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0. Introduction and statement of results. Let [M CR"]
and [M C R"] denote, respectively, the set of isotopy classes of embed-
dings and regular homotopy classes of immersions of the m-dimensional
manifold M in n-dimensional Euclidean space R". Certain maps arise
naturally in the study of [M CR"] and [M C R"]. These maps are

¢.:[MCR"]=[MCR"]
$.:[MCR"|=>[MCR"
é.:[MCR"]—>[MCR"

which are obtained, respectively, by regarding an embedding as an
immersion, an immersion in R"” as an immersion in R™', and an
embedding in R" as an embedding in R"*".

Let P™ be real projective m-space. The main purpose of this paper
is to determine the following diagram for m = 8:

[Pm CRZm] ¢2m§ [Pm gRZm]

2= [ Fms
(0.1) [P Cc R féz'"_‘l_) [P™ C R™]

T Eons sz",_z

[Pm CRZm—Z] ¢2m72; [Pm g RZM‘Z]

The paper is divided into two parts. In §81-3, we review twisted
cohomotopy theory and describe the results of Haefliger, Hirsch, Becker,
McClendon, and others which reduce the study of [M CR"] and
[M C R"] to the study of cohomotopy groups. In §§4-6, we calculate
diagram (0.1).

For more extensive calculations of immersion groups of projective
spaces, see Robinson [18]. Many of the results of this paper have been
obtained independently by David Bausum in [1] and [2].

The main results are as follows. For 2n>3(m +1), [M CR"]
naturally has the structure of an Abelian affine group, while if 2n >
3m +1,[M CR"] is an Abelian affine group [3]. The functions ¢,, &,
and #, are each affine morphisms whenever both domain and target are
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affine groups, and an Abelian affine group becomes an Abelian group by
choice of zero. Thus, if an embedding f: P™ — R>"? is chosen, (0.1)
becomes a diagram of Abelian groups and homomorphisms.

THEOREM 0.1. Let m =8, such that P" CR>2. Fix such an
embedding. Then

Case 1. m =0mod4. Then diagram (0.1) becomes

7z X2, 5

o, I

Z2"—> Zz

I

0—— 0

Case II. m =1mod4. Then diagram (0.1) becomes

z,—0 VA
TE T'me-l
7, % Z.®Z.d Z,

I me -2 Tme—Z
202022 2.0z,
where

€,.,-2(1,0,0)= €&,,,(0,1,0)=0, &,,2(0,0,1)=1
Fn-1(1,0,0) = £,,4(0,1,0)= 0, Fm-1(0,0,1)=1
Fam-2(1,0)=(1,0,0), Fam-20,1)=(0,1,0)

$2m-1(1) = (0,1,0)

¢2n-2(1,0,0) = ¢,,,2(0, 1,0) = (0, 0), ¢2m-2(0,0,1)= (0, 1)

Case III. m =2 mod4. Diagram (0.1) becomes

Zf—z-»Z

Joo o
2,9, 7,

e

0"—"’)22

where ¥,,_, is mono.
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Case IV. m =3mod4. Diagram (0.1) becomes

Z, Z,DZs
Wme—Z Tf2m—2
¢2m 2
Z.D Zy Z,D Zs
where
%Zm—](l) = 1

&mo(1,00=1 and &,,,0,1)=0

Im(1,0)=0 and 4,,.,(0,1)=1

Fm-2(1,0)=(1,0) and £,,,(0,1)=(0,1)

$2m1(1) = (1,0)

bm-2(1,0)=(1,0) and ¢,,,(0,1)=(0,0) or (2,0)

It is well-known that P™ embeds in R*""' unless m is a power of 2
and in R*™ in all cases. By Mahowald [13] and Handel [8], P™ embeds in
R*? if and only if m =2"+s with 2=s <2". Hence the results of
Theorem 0.1 apply to the whole of diagram (0.1) for m >9 and
m=2"+s,2=s5<2"; to the top square of (0.1) for m >5 and m not a
power of 2, and to the top line for any m > 3.

To resolve the uncertainty in ¢,,-, when m =3 mod 4, the following
problem must be solved: is ker(&,,-,) = ker(¢.,-,)? That is, is it true that
two embeddings P™ — R*"? are isotopic as embeddings in R*""" if and
only if they are regularly homotopic as immersions in R*"~?? The authors
have been unable to solve this problem.

1. Twisted cohomotopy. We generally use the notation of
[10]; the results of that paper carry over to weak fibrations [S]. The
theorems and constructions in this section are essentially the same as
those done by Becker [4] for vector bundles.

Let p: Y—= X be a weak k-sphere fibration, for some k= —1
(where S7' is the empty set). If A CX, we define 7,(X,A), the ith
cohomotopy group of (X, A) twisted by p, for any integer i, to be the
direct limit

m(X,A) = Lirll [X, A; Q335 418k Y]

where Sy and 35 are the fiberwise two-point (unreduced) and fiberwise
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one-point (reduced) suspensions, respectively, and {dx is the fiberwise
loop.

Twisted cohomotopy satisfies all the usual axioms for a twisted
cohomology theory, since 7,(X, A)= H' (X, A; €(p)), where €(p) is
the X-spectrum associated with p [10].

If p is the sphere bundle associated with a real vector bundle £, we
write 7;(X, A) for 7, (X, A). Note that in that case, in the terminology of
McClendon [14], 7{(X, A) is a cohomology group in the category of
spaces over BO. In fact, in the notation of Becker [4], 7:(X, A)=
H'(X, A, f; ¥), where & is the sphere spectrum, and f: X — BO clas-
sifies &. :

Clearly, an equivalence of weak sphere fibrations induces an
isomorphism of cohomotopy groups twisted thereby. More strongly:

THEOREM 1.1. Forp: Y— X and p': Y'— X are stably equivalent
weak sphere fibrations, then w,(X, A) and w, (X, A) are isomorphic for
each integer i.

Proof. 1t is sufficient to consider the case Y' = SxY. The collapsing
map SxY'= SxSxY — 2xSxY, an equivalence of weak (k +2)-sphere
fibrations, induces the desired isomorphism (where k = dim p), and we
are done.

Whitney sum and cup product. Let p: Y— X and p": Y'— X be
weak k-sphere and k’-sphere fibrations respectively. We define the
Whitney sum p @ p'=p*xp': Y *xY'— X, a weak (k + k'+ 1)-sphere
fibration over X (where *x is the fiberwise join). The Whitney sum
notation is justified by the fact that if p and p’ are the sphere bundles
associated to vector bundles ¢ and ¢',p @ p’ is the sphere bundle
associated to the usual Whitney sum ¢ @ ¢'.

For any integers i and i’, and for any A, A’ CX, we define a cup
product:

THX A)X wh(X, A) = mhh (X, A UA')
as follows. If a € 7,(X,A) and a'€ =} (X, A’) are represented, re-

spectively, by a: X — Q3257 7'SxY and a’: X - Qy 2577718, Y, let
(—1)"a U a’ be represented by the composition

X 5 (335 IS Y) Ax (QF3F IS YY)
Q;(+,.'2;{+n’+i+i‘4k—k’—2(SXY /\XSXY')

where we identify SxY AxSxY' with Sx(Y #x Y’) in the obvious manner.
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The reader may verify that the cup product is well-defined, bilinear, and
associative.

Thom isomorphism. Let p: Y — X be a weak k-sphere fibration,
and let 7: D(p)— X be the associated weak (k + 1)-disc fibration; i.e.,
D(p) is the mapping cylinder of p, and = is the collapse map. Let
T(p)= D(p)/Y, the Thom space of p.

Let U, € "' (D(p), Y), the universal Thom class of p, be the
element represented by the composition

D(p)—> D(p) AxD(p) —> D(p) AxSxY

where c is the quotient map which collapses Y C D (p) to the South polar
section in SxY. By a slight abuse of notation, we let U, € w;*'(X, Y).
The next remark follows directly from the definitions [10]:

THEOREM 1.2. If (X, A)isa C.W. pairandifh: A — Y is a partial
section of p, then i * U, =T'(p: h) € w:* (X, A), the single obstruction to
extending h to a full section of p: where i: (X, A)— (D(p), Y) is any map
such that i|A = h and 7: i =1y

Now let p': Y'— X be a weak k' sphere fibration. We then
immediately have (with the obvious notational abuses):

THEOREM 1.3. U, U U, = U,g, € mra, (X, Y *x Y")
Finally:
THEOREM 1.4 (Thom isomorphism). Let (X, A) be a f.d. C.W. pair,

let p': Y — X be a weak k-sphere fibration over X, and let p be any other
weak sphere fibration over X. Then

UU,: m(X, A)—= 75 (X, A U Y)
is an isomorphism (where (X, A U Y) denotes (D(p'), #'A UY)).

We omit the proof, an easy generalization ‘of the proof of Becker’s
Thom isomorphism [4, Th. 12.8].

2. Obstructions to embedding. Let M™ be any compact
differentiable manifold, and let M * be the reduced deleted product of M,
that is, M*=(M X M — Ay)/T, where T exchanges coordinates. Let
P(M) be the total space of the projective (m — 1)-bundle associated with
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the tangent bundle, and let J: P(M)— M* be the inclusion defined by
J[v] = [exp(v), exp(— v)] for any unit tangent vector v of M, where exp
is the exponential function associated with a suitable metric on M. By
an abuse of notation, we shall write P(M) C M *. Let h be the line bundle
over M* associated with T, let also h = h|P(M), and let L be the
canonical line bundle over P*. The inclusion P"~' C P” can be replaced,
up to homotopy, by the $"*' bundle over P associated with nL. If h
classifies h, we have a diagram:
Pn—l
7
s

n /
Ve

//
/// // f/
pd / }'{
P(M)C M* 2 p-

i

If f:M—R" is any embedding, let flxy]l=
If ) = FO)IP'(f(x) = f(y))] for all [x, y] € M*. Since i o f' is homotopic
to h, nh has a section over M* if M embeds in R". If g: M — R" is an
immersion, let g” be the composition P(M)—>P(R")=
R" x P"'— P! Since i o g" is homotopic to h | P(M), we have that if M
immerses in R", nh has a section over P(M).

Heafliger [6] has shown that M embeds in R" if and only if nh has a
section over M *, provided 2n = 3(m + 1). Furthermore, if 2n > 3(n + 1),
there is a one-to-one correspondence of [M CR"] with the set of
homotopy classes of sections of nh. Similarly [7], if 2n=3m +1, M
immerses. in R" if and only if nh has a section over P(M), while if
2n >3m + 1, these sections are in one-to-one correspondence with the
elements of [M C R"]. If g: M— R" is a fixed immersion, then g is
regularly homotopic to an embedding if and only if g” can be extended
over all of M*, provided 2n = 3(m + 1), while if 2n > 3(m + 1), there is a
one-to-one correspondence between rel P(M) homotopy classes of
extensions of g” and #,(Em(M, R"),Im(M, R"), g), where Em(M, R")
and Im(M, R") are the spaces of embeddings and immersions, respec-
tively.

Now let y"(M) € & (M *) be the single obstruction to embedding M
in R", which we define to be the single obstruction to section of nh over
M*. By Theorem 1.3. y"(M)= (y'(M))". Let {"(M)€E mu(P(M)) be
the single obstruction to immersion of M in R", which we define to be the
single obstruction to section of nh over P(M). Similarly, {"(M)=
'M)~. If g:M—R" is a fixed immersion, let y"(M,g)E
mw(M*, P(M)) be the single obstruction to regular homotopy of g to an
embedding, defined to be the obstruction to extending g” to a section of
nh over M*. Now g may also be considered to be an immersion of M
into R™*', and by 1.3, y""'(M, g)=y'(M)U y"(M, g).
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If fy,fir M— R" are embeddings, let 8(f,, f,) € w5 '(M*) be the
single difference class, the obstruction to isotopy of f, and f,. Specifically,
8(fy, 1) can be defined to be the obstruction to homotopy of the sections
fo and f] of nh over M* [10]. If, in addition, f, = g, and f, = g,, where
g:M—R" 0=t=1, is a regular homotopy, let &(f, fi;&)€E
o (M*, P(M)) be the obstruction to regular homotopy of {g.}, rel f, and
fi, to an isotopy. If g, and g, are any immersions, let €(go, §.)€E
. (P(M)) be the obstruction to regular homotopy of g, with g,, defined
to be the obstruction to homotopy of the sections g and g7 of nh over
P(M) [10].

3. The obstruction sequence. Affine groups. A set A is said
to be an affine group if, for every a € A, an operation -, is defined on A
such that (A, -,) is a group with identity a, and if, for all a, b, x,y € A,
x -,y = xb”'y, where the product and inverse on the right side of the
equation are taken with respect to -,. Note that (A, -,) is then isomorphic
to (A,,) by x» x -,b. Note that every group is an affine group, by
X,y =xa'y.

If (A, -,) is Abelian, we write +, for the operation, and we say that A
is an Abelian affine group. In that case, let A= A X A/~ , the difference
group of A (defined only if A # J; where (x, y)~ (u, v) if and only if
x+,v = u), an Abelian group isomorphic to each (A, +,), by [x, a] » x.

Becker [3] has shown that in the metastable range, i.e., 2n>
3(m +1), [M CR"] is an Abelian affine group which, if nonempty, has
difference group isomorphic to =5, '(M*), by [[fi}.[f]]l» é6(f., f). If
fi. fos f5, fo are embeddings of M in R" [fi]+y[f:] =[f:] if and only if
8(f,, )=06(fs,fs). Thus [M CR"], if nonempty, is noncanonically
isomorphic (as an affine group) to =5 '(M*).

Similarly, in the metastable range, 2n>3m +1 in that case,
[M C R"] is an Abelian affine group which, if nonempty, has difference
group 5 '(P(M)), while if 2n>3(m +1) and g is an immersion,
m(Im(M, R"), Em(M, R"), g) is an Abelian affine group with difference
group . '(M*, P(M)).

Since twisted cohomotopy is a twisted cohomology theory, we have
an exact sequence

M)~ 2 (P(M)) — (M *, P(M))
(3.1) . "
— (M *)— 7 (P(M)).

Now we say that a sequence A, 3 A, A, of Abelian affine groups
and morphisms is exact at A, if either A, is empty or there exists a € A,
such that a,(A,) = a;'a. If 2n > 3(m + 1), we have a sequence of Abelian
affine groups and morphisms
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[M CR"]-%[M C R"]| - 7n(M*, P(M))
(3.2)

2 a5 mnp(M))

where ¢, sends each isotopy class to the regular homotopy class
containing it; and where, if g is an immersion, k[g] = y"(M; g). Now
(3.2) is exact, as the reader can easily verify, and the sequence of
difference groups of the nonempty portion of (3.2) is the corresponding
portion of (3.1).

We also have a commutative diagram of Abelian groups and
homomorphisms

*
T (s y(M ) AN 1 (st P (M)

(3.3) [urien TU £'(M)
ai(M*) —L ani(p(M))

and a commutative diagram of Abelian affine groups and morphisms

b+
[MCR"H]——;[M(_:_R"H]

(3.4) [ 1.
M CR"]ﬁ_—»[Mc_: R"]

The relationship between diagrams (3.3) and (3.4) is as follows: the
diagram of difference groups of the nonempty portion of (3.4) is the
corresponding portion of (3.3). Thus, if [M CR"] is nonempty, and if a
specific embedding f is chosen, the two diagrams can be identified.

4. Calculation of the groups. In §3, we observed that
computation of diagram (0.1) reduced to computation of the following

diagram, provided P™ embeds in R*".

i (P™)* )——> 7 omn (P(P™))

XUv P) [ug‘(P“
(4.1) 7 2(PT)*) =L w2 (P(P™))
Joven — Jueen

T om-2((P™)* )”—’ T om-2(P(P™))-

In this section we compute the groups in (4.1); in succeeding
sections, we compute the maps.
Recall from [3, §4] or [10, §5] that if ¢ is a vector bundle over X
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where (X, A) is an n-dimensional C.W. pair, the Atiyah-Hirzebruch
spectral sequence for 7% (X, A) consists of filtrations

7 X, A)=F'my(X,A)DF'ne(X,A)D - - DF""'wy(X,A)=0
and canonical isomorphisms
di" Fr(X, A)F'my(X, A)— D°mi(X, A)/IC*mi(X, A)

where C'm(X,A)CD'my(X,A)CH™" (X, A; m, @T;). Here, m, is the
sth stable homotopy group of the 0-sphere and I'; is the local system of
integers determined by ¢ From now on, we identify
Foy(X, A)F'my(X,A) with D’my(X, A)/C’m(X,A), and omit
“(X, A)” from the notation when no confusion can arise.

In the cases of interest to us, the cohomology dimension of X is
2m —1 and i Z2m — 3. In this case, the descriptions of C*w; and D*rw;
are well-known.

Define homomorphisms «;(¢): H*(X,A; Z,)—> H*(X, A; Z,), for
i=12, by a(®)(x)=8g'x+xUw§ and ) (é)(x)=S¢’x+
Sq'x Uwé+x U((w €)Y+ x Uw,& The homomorphisms a;(£) and a,(¢)
for all vector bundles ¢ define cohomology operations «,(BO) and
a,(BO) in the category of spaces over BO (see [14]).

Let p: H¥X,A;I';\)>H*(X, A ;Z,) be reduction mod 2, and
®,(BO) be the twisted stable secondary cohomology operation (in the
category of spaces over BO) with the relation a,(BO)°(a(BO)°p)=0,
which arises from the first three stages of the standard Postnikov
factorization of the sphere bundle of a universal n-vector bundle with n
large. Write

®y(§): ker(ax(£)op) = H*(X, A; Z,)/Im(ax(£)).

ProroSITION 4.1.  Assume (X, A) has relative aimension =i +2.
Then

(1) C°m;=0, D°mwi=ker(a)£)op)CH (X, A;T,)

Q) C'mi= ax(é)pH" (X, A);Te), D'mi= H*\(X, A; Z))

(B) Clmi=Im(D,(¢)CH"(X,A;Z,), D*wi= H"(X,A;Z,)

4) Dmi;=C'm;=0 forj>i+2.

Proposition 4.1 can be proved by the same technique that McClen-
don used to prove part 4 of Theorem 6.1 in [15]. Now since ®,(¢) has the
relation a,(BO)e(ax(BO)p) =0, it follows immediately that

REMARK 4.2. C*w:D alé)H (X, A; Z)).
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When dim(X, A)=i+2, 4.1 allows for the calculation of 7} up to
extension. The following proposition allows for the calculation of the
extensions in many cases (and in particular for the cases in this paper).
Let R, be the set of elements of F'm/F'm} of order 2, and define

0,;: R,— F'mi/F’m}
0.: F'wi/F’mi— F’xi

as follows: if z € F'm/F'm;and 2z = 0, let x € F’7} which represents z.
Then 6,(z) is represented by 2x. If z € F'wi/F*x} and x € F'x} repre-
sents z, let 6,(z)=2x.

Let 8(¢): H*(X,A; Z,)— H*(X, A;I’;) be the Bockstein of the

short exact sequence I“€X—2>I“.5—>Z2 of coefficients. Note that pd(£)=

al(f)-

ProposiTION 4.3 (Larmore-Thomas [12]). Identify F*m/F** ', with
‘mfC'me. (1) For any z€R, 0(z)=a)(£)(8(6)7'(2). Q) If
z €ED'wi/C'mi, let x € D' represent z. Then 0,(z) = a,(é)x + C*wri.

To calculate the groups in diagram (4.1), we need the following
descriptions of the Z,-cohomology rings of P(P™) and (P™)*.

PrOPOSITION 4.4 (see [9, Ch. 16]). Let v be the first Stiefel- Whitney
class of the canonical line bundle over P(P™) and let q: P(P™)— P™ be
the bundle projection. Then q* is injective on H*(P™; Z,), and, as an
H*(P™;Z,) module, H*(P(P™);Z,) has 1,v,v* -, o™ as basis.
Moreover, v™ =3, (wP™)o™ "', where wP™ is the ith Stiefel-Whitney
class of P™.

>

ProposiTiON 4.5 (Handel [8]). Let u € H'((P™)*; Z,) be the first
Stiefel- Whitney class of the 0-sphere bundle P™ X P™ — AP™ — (P™)*.
Then

(1) (P™)* has the homotopy type of a closed (2m — 1)-manifold;

(2) There are elements y, € H'(P™)*; Z,), y.€ H*((P™)*; Z,) such
that H*((P™)*; Z)) = Z,[u, y,, y,)/ A where oA is the ideal generated by

u’—uy,, b,, and b,.,; where b, = ZIV}/ (l ]—]) yiyls

() Sq'y.= yiy;
(4) Letm=2+s, 0=s<2. Thenyi" '=0
and uyif"l—zy; generates Hzm_l((Pm)*;Zz).



ENUMERATING IMMERSIONS AND EMBEDDINGS OF PROJECTIVE SPACES 481

We also need the following lemma. Let Z[a] be the local system of
integers over a space X, twisted by a€ H'Y(X;Z,). Define
a: HYX,A;Z,)> H*(X,A;Z,) by a(x)=Sq'x + x Ua.

LEmma 4.6. Assume H'(X, A; Z[a]) is finitely generated. Let r(i)
be the dimension of aH" (X, A; Z,) and s(i) the dimension of kera C
H(X,A;Z,) (considered as vector spaces over Z,). Then
H(X,A;Z[a])= G @ H where G is the direct sum of r(i) copies of Z,
and HQ Z, has dimension = s(i)— r(i).

The proof is elementary and will be left to the reader. The reader
can also easily verify that H'(P™)*; Z), H'(P(P™); Z), H'((P™)*;T,),
and H'(P(P™);I',) are 2-primary groups for m <i<2m —1.

Most of the calculations of the groups in diagram (4.1) are direct
using 4.1 through 4.6; a few require some ingenuity. We indicate the
details in the case m =3 mod4 only. In that case, we have (where
m=2+s5 0=s<2):

H*™ '((P™)*; Z,)= Z, generated by uyi ’y}
H™ (P™)*; Z)= Z, generated by &(uyi " y3);
H™ (P™)*; Z,)=Z,® Z, generated by uyi
H>™?(P™)*;T,)=Z, generated by &(h)(yi y3);

H™3(P")*; Z)=Z,@® Z, generated by 8(uyi °y3) and 8(yi " *y3);

—2

ys and yi y3;

pH>"*((P™)*;T)) is generated by uy? ?ys™ and y?" " Pys+ uy?™ “tys
H>™*(P™)*; Z) is generated by &(uy? " *y:;") and 8(yi yi™).

We illustrate the use of 4.4, 4.5, and 4.6 by writing out the calculation
of H™7?*(P™)*;I',) and H™3(P™)*;Z). First observe that
H"*((P™)*; Z,)= H((P™)*; Z,)=Z,p Z, and so uy} ’y; and
yi " ?y3 generate H*™*((P™)*; Z,). Since

a(h)(yi ™ ?ys) = uyi ys#£0
a:(h)(y7 " ys) = uyi ys,

Lemma 4.6 implies that 8(h)(yi " ?y;) generates H>*((P™)*; T,). Since
Sq'(uy?"°y3) = uy?"*ys and Sq'(y¥ 'y3)=y?¥"y;, we have that
8(uy?"*y3) and 8(y¥""*y3) generate a subgroup of H>"((P™)*;Z)
isomorphic to Z,@ Z,. But H**((P™)*; Z) must by isomorphic to
Z,p Z, since
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Z,® Z, Z,= H"(P™)*; Z)
= (H™((P™)*; 2)® Zo) @ (H™((P™)*; Z)* Z2)

and
H2m—2((Pm)*; Z) *Z,

is isomorphic to Z,, where * is the torsion product.
Calculation of #37.'((P™)*): By Proposition (4.1),

i (P™)*) = H™ (P™)*; Z) = Z,.
Calculation of 7¥.2,((P™)*):

ax(2m — Dh)(uy? " 2y5) =0.
a(Cm — 1)R)(yT " Pys+ uyi  ys) = uyl T tysth

Lemma 4.7. If s is odd, y? " *ys*' = 0.

Proof. 1t is clear from 4.5 that if y? " ~*y3*'#0, it must equal
y¥"?ys. But in the next section (Proposition 5.3), we shall see that
J*(u)=J*(y;)=v and J*(y,) = z’+ zv where z is the generator of

H'(P(P™); Z,). Hence by 4.4
]*(y%r*1,4y;+1) — UZr+1v4(ZZ + Zv)s-H — O;

J*y?7 "2y = v (22 + zo ) # 0.

Thus y3""~*ys*' must be 0.
Applying Proposition 4.1 again, we have then

D°wi2(Pm)*)=Z, generated by 8(h)(y? " y3);

@2m-1)h
+1-

D'mg2((P™)*)=Z, generated by uy? "?ys;
C'agnZol(P)*) = 0.

The extension is nontrivial since

21200

a(Zm —Dh)(y7 " ys) = uyl Cys+ iyt = uyl Ty

which implies that 6, of Proposition 4.3 is nontrivial.
Calculation of 7, 2((P™)*):

s

(P™)*)=Z,@D Z, generated by 8(uyi ys) and 8(y¥ "*y;
y

0, 2m-3
D 7T(2’:ln~2)h
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D'win 2 (P™))=Z,D Z, generated by wuy? y; and yi 7y
C'r g u(P™)*) = 05

D*w¥n % ((P™)*)= Z, generated by uy? '?ys;

Cma(P™)*)=0.

The computations of these groups are all direct with the exception of that

of C’mw . ((P™)*) which is given at the end of this section. All of the

extensions are nontrivial as is shown by direct calculation of 6, and 6,

using Proposition 4.3.
In a similar manner, we obtain:

77"7mhl(P(P )) Z‘),
D’n 2 W(P(P™))=Z,P Z, generated by 8(h)(z™v™™)

and 8(h)(z"*v™"") where z is the generator of H'(P(P™); Z,));

D'wi52y(P(P™))=Z, generated by z"v";
C'mgn2y(P(P™)) = 0;
D'wi b W(P(P™)) = Z,@ Z, generated by  8(z™v™™*) and §(z"*v"7);
D'wi2w(P(P™))=Z,D Z, generated by z" 'v™' and z"v"7?
C'agW(P(P™))=0;
D*w i %(P(P™))=Z, generated by z"v";
CZ'IT(ZZ":,,:JQ);,(P(PM)) = 0
The extensions in 7, 2(P(P™)) and 7, (P(P™)) are all nontrivial.

The remainder of §4 is devoted to proving that C*w . %,((P™)*) = 0.
Recall that that group equals the image of ®,((2m —2)h) where
®,((2m —2)h) is twisted by (2m — 2)h, or, what is the same thing when
thought of as an operation in the category of spaces over BO, twisted by
a classifying map f: (P™)*— BO for the stable class of (2m — 2)h. Since
any multiple of 4h is a spin bundle, f factors through BSpin, which is
3-connected. Now the degree of ®,(BO) (and its pullback to BSpin) is 3;
thus ®,((2m —2)h) = ®,, where ®, is a (non-twisted) secondary cohomol-
ogy operation with relation Sq°° Sq*= 0. (See [16, §3].)

Observe that

$q*(pd (uyi™ys™) = Sq*(uyi "y =0
Sq*(pd(y7 " 7ys ) = Sq(yi Ty ) = 0

so that &, is defined on all of H*"™*((P™)*; Z). By Handel [8] there is a
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(2m —2)-dimensional space BG, a map k: (P™)*— BG and elements
X, X, € H*(BG; Z,) such that k*x; =y, for i =1,2. Then

y(8(y7 7y ) = kD (S(xT 1)) =0

for dimensional reasons.

In order to calculate ®,(8(uy? *yi")), we need the following
construction which will also be used in §5. For any space X, let A> X be
the space of unordered (not necessarily distinct) pairs of elements of X,
topologized as a quotient space of X>. Then AX CA*X and X*C A’ X.

For any 1=4=m, let m=pPm/P*' In [11], elements
Az' € H'(A*P%,APY; Z,) are defined for # =i =m, and an action of
Z,[u] on H*(A*P73,APY%; Z,) is defined (where u can be regarded as the
element in Proposition 4.5). The elements u' Az/, for0=i=j, S =j=
m, generate H*(A*P7y, AP%; Z,) as a ring; the relations among the u’ A 2’
are described in [11]. (Note that u‘ Az’ € H*(A*P%,AP%; Z,) is mapped
to u' Az’ € H*(A*P%_,AP% ,; Z,) by the obvious map.)

Now let j: (P™)*— (A*P™,AP™) be the inclusion.

Lemma 4.8.
(1) j*(azm7azm )= uyi Ty 4yl s
@) j*(rz"azm)=uyi yityi
@) jr(rzmazm)=uyl yity iy

We give the proof below; but first we finish the calculation of
C'm 3 ((P™)*). Let g: (A’P™,AP™)— (A*Pj_5, AP _;) be the natural
map. Since m =3 mod4, P,_, has the same homotopy type as
P ,vS™?. Let h: (AP, APn_)— (A°P}, 5, AP}, ;) be the map in-
duced by Py ,— P _,v S™°— P, where the first map is the inclusion
and the second is a homotopy equivalence.

Now Sq'(rz™Aaz™ )= az"az™" by Lemma 10 of [11] and

o2, s-1

()*(nzm P azm ) = uyi Ty + yl Ty = pd(uyi

r+l_g 2r+i_3

yi '+ yi 7y

by Lemma 4.8. Hence it suffices to show that ®,(§(rz"Az"?))=0in
H*" (A*Ppr_5,APL 55 Z,). But @, is defined on §(Az™?Az"7%) and we
have a commutative diagram

*

h
H2m—1(A2P:v3’ APz—,z;Zz)‘ — HZMAI(/\ZP:“L AP:‘wz;Zz)
(4.2) chz T‘Dz
*
H>" (A°Pr_3, AP} 33 Z)— H™ (A*Pr ,, AP ,; Z)

h*(8(Az™ 7 Az™*)) = 0 in the lower line of diagram (4.2), while the upper
line is injective, and the image of Sq° in the upper right groupis 0. Thus
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®(8(Az"*Az"?)=0. This concludes the calculation of
C*m 8 2om(P™)").

Proof of 4.8. We prove (2) only; the proofs of (1) and (3) are
similar. By Lefschetz duality and Proposition 4.5

H™ (AP AP™; Z)= H(P™) Z)=Z, D Z.D Z.D Z,
H (AP AP™; Z)= HY((P™)*; Z) = Z.® Z. D Z..

Using Theorem 11 of [11], it is easily seen that Az™ 3az™, Az™?Az™ 7
um3Az™ um"*Az"" must be a Z,-basis of H*"3(A’P™,AP™; Z,) and
™ must be a Zy-basis of

m-2 m=2

AZ™AZ™E AZ™ T AZ™TY um Az
H*"*(A*P™,AP™; Z,).

In the next section (see Diagram 5.1) we show that
H*(A\*P™, AP"‘)—I-> H*((P"‘)*); H*(P(P™)) is exact. Since uyi “‘yi+
yi Ty =8q" (uyT " Cys 4+ yiys) and J*(uy? U+ y7 4y s) =0, there s
an element ¢ in ker(Sq') C H™*(A*P™,AP™; Z,) which is mapped by j*
to  uyl 'yi+yiT 7y But  Sq'(umtaz™ )= Sq'(rz"Az™) =0,
Sq'(nzm Az Y= Az Az Sq' (um P Az) = um Az ™. So ¢ must be
a linear combination of u™>Az™ " and z">Az". Since, by Lemma 6 of
[11], j*(u™2Az™ ) =0, j* mustmap Az" > Az™ to uy? ys+ yi Tyl

5. Calculation of J*. Let (X,A) be a finite dimensional
C.W. pair with inclusion j: A — X, and let £ be a vector bundle over X.
Assume i Zdim X — 2. In order to compute J*, we first consider the
more general problem of calculating b = j*: m(X})— 7w }(A).

Let b*: Fri(X)/F*"'wi(X)— F*mi(A)/F*"'wi(A) for s =0,1,2 be
induced by b. To calculate b, in addition to the b°, we need the
following maps which are also induced by b

B": ket b'— coker b' = F'mri(A)(Fmi(A) + b(F'ri(X)))
b': ker b'— coker b* = F>7ri(A)/b(F*7i(X))
B": ker B"— coker b = Frari(A)(F*mi(A) N b(F'mi(X))).

These homomorphisms together with Propositions 4.1 and 4.3
determine ker b (up to isomorphism) since

ker b N F?mry(X) = ker b?;
(ker b N F'mi(X))/(ker b N F*rri(X))=ker b';
(ker b N Fomi(X))/(ker b N F'7i(X)) = ker b".
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They also determine coker b since coker 170, coker b°, coker b° give the
quotients of the filtration:

(F*wi(X)+ im b)fim b C(F'mwi(X)+ im b)/im b C F°mi(X)/im b.

Let a,(BO) and ®,(BO) be as defined in §4, and let (a,(BO)p), and
(a,(BO)); be functional operations in the category of spaces over BO as
defined in [14, p. 197]. Then (ax(BO)p)j twisted by ¢ is defined by
(ax(é)p)x = 6 (ax(é)p)k*'x for x € H*(X;T,) and (ax(BO)); twisted
by & is defined by (a(¢)),y = 6 (ay(€))k*'y for y € H*(X; Z,), where
k: X —(X,A) is the inclusion and &: H*(A)— H*(X, A) is the co-
boundary operator.

Define (®,(BO)), twisted by & by

(@oE))x = 67 (@) (ker(ax(€)p)) N k*'x) for x € H*(X;T,).

The following proposition is adequate to compute all of the horizon-
tal maps in diagram (4.1).

ProposITION 5.1.  After the obvious identifications

(1) b= (ar(&)p);5 _

(2) if C'mi(A)=0, b'_is the map induced by (a,(&));;

3) if C'mi(A)=0, b°=(Ps(¢)), modulo the indeterminacy of
(P(£));

5.1 can be proved by looking at the first three stages of the standard
Postnikov factorization of a sphere bundle and using the alternate
definition of functional operation as given, for example, in [17, Ch. 16] or
[14, p. 197]. It is essentially a tautology. (See [18] for more details.)

Before we can caclulate the maps J* in Diagram (4.1), we need the
following explicit description of J. Let V,.,, be the Stiefel manifold
of orthonormal 2-frames in R™*'. If we identify (u,, u,), (— u, u,),
(u1, — u,), and (— u,, — u,) for any (u,, u,) in V,,,, , the resulting quotient
space is P(P™). Let =: V,.,,— P(P™) be the quotient map. Define
g: P(P")— P™" x P™ —AP™ by g(m(uy, u,))= ([uy,],[u.]), where [u] is
the element of P™ determined by the nonzero vector u. It is shown in
[8] that g is a homotopy equivalence.

Let p: P" X P™ — AP™ — (P™)* be the projection and set SZ,,,,,=
pg(P(P™))C(P™)*. We have a commutative diagram

p(Pm) 2> P x pm —AP"

|7 [P

SZpir 2 (P
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where g is the inclusion and p = p|P(P™). Then p is a double covering
and g, g are homotopy equivalences. (See 2.5 of [8].)

Define a homeomorphism f: §Z,,.,,— SZ,..., by f(p([v.],[v:])) =
p([v, + vy],[v, — v,]), for any unit vectors v, and v,.

ProrosITION 5.2. J is homotopic to gfp: P(P™)— (P™)*.

Proof. It is clear that there is a metric d on S™ left invariant by the
antipodal map, such that if exp, is the exponential map defined with
respect to d, we have expq (vy, v,) = (1/V2) (v, + ) for (v, 02) € Vs
where we have identified V,.., with the tangent sphere bundle of
S™. Now d induces a metric, d, on P™. Define J: P(P™)— (P™)* by
J([v]) = [expa(v), expa (— v)] for v a unit tangent vector of P™. Then
J = gfp and J is clearly homotopic to J (as defined in §2).

PrROPOSITION 5.3.
1) J*(u)=J*(y) = v;
(2) J*(y)=z°+ zv.

Proof. J*(u)= v since J is covered by a map of double covers.
Since by 4.5, u? = uy,, we must also have J*(y,) = v. It is shown in [8] that
p*(y,)#0. By 52, this implies J*(y,)#0. Since Sq'y,=yy,
Sq'(J*(y.)) = vJ*(y,). The only non-zero element of H*(P(P™); Z,) with
this property is z>+ zv; hence, J*(y,) = z° + zv.

Turning now to the calculation of J* in Diagram (4.1), we again
indicate the details in the case m =3 mod 4 only.

J*: mﬁh‘((P ) )= o '(P(P™)) is the 0-map  because
J*(uy? 2y = 0" (z*+ zv)* =0 by 5.3 and 4.4.

The calculation of J* on w{f, %)u((P™)*) is similar to (and easier than)
the calculation of J* on 7, %u((P™)*). So we include the computation of
the latter only.

It follows directly from the computations of §4 and Proposition 5.3
that

Fag (P Y F a3 (P = Z, 6P Z,
]*0
Fa & (PP ) F 8 2(P(P™) = 2, Z,

has image Z, generated by z"*v™ '+ z™'v""* and kernel Z, generated
by 8(uyi"™ Cyi+yi"*y3), and

Flag (P ) Fr o p((PT)) = Z, D Z,
J}(J*]

Flag (P(P™ ) F i y(P(P™)) = Z,D Z,
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has image Z, generated by z" *v™ + z™'v" "' and kernel Z, generated by
uy? Pys+ yi T 2ys, while

Fag5u(P™)*) = Z,

lj*z

Fag5uP(P™)) = Z,

is the 0-map.
Recall that A’P™ is the set of unordered pairs in P™, and we have

(P™)*CA*P™ and AP™ C A*P™. The complement of J(P(P™)) in A*P™

has two components; let N be the closure of that containing AP™. Then N
is a tubular neighborhood of AP™. There is a commutative diagram

((P")*, P(P™)
P

(5.1) (Pm)* (A*P™, N)

\j Tb
(A2P™, AP™)

where all the maps are inclusions. Since both a and b induce isomor-
phisms of cohomology groups, we may replace k by j in the computation
of the functional operations of Proposition 5.1. The advantage in this is
that H*(A’P™, AP™; Z,) is completely described in [11]. (See Lemma 10 of
[11] for the action of the Steenrod algebra on H*(AZP"' AP™; Z,).)

We return now to the computation of J* on #w{, % ((P™)*).

ProposiTION 5.4.
(ax(2M ~2)h)); (uyi™ys+ yi™ ?y3)=0;

(ax((2m ~2)h)p);(8(uyi ys+ y¥ o y3)=0;
(D((2m ~2)h)); (8 (uyi Pys+yi y3))=0

with 0 indeterminacy.

Proof. Recall (Lemma 4.8) that

Jr(Azm Az = uyt s+ i s

r+1_
J*(Az™ 2 az™) = uyd Py 4y s,

Since Sq'(Az"*Aaz™)=Az™Az"™, we have
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