components is integral over R. By the preceding, each homogeneous component of $f \cdot h$ is in R_p. Therefore $f \cdot h \in R_p$ and $f \in R_p$. Thus R_p is integrally closed.

Let $y \in K_i$ be any nonzero element. If $\xi \in K_q$, then $\xi/y^q \in K_0$. Moreover $R \subset K_0[y]$, $K = K_0(y)$, y is transcendental over K_0, $K_q = K_0y^q$ and $\bigoplus_{q \in \mathbb{Z}} K_q = K_0[y, 1/y]$. We have the following theorem.

Theorem 2. Let $R = \bigoplus_{i \geq 0} R_i$ with that $R_1 \neq 0$. Let p be a homogeneous prime ideal such that there exists an element $r_i \in R_i - p$. Then

Professor A. Seidenberg remarks that the present Theorem 2 strengthens Lemma 2 of [9; p. 618] and corrects its proof.
(a) K_θ is the quotient field of $R_{(p)}$ and $K_\theta \cap R_p = R_{(p)}$.
(b) $R_{(p)}$ is integrally closed in K_θ implies that $R_{(p)}$ is integrally closed in K.
(c) $R_p = (R_{(p)}[r_i])_S$, where $S = R - p$; r_i is transcendental over $R_{(p)}$.
(d) R_p is integrally closed in K if and only if $R_{(p)}$ is integrally closed in K_θ.
(e) $R_{(p)}$ is regular if and only if R_p is regular.

Proof. By definition $R_{(p)} \subset K_\theta$. Let $x \in K_\theta$, $x = f_i/g_i$ for some $f_i, g_i \in R_i$ and $g_i \neq 0$. Then $x = f_i/g_i = (f_i/r_i)/(g_i/r_i)$, since f_i/r_i and f_i/r_i are both in $R_{(p)}$. Therefore x is in the quotient field of $R_{(p)}$. Thus K_θ is the quotient field of $R_{(p)}$. For the second part of (a) we need only to prove that $K_\theta \cap R_p \subset R_{(p)}$. Let $x \in K_\theta \cap R_p$. Then $x = f_i/g_i$ for some $f_i, g_i \in R_i$ with $g_i \neq 0$. On the other hand $x = (s_i + s_{i+1} + \cdots + s_{i+m})/(s_i + s_{i+1} + \cdots + s_{i+m})$ with $s_i + s_{i+1} + \cdots + s_{i+m} \not\in p$. Then there exists an index $l + t$ such that $s_{l+t} \not\in p$. $f_i \cdot (s_i + s_{i+1} + \cdots + s_{i+m}) = g_i(r_i + r_{i+1} + \cdots + r_{i+l})$ implies that $l = j, m = k$ and $f_i \cdot s_{l+t} = g_i \cdot r_{i+t}$. Thus $x = f_i/g_i = r_{i+t}/s_{i+t}$ i.e. $x \in R_{(p)}$. Therefore $K_\theta \cap R_p = R_{(p)}$.

(b) If $R_{(p)}$ is integrally closed in K_θ then, since $K = K_\theta(r_i)$ and r_i is transcendental over K_θ as noted in the preceding, K_θ is algebraically closed in K and $R_{(p)}$ is thus integrally closed in K.

(c) As noted in (b), r_i is transcendental over $R_{(p)}$. Let $f \in R$ be an element. Then $f = f_i + f_{i+1} + \cdots + f_m$ where $f_i \in R_i$ for some nonnegative integers r and n. But $f = (f_i/r_i)r_i' + (f_{i+1}/r_{i+1}')r_{i+1}' + \cdots + (f_m/r_m')r_m'$ $\in (R_{(p)}[r_i])$. Therefore $R \subset R_{(p)}[r_i]$. Thus $S = R - p$ is a multiplicative set in $R_{(p)}[r_i]$. Now let $f/g \in R_p$, $g \in R - p$. Then for some nonnegative integer i and m,

$$\frac{f}{g} = \frac{f_i}{g} + \cdots + \frac{f_m}{g} = \frac{1}{g} \left(f_i r_i' + \frac{f_{i+1}}{r_{i+1}'} r_{i+1}' + \cdots + \frac{f_m}{r_m'} r_m' \right).$$

Therefore $f/g \in (R_{(p)}[r_i])_S$ i.e. $R_p \subset (R_{(p)}[r_i])_S$. The other inclusion is obvious. Thus $R_p = (R_{(p)}[r_i])_S$.

(d) Now, if $R_{(p)}$ is integrally closed in K, then clearly $R_p = (R_{(p)}[r_i])_S$, being a localization of transcendental extension of an integrally closed domain, is integrally closed. Conversely if R_p is integrally closed in K, let $f \in K_\theta$ be an integral element over $R_{(p)}$. Then $f \in R_p$. Thus $f \in R_p \cap K_\theta = R_{(p)}$, and $R_{(p)}$ is integrally closed.

(e) Recall that a ring A is said to be regular if $A_\mathfrak{m}$ is a regular local ring for each maximal ideal \mathfrak{m} in A. It follows from Serre's theorem [5; p. 139] that A is regular if and only if $A_\mathfrak{p}$ is regular for every $\mathfrak{p} \in \text{Spec}(A)$.

If $R_{(p)}$ is a regular local ring, then by [5; Theorem 40, p. 126] the polynomial ring $R_{(p)}[r_i]$ is regular. Since localization of a regular ring is regular therefore $R_p = (R_{(p)}[r_i])_S$ is a regular local ring.
Conversely assume that $R_p = (R_{(p)}[r_i])_p$ is a regular local ring. Since $R_{(p)}[r_i]$ is a polynomial ring over $R_{(p)}$, therefore $R_{(p)}[r_i]$ is $R_{(p)}$-flat. $(R_{(p)}[r_i])_p$ is $R_{(p)}[r_i]$-flat therefore R_p is $R_{(p)}$-flat. Thus $R_{(p)}$ is Noetherian. The inclusion map $R_{(p)} \to R_p$ is obviously a local homomorphism. Therefore it follows from [1; IV, 17.3.3 (i), p. 48] that $R_{(p)}$ is a regular local ring.

There are graded rings in which there are homogeneous prime ideals p such that $p \cap R_i \neq R_i$. For example: (1) graded rings which are homogeneous coordinate rings of projective varieties. In this case $p \cap R_i \neq R_i$ for $p \in \text{Proj}(R)$. (2) $R = R_0[x]$, a graded ring generated over R_0; (3) Let $k[X, Y]$ be a polynomial ring in two indeterminates over a field k. Let $R = k[X] + (X Y) k[X, Y]$. R has a graded structure $R = R_0 \oplus \cdots \oplus R_n$ with $R_0 = k$, $R_1 = kX$, $R_2 = kX^2 + kXY$, etc. It follows from the observation that $(X^i \cdot Y^j)^2 \in R_y$ if $j \geq 1$ that $p \cap R_i = 0$ for every $p \in \text{Proj}(R)$.

3. Normality of a graded domain. In this section, a graded domain R is normal if it is integrally closed in its field of fractions.

Recall [6; Theorem 8, p. 400]: Let \mathcal{O} and \mathcal{O}' be two normal rings which contain a field k. If \mathcal{O} and \mathcal{O}' are separably generated over k and if $\mathcal{O} \otimes_k \mathcal{O}'$ is an integral domain, then $\mathcal{O} \otimes_k \mathcal{O}'$ is a normal ring.

Theorem 3. Let R_0 be a normal integral domain containing a field k such that R_0 is separable over k. Let $R = R_0[x] = R_0[x_1, \ldots, x_n]$ be an integral domain finitely generated over R_0 as an R_0-algebra such that the quotient field K of R_0 and the quotient field $k(x)$ of $k[x_1, \ldots, x_n]$ are linearly disjoint over k, and $k(x)$ separable over k. Then $k[x]$ is normal if and only if R is normal.

Proof. Let X_1, \ldots, X_n be n indeterminates over R_0. Let \mathfrak{A} be the prime ideal in $k[X] = k[X_1, \ldots, X_n]$ such that $k[x_1, \ldots, x_n] = k[X_1, \ldots, X_n] / \mathfrak{A}$ and let \mathfrak{B} be the prime ideal in $R_0[X] = R_0[x_1, \ldots, X_n]$ such that $R = R_0[X] / \mathfrak{B}$. Then $\mathfrak{B} \cdot K[X] \cap R_0[X] = \mathfrak{B}$ and $\mathfrak{A} = \mathfrak{B} \cap k[X]$. Since K and $k(x)$ are linearly disjoint over k, it is well known that $\mathfrak{A} \cdot K[X] = \mathfrak{B} \cdot K[X]$ and $\mathfrak{A} \cap R_0[X] = \mathfrak{B}$, [4; Corollary 1, p. 67]. We shall use \mathfrak{B} in both $R_0[X]$ and $K[X]$ as the prime ideal determined by $(x) = (x_1, \ldots, x_n)$. Since $R_0 \otimes_k k[x] = R_0[x]$, it follows that $R_0 \otimes_k k[x] = R_0[x]$, i.e. $R_0 \otimes_k k[x]$ is an integral domain. It follows from [6; Theorem 8, p. 400] that $R_0[x]$ is normal. Conversely if $R_0[x]$ is normal, then $R_0[x]_p$ is normal for each $p \in \text{Spec}(R_0[x])$. Let $p^c = p \cap k[x]$ for $p \in \text{Spec}(R_0[x])$ and $p \cap R_0 = \{0\}$. Then $k[x]_{p^c}$ is also normal. Indeed let $\xi \in k(x)$ be integral over $k[x]_{p^c}$. Since $k[x]_{p^c} \subset R_0[x]_{p^c}$, therefore $\xi \in R_0[x]_{p^c}$. Thus $\xi \in R_0[x]_{p^c} \cap k(x)$. It is sufficient to show that $R_0[x]_{p^c} \cap k(x) \subset k[x]_{p^c}$. Let $S = R_0 - \{0\}$. $K[x] = S^{-1}R_0[x]$ and
S^{-1}p is a prime ideal in K[x]. S^{-1}p \cap k[x] = p \cap k[x]. Since K and k(x) are linearly disjoint over k, it follows from [4; Proposition 6, p. 92] that K[x],_p \cap k(x) = k[x],. Thus k[x],_p \supset R_0[x],_p \cap k(x), and k[x],_p = R_0[x],_p \cap k(x). So \xi \in k[x],_p, and k[x],_p, is therefore normal.

We shall finish the proof by showing that Spec(k[x]) = \{p \cap k[x] | p \in Spec(R_0[x]) and p \cap R_0 = 0\}. Let q_x be a prime ideal. There exists a prime ideal Q_x in K[X] such that Q_x \cap k[X] = q_x. Indeed, using Zariski’s terminology [10; pp. 21–22 and pp. 161–176], we consider an algebraically closed field \Omega containing K and \Omega is of infinite transcendence degree over K. Let A^n be the n dimensional affine space, i.e. A^n = \{(a_1, \ldots, a_n) | a_1, \ldots, a_n \in \Omega\}. Every prime ideal P in K[X] defines an irreducible algebraic variety V over K in A^n. Every irreducible algebraic variety V over K carries a generic point (\xi) = (\xi_1, \ldots, \xi_n) \in A^n over K, and P = \{g(X) \in K[X] | g(\xi) = 0\}. Let (\eta) = (\eta_1, \ldots, \eta_n) \in A^n be a generic point of q_x over k, i.e. q_x = \{f(X) \in k[X] | f(\eta) = 0\}. Let Q_x = \{F(X) \in K[X] | F(\eta) = 0\}. Then Q_x is a prime ideal and Q_x \cap k[X] = q_x. Let Q_x = Q_x \cap R_0[X], Q_x \cap R_0 = 0 and Q_x \cap k[X] = q_x. Since \mathfrak{A} \subset q_x \iff \mathfrak{B} \cdot K[X] \subset Q_x \iff \mathfrak{B} \subset Q_x. Let Q' = Q_x/\mathfrak{B} \subset R_0[x]. Then Q' \cap k[x] = q. Thus each prime ideal in k[x] is the contraction of a prime ideal in R_0[x] intersecting \mathfrak{B} at 0.

As the assertion in the last part of the proof of the above theorem will be referred later, we would like to state it as a corollary.

Corollary. Let R_0 be an integral domain containing a field k. Let R = R_0[x_1, \ldots, x_n] be an integral domain finitely generated over R_0 as an algebra such that the quotient field K of R_0 and the quotient field k(x) of k[x] = k[x_1, \ldots, x_n] are linearly disjoint over k. Then Spec(k[x]) = \{p \cap k[x] | p \in Spec(R_0[x]) and p \cap R_0 = 0\}. Moreover if R is graded with R_0 as the component of homogeneous degree 0, then Proj(k[x]) = \{p \cap k[x] | p \in Proj(R_0[x])\}.

Proof (of the last part). Let \mathfrak{A}, \mathfrak{B}, q, q_x, and Q_x be the same as those in the proof of Theorem 3. If R is a graded domain, then both \mathfrak{A} and \mathfrak{B} are homogeneous ideals. If q is a nonirrelevant and homogeneous prime ideal in k[x], then so is q_x. Let Q_x be the ideal in k[x] generated by the homogeneous elements belonging to Q_x. Then, by [10; Lemma 3, p. 153], Q_x is a prime ideal and clearly Q_x \cap k[x] = q_x. Since q_x is nonirrelevant, Q_x is also nonirrelevant, and Q_x \supset \mathfrak{B}. Let Q* = Q_x/\mathfrak{B}. We have Q* \cap k[x] = q. Therefore Proj(k[x]) = \{p \cap k[x] | p \in Proj(R) and p \cap R_0 = 0\}.

Let us recall some definitions and facts: Let R = \bigoplus_{i \geq 0} R_i be a graded integral domain. R is Noetherian if and only if R_0 is Noetherian and R is an R_0-algebra of finite type. Let \bar{R} be the integral closure of R in its field of quotients K. Let K be the homogeneous component of K of
degree i as defined in §2. Then \tilde{R} is graded with $\tilde{R}_i = \tilde{R} \cap K_i$. Thus if R is normal then R_θ must be normal.

Corresponding to Krull's characterization of a Noetherian domain being normal [7; (12.9), p. 41], we have the following theorem for normality of a Noetherian graded domain.

Theorem 4. Let R be a graded Noetherian domain such that $R_i - p \neq \emptyset$ for each homogeneous prime ideal p of ht 1 in R. If (1) $R_{(p)}$ is normal for every homogeneous prime ideal p of height 1 and (2) the associated prime ideals of every nonzero homogeneous ideal are of height 1, then R is normal.

Proof. We first note that it follows from condition (1), Theorem 1 and Theorem 2 that R_p is normal for every $p \in \text{Spec}(R)$ and $ht(p) = 1$. Let K, \tilde{R} and R_i be the same as defined in the proceeding. Let $\alpha = \sum_{i=n}^{m} \alpha_i$ for some nonnegative integers m and n and $\alpha_i \in R_i$. Let $\alpha_i = b_{ij}/a_{ii}$ where $j - l = i$, $b_{ij} \in R_j$ and $a_{ii} \in R_i$. If a_{ii} is a unit in R then $\alpha_i \in R$. If a_{ii} is a nonunit, then the nonzero homogeneous principal ideal $(a_{ii})R$ has a primary decomposition $\bigcap_{t=1}^{u} q_t$ with p_1, \ldots, p_u as the associated prime ideals. In view of [10; Theorem 9 and Corollary; pp. 153–154] we may assume that q_t’s and p_t’s are homogeneous, (2) implies that $ht(p_t) = 1$ for $t = 1, 2, \ldots, u$. Thus R_{p_t} is normal for $t = 1, 2, \ldots, u$. α_i is integral over R implies that α_i is integral over R_{p_t} for $t = 1, 2, \ldots, u$. Therefore $b_{ij} \in \bigcap_{t=1}^{u} ((a_{ii})R_{p_t} \cap R) = \bigcap_{t=1}^{u} q_t = (a_{ii})R$. Thus $\alpha_i = b_{ij}/a_{ii} \in R$ and $\alpha = \sum_{i=n}^{m} \alpha_i \in R$. R is therefore normal.

Let $A = K[X_1, \ldots, X_n]$ be a polynomial ring over a field K. The smallest integer d such that any chain of syzygies of the A-module M terminates at $(d + 1)$th step is called the cohomological dimension of M and is denoted by $\text{coh.d.}(M)$. Let $\mathfrak{A} \subset A$ be a homogeneous ideal such that $\mathfrak{A} \neq (0)$, $\neq (1)$. $\text{coh.d.}(\mathfrak{A}) \leq n$ and it is n if and only if $(X_1, \ldots, X_n)A$ is an associated prime ideal of \mathfrak{A}. Let l be a form in A, and $l \not\in K$. If $\mathfrak{A} : l = \mathfrak{A}$ then $\text{coh.d.}(\mathfrak{A}, l) = 1 + \text{coh.d.}(\mathfrak{A})$.

Theorem 5. Let $R = \bigoplus_{i \geq 0} R_i$ be a Noetherian graded integral domain generated over R_θ by nonzero homogeneous elements x_1, \ldots, x_n of degree 1. Assume that R_θ contains a subfield k over which R_θ and $k(x) = k(x_1, \ldots, x_n)$ are linearly disjoint and R_θ is normal. Assume $\text{tr.deg}_k k(x) > 0$. Let $R_\theta[X] = R_\theta[X_1, \ldots, X_n]$ be the polynomial ring over R_θ in indeterminates X_1, \ldots, X_n and let \mathfrak{B} be the ideal such that $R_{\theta}[x] = R_\theta[X]/\mathfrak{B}$. Let $\mathfrak{A} = \mathfrak{B} \cap k[X]$, and let $S = R_\theta - \{0\}$.

(1) If, for each $p \in \text{Proj}(R_\theta[x])$, $R_\theta[x]_{(p)}$ is normal and $\text{coh.d.}(S) < n - 1$, then $k[x]$ is normal.

(2) If R_θ and $k(x)$ are both separable over k, and if $R_\theta[x]_{(p)}$ is normal
for all \(p \in \text{Proj}(R_0[x]), \) and \(\text{coh.d.} S^{-1}\mathfrak{B} < n - 1 \) then \(R_0[x] \) is normal.

(3) If \(R_{(p)} \) is normal for each \(p \in \text{Proj}(R) \) and if \(\text{coh.d.} \mathfrak{B} \cdot S^{-1}R_0[X] = n - 1 \) then \(R_0[x] \) is not normal.

Proof. (1) Both \(\mathfrak{A} \) and \(\mathfrak{B} \) are homogeneous ideals, \(k[x] \) is graded.

As projective scheme \(\text{Proj}(R_0[x]) \equiv \text{Proj}((S^{-1}R_0)[x]) \) [1, Prop. (2.4.7), p. 30]. Therefore \((S^{-1}R_0)[x] \) is locally normal, i.e. \((S^{-1}R_0)[x]_{(p)} \) is normal for each \(p \in \text{Proj}(S^{-1}R_0[x]). \) Since \(\text{tr.deg.} S^{-1}R_0[x] > 0. \) If \(\text{coh.d.} S^{-1}\mathfrak{B} < n - 1, \) by [9, Theorem 3, p. 619], \((S^{-1}R_0)[x] \) is normal. Therefore \(S^{-1}R_0[x]_p \) is normal for every \(p \in \text{Spec}(S^{-1}R_0[x]). \)

By the Corollary to Theorem 3, \(\text{Spec}(k[x]) = \{ p \in \text{Spec}(S^{-1}R_0[x]) \}, \) we have that \(k[x, q] \) is normal for every \(q \in \text{Spec}(k[x]). \) Therefore \(k[x] \) is normal.

(2) By (1), \(k[x] \) is normal. \(R_0 \) is normal. It follows from Theorem 3, \(R_0[x] \) is normal.

(3) If \(\text{coh.d.} \mathfrak{B} \cdot S^{-1}R_0[X] = n - 1, \) then it is well known that for a form \(l \) in \(R_0[X] \) prime to \(\mathfrak{B} \), i.e. \(\mathfrak{B}: l = \mathfrak{B} \), \(\text{coh.d.}(\mathfrak{B}, l) \cdot S^{-1}R_0[X] = n. \) Therefore \((\mathfrak{B}, l) \cdot S^{-1}R_0[X] \) has \((X) \cdot S^{-1}R_0[X] \) as an associated prime ideal. Since \(\dim \mathfrak{B} \cdot S^{-1}R_0[X] > 0, \) \((\mathfrak{B}, l)S^{-1}R_0[X] \) has an embedded associated prime. On the other hand, it is easy to see that \((X)S^{-1}R_0[X] \cap R_0[X] = (X)R_0[X]. \) Therefore it follows from [5, Lemma 7c, p. 50] that \((\mathfrak{B}, l)R_0[X] \) has \((X)R_0[X] \) as an embedded associated prime ideal. Let \((l)R_0[X] = (\mathfrak{B}, l)R_0[X]/\mathfrak{B}. \) Therefore \((l)R_0[X] \) is a principal homogeneous ideal having \((x) \cdot R_0[x] \) as an embedded associated prime ideal. It follows from Theorem 4 that \(R \) is not normal.

4. Integral closure of a graded ring. In this section, we study a general graded ring, \(R = \bigoplus_{i \geq 0} R_i. \) Let \(F \) be the total quotient ring of \(R, \) and let \(\widetilde{R} \) be the integral closure of \(R \) in \(F. \) In case of a graded domain, the integral closure \(\widetilde{R} \) of \(R \) in its quotient field \(K \) is again graded and \(\widetilde{R}_i = \widetilde{R}_i \cap K_i \) for \(i \geq 0. \) We investigate \(\widetilde{R} \) when \(R \) is not an integral domain. A ring \(R \) is normal if \(R_p \) is an integral domain and integrally closed in its quotient field for each \(p \in \text{Spec}(R). \)

Let \(R = \bigoplus_{i \geq 0} R_i. \) Let \(U \) be the set of all nonzero divisors of \(R. \) Let \(F \) be the total quotient ring and let \(F_i = \{ r_i/u_i | r_i \in R_i, u_i \in R_j \cap U, l - j = i \}. \) These are the notations going to be used in the sequel.

Theorem 6. Assume \(U \cap R_i \neq \emptyset \) and let \(u_i \in U \cap R_i. \) Then (1) the ring \(\bigoplus_{i \in \mathbb{Z}} F_i \) is a direct sum, and \(\bigoplus_{i \in \mathbb{Z}} F_i = F_0[u_1, 1/u_1], \) \(F = F_0[u_1]_{u_1}, \) \(u_1 \) is algebraically independent over \(F_0, \) and \(F_i = F_0 \cdot u_i, \) for all \(i \in \mathbb{Z}. \) If \(F_0 \) is Noetherian then so is \(F. \) (2) \(F_0 \) is reduced, i.e. \(F_0 \) has no nonzero nilpotent element, if and only if \(R \) is reduced. (3) If \(R \) is reduced and \(F_0 \) is
Noetherian, then $F_0[\{u_i\}]$ is integrally closed in F. (4) If R is reduced and F_0 is Noetherian, then R is a graded subring of $\bigoplus_{i \in \mathbb{Z}} F_i$.

Proof. (1) It follows from the definition of F_i’s that each F_i is an additive group and $F_i \cdot F_j \subset F_{i+j}$, $\Sigma_{i \in \mathbb{Z}} F_i$ is a ring. Let $f_1 + \cdots + f_s \in \Sigma_{i \in \mathbb{Z}} F_i$. Suppose $f_1 + \cdots + f_s = 0$. Let $f_m = r_m/u_{j_m}$ where $l_m - j_m = m$ and $m = k, \cdots, s$. Let $u = \prod_{m-k}^{s} u_{j_m}$. Then $u f_k + \cdots + u f_s = 0$ in R, and $u f_k, \cdots, u f_s$ are homogeneous elements of distinct degrees. Therefore $u f_k = \cdots = u f_s = 0$. Thus $f_k = \cdots = f_s = 0$, and the sum ΣF_i is therefore a direct sum.

Let $f_k \in F_k$. Then $f_k/u_i \in F_0$. Therefore $f_k \in F_0 \cdot u_i$ and $f_k = F_0 \cdot u_i$. Hence $\bigoplus_{i \in \mathbb{Z}} F_i = F_0[\{u_i\}, 1/u_i]$. For any $f \in F$,

$$f = (f_k + \cdots + f_s)/u = \frac{1}{u} \left(\frac{f_k}{u_i} u_i + \cdots + \frac{f_s}{u_i} u_i \right).$$

Therefore $F = F_0[\{u_i\}, 1/u_i] = F_0[\{u_i\}]$. u_i is algebraically independent over F_0. Indeed, let $a_0 u_i + a_1 u_{i-1} + \cdots + a_n = 0$, where $a_i \in F_0$ and $a_0 \neq 0$. Writing $a_i = r_i/u_{j_i}$ with $l_i - j_i = i$, we have $a_i u_{i-1} \in F_{i-1}$. Therefore $a_i u_{i-1} = 0$, and $a_i = 0$ for $i = 0, 1, \cdots, n$. Therefore u_i is algebraically independent over F_0.

If F_0 is Noetherian, then so is $F_0[\{u_i\}]$. Now $F = F_0[\{u_i\}]$. Therefore F is also Noetherian.

(2) It is obvious that R is reduced implies that F_0 is reduced. Conversely, we note if (x_m/u_i)" = 0, then $x_m = 0$. Also if $y_m \in R_m$ such that $y_m^* = 0$ then $(y_m/u_i)^* = 0$. Thus $y_m = 0$. Now let y be a nilpotent element in R. Write $y = y_k + \cdots + y_s$. For some positive integer b, $y^b = (y_k + \cdots + y_s)^b = 0$. Thus $y^b = 0$ and then $(y_{k+1} + \cdots + y_s)^b = 0$ and so on we get $y_{k+1} = \cdots = y_s = 0$, so $y_m = \cdots = y_s = 0$. Therefore $y = 0$ and R is reduced.

(3) F_0 is reduced. It follows from that $F = F_0[\{u_i\}]$ and that u_i is transcendental over F_0, the nonzero divisors of F_0 are the same as the nonzero divisors of R in F_0. Let U_0 be the set of all nonzero divisors of F_0. Let $u_0 \in U_0$, then $u_0 = r_m/u_m$ where $u_m \in U$ and $r_m \in R_m$. Moreover $r_m \in U$ also. Thus u_0 is a unit i.e. U_0 is a multiplicative group in F_0. Hence the total quotient ring $(F_0)_{U_0} = F_0$. Since F_0 is Noetherian and reduced, therefore, $F_0 = \bigoplus_{i = 1}^{s} G_i$ where G_i’s are fields. It follows from [2; Proposition (6.5.2), p. 146] that F_0 is normal.

It follows from [5; Proposition (1.7.8), p. 116] that $F_0[\{u_i\}]$ is normal. Since $F_0[\{u_i\}]$ is a polynomial ring in u_i, and F_0 is reduced, therefore $F_0[\{u_i\}]$ is also reduced. F_0 is Noetherian implies that F is Noetherian. Then $F = \bigoplus_{i = 1}^{s} H_i$ where H_i’s are fields. Thus it follows from [2; Proposition (6.5.2), p. 146] that $F_0[\{u_i\}]$ is integrally closed.

Note: Let $A = Z/(4)[X]$, the polynomial ring in X over $Z/(4)$. $Z/(4)$ is integrally closed, while A is not. Indeed, let $y = (x + 1)/(x - 1)$, $y^2 - 1 = 0$, $y \not\in A$.

462 WEI-EIHN KUAN
(4) Let \(x \in \widetilde{R} \). Since \(R \subset R_0[u_i] \), \(x \) is integral over \(F_0[u_i] \). By (3), \(R \subset F_0[u_i] \). The rest of the proof is practically the same argument used in the proof of [10; Theorem 11, p. 157]. We summarize the proof: Let \(x \in \widetilde{R}, x = x_k + \cdots + x_s, k \leq s, x_k \neq 0 \) is called the initial homogeneous term. We want to show that each \(x_i, i = k, \ldots, s \), is integral over \(R \) also. Since \(x \in \widetilde{R} \subset \sum F_i \) there exists \(u_m \in R_m \cap U \) for some positive integer \(m \), such that \(u_m x \in R \). Case (a), if \(R \) is Noetherian, then \(R[x] \) is a finite \(R \)-module. There exists an integer \(\lambda > 0 \) such that \(u_m^i x^i \in R \) for all integer \(i \geq 0 \). Let \(d = u_m^\lambda \). Then \(dR[x] \subset R \). The initial homogeneous term \(dx^i \) is \(dx^i \). \(dx^i \in R \) implies \(dx^i \in R \). Therefore \(x^i \in (1/d)R \), a Noetherian \(R \)-module. Therefore \(R[x_i] \subset R \cdot 1/d \) is a Noetherian \(R \)-submodule. Therefore \(x_k \) is integral over \(R \). Repeating that argument to \(x - x_k = x_{k+1} + \cdots + x_s \), we conclude that \(x_i \in \widetilde{R} \) for \(i = k, \ldots, s \). Therefore \(\widetilde{R} \) is graded in this case. Next we look at case (b): \(R \) is not Noetherian. Let \(x \in \widetilde{R}, \) and \(x^n + a_1x^{n-1} + \cdots + a_n = 0 \) where \(a_1, \ldots, a_n \in R \). As in case (a), there is a homogeneous nonzero divisor \(d \in R \) such that \(dx^i \in R \). Let \(\{y_1, \ldots, y_s\} = \{d, dx_k, \) and homogeneous components of \(a_i \}'s \}. Let \(A = k[y_1, \ldots, y_s], \) where \(k = \mathbb{Z} \) or \(\mathbb{Z}/(n) \) according to whether \(R \) is of characteristic 0 or \(n > 0 \). \(\mathbb{A} \subset R \). Let \(A_q = A \cap R_q \). Then \(A = \Sigma A_q \) is a graded subring of \(R \). \(U \cap A \) contains \(d \). Therefore \(A_{U \cap A} \), the total quotient ring of \(A \), contains \(x_k \), and hence contains \(x \) also. Thus the above integral relation takes place in \(A_{U \cap A} \). Since \(A \) is Noetherian, therefore case (a) is applicable. Therefore \(x_k \) is integral over \(A \) hence \(x_k \) is integral over \(R \).

References

Received November 10, 1975 and in revised form December 2, 1975.

Michigan State University
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Fairbanks Arnold and A. P. Morse, Plus and times</td>
<td>297</td>
</tr>
<tr>
<td>Edwin Ogilvie Buchman and F. A. Valentine, External visibility</td>
<td>333</td>
</tr>
<tr>
<td>R. A. Czerwinski, Bonded quadratic division algebras</td>
<td>341</td>
</tr>
<tr>
<td>William Richard Emerson, Averaging strongly subadditive set functions in unimodular amenable groups. II</td>
<td>353</td>
</tr>
<tr>
<td>Lynn Harry Erbe, Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations</td>
<td>369</td>
</tr>
<tr>
<td>Kenneth R. Goodearl, Power-cancellation of groups and modules</td>
<td>387</td>
</tr>
<tr>
<td>J. C. Hankins and Roy Martin Rakestraw, The extremal structure of locally compact convex sets</td>
<td>413</td>
</tr>
<tr>
<td>Burrell Washington Helton, The solution of a Stieltjes-Volterra integral equation for rings</td>
<td>419</td>
</tr>
<tr>
<td>Frank Kwang-Ming Hwang and Shen Lin, Construction of 2-balanced (n, k, λ) arrays</td>
<td>437</td>
</tr>
<tr>
<td>Wei-Eihn Kuan, Some results on normality of a graded ring</td>
<td>455</td>
</tr>
<tr>
<td>Dieter Landers and Lothar Rogge, Relations between convergence of series and convergence of sequences</td>
<td>465</td>
</tr>
<tr>
<td>Lawrence Louis Larmore and Robert David Rigdon, Enumerating immersions and embeddings of projective spaces</td>
<td>471</td>
</tr>
<tr>
<td>Douglas C. McMahon, On the role of an abelian phase group in relativized problems in topological dynamics</td>
<td>493</td>
</tr>
<tr>
<td>Robert Wilmer Miller, Finitely generated projective modules and TTF classes</td>
<td>505</td>
</tr>
<tr>
<td>Yashaswini Deval Mittal, A class of isotropic covariance functions</td>
<td>517</td>
</tr>
<tr>
<td>Anthony G. Mucci, Another martingale convergence theorem</td>
<td>539</td>
</tr>
<tr>
<td>Joan Kathryn Plastiras, Quasitriangular operator algebras</td>
<td>543</td>
</tr>
<tr>
<td>John Robert Quine, Jr., The geometry of p(S¹)</td>
<td>551</td>
</tr>
<tr>
<td>Tsuan Wu Ting, The unloading problem for severely twisted bars</td>
<td>559</td>
</tr>
</tbody>
</table>