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Let {f(x), x =0} be nonnegative such that J’ f(x)dx =1.
o

Define g(x)= f(|x|/s/..») for x ER,. The n-dimensional Eu-
clidean space is denoted by R,, | x| is the length of the vector
x €ER, and S, , = surface area of the n-dimensional sphere with
radius r. Let W(dy) be the (n + 1)-dimensional Gaussian white
noise, i.e., for any Borel sets B and C in R..,, W(B)and W(C)
are mean zero Gaussian variables with variance of W(B)=
volume of B, and E(W(B)W(C))=0ifandonlyif BN C ={.
Construct the sets A, in R, as A =
{(x-- xw z)ER, x[0,)|g(x + t)>z}. Define an n-dimen-

sional isotropic Gaussian field as X(t) = f W(dy); tER..
Ay

X(t) has mean zero and variance one. In addition, if it is
assumed that f(x)/x""' is nonincreasing, then the covariance
function of x(¢) can be computed to be r(t)=

® ° b
(2/C)f (f sin"’zada) f(x)dx, where 'tl =t c= f Sinn-zada
1/2 0 .

and 0 = arcos(t/2x). Let V, denote the class of covariance
functions r(¢) in R,. Characterizing properties of the class V,
are studied for the odd and even dimensional spaces.

The class V, is the same as the one considered by Hajek and
Zubrzycki. Some examples and the iterative properties of V, are also
considered. The classical Polya’s criterion for characteristic functions is a
special case of Theorem 1.

A collection of real or complex valued random variables Z(t), where
t ranges over a n-dimensional Euclidean space R, is called a “‘random
field”. Assume throughout that E|Z(t)|* is finite and that

0.1) E|Z(t+8)~Z(t)—0 as 85—0.

Let Z*(t) denote the complex conjugate of Z(t). The functions EZ(t) =
m(t) and K(t,, t) = E(Z(t,)Z*(t,)) — m(t,)m *(1,) are called the “mean”
and the “‘covariance’ functions of Z(t) respectively.

The class of covariance functions K(K,) is the same as that of the
nonnegative definite functions in R,. The random field Z(t) is called
“isotropic” if K(t,, t,) depends only on the length |, — t,| of the difference
t,—t,.  The Bochner-Khinchin theorem for nonnegative definite func-
tions gives the spectral representation for isotropic covariance functions
in R,. This leads to the following theorem (see [3] p. 39).
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THEOREM. For R(t) to be the covariance function of an isotropic
n-dimensional random field satisfying (0.1), it is necessary and sufficient
that

R(t)=227T (g) fm Jw-2n(AL) dG(\)
0

(/\t)("_z)lz

where G(A) is bounded, nondecreasing function such that G(0)=0;
G(»)= R(0) and J,.(x) is the Bessel function of the first kind of order
m. Namely,

- B 22K+m
Jn(x) = KZ:O(‘U K!F((xléz‘m‘i“l)‘

This paper considers a subclass V, of the isotropic covariance
functions in R,. The classes V, arise naturally as the covariance
functions of the integrated (n + 1)-dimensional Gaussian white
noise. Thus every covariance function given, comes with a representa-
tion of the associated isotropic Gaussian random field. Such representa-
tions can be used for simulation purposes.

Berman in his paper [1] gives a very interesting representation of
covariance functions in R, with absolutely continuous (abs. cont.) spectral
distribution. The associated stationary Gaussian process is the integral of
a two dimensional Gaussian white noise over appropriate sets. His
techniques and results were used by Mittal and Ylvisaker [6] to generate
a class of covariance functions in R,, that is similar to V,.

The next section contains the statements of the main results. The
proofs of these are achieved by a series of preliminary lemmas contained
in §2. Section 3 proves the main results and the corollaries. The special
case of n =2 is looked at in the last short section.

NoraTioN. In the following, interpret 2/%™' to be zero and the
products 2-4---(n—3) or 2:4---(n—2)tobe 1 if n=30or n=2
respectively. A function h(x)is 0(1,%) means h(x)— 0 as x =~ and it is
0(1,0) means h(x)—0 as x 0. h® is the kth derivative of h with
h®=h.

1. Statements of results. Let {f(x),x =0} be a density

function, that is, f(x)=0 and [mf(x)dx =1. Then g(x)=f(|x|)/Su.. is
0

a density function in R, where S, , = surface area of a sphere with radius
u intersected by a right circular cone of angle 6 inR,. Let W(dy) be the
(n + 1)-dimensional Gaussian white noise, that is, for any Borel sets B
and C in R,,,, W(B) and W(C) are mean zero Gaussian variables with
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variance of W(B)=volume of B and E(W(B)W(C))=volume of
(B N C). Define the sets A, as {(x;- - x,, z) ER, xX[0,2)|g(x +1)> z}
where x = (xy,- -+, x,) and t €R,. Define

(1.1) X(t) = L' W(dy).

X(t) is an isotropic Gaussian field in R,. In addition, assume that
f(x)/x"" is nonincreasing or that g(x) is nonincreasing in |x|. The
covariance function of X(¢) can be computed as follows. Let |1|=1t.

r(t)= E(X(0)X(t)) = volume of (A, N A,).

Let L be the n-dimensional plane orthogonal to the line joining ¢ to the
origin. The volume of A, N A, is symmetrically divided into halves by
L. For computation of the volume on the side of L that contains ¢,
notice that it is bounded by R, and the function g. Now g takes
constant values f(|x|)S,., on n-dimensional spheres of radius |x|
centered at the origin. The surface area of the part of this sphere on the
side of L that contains ¢ is S, where = arcos (¢/2|x|). Thus

=2 S f(xl)dx].

Put |x| = x and change to polar coordinates to evaluate S, , Thus

(1.2) rt) = % f (fo sin"‘zadaf(x)dx>

/2

™

where ¢ :f sin"“ada. The following theorem gives necessary and
0

sufficient conditions for (1.2) to be an isotropic covariance function in odd
dimensional spaces.

THEOREM 1. Let n =3 be an odd integer.

(A) For every density function f on [0,%) such that f(x)/x"" is
nonincreasing, r(t) given by (1.2) is an isotropic covariance function in
R,. It satisfies

(a) r(t) is continuous, convex such that r(t) = o(1,%) and r(0) = 1.

(b) r*(t) are abs. cont. on [e,°) ¥V € >0 and t“r*)(t) is o(1,*) and
0(1,0) for k =1,2,---,(n—1)/2.

(C) g_—lm {("ﬁﬂ g__(‘."j_ﬁ r((('lﬂ)lz)—i)(t) _ r((ﬂ+1)/2)(t)}

t(n—l)/Z “~ t

is nonnegative and nonincreasing in t.
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(B) Let r(t) satisfy (a), (b) and (c) above. Then f(t) given by

3 Ct(n—l)/Z(_ 1)(n-1)/2 {(n—3/2 a$n+1)/2r(((n+l)/2)—i)g)_ (s }
13) [0 = S5 2 . P (p)

is a density function on [0, ) such that f(x)/x""" is nonincreasing and r(t)
is an isotropic covariance function in R, given by (1.2) for this f.

The constants a¥ are defined as
at =D& g s @),

(1.4) :
e (k+i=2)! L,
ST k—=i-2) 4

and

i=2,3,---,(k-2)

for k =3,4,--- and a¥*= 0 otherwise.
The following theorem of Pdlya can be viewed as a special case for
n =1 of Theorem 1 with suitable changes in the notation.

THEOREM (Pdlya). Let r(t) be a real-valued and continuous func-
tion which is defined for all real t and which satisfies the following
conditions:

@ rO)=1,

(i) r(—1)=r(),

(iti) r(t) convex for t >0,

(iv) It_.r(t)=0.

Then r(t) is the characteristic function of an absolutely continuous
distribution F(x).

The next theorem gives characterization of the class V, of

covariance functions given by (1.2) for n =2k, k =1,2,---.

THEOREM 2. Let n =2 be an even integer.

(A) For every density function f on [0,%) such that f(x)/x"" is
nonincreasing, r(t) given by (1.2) is an isotropic covariance function in
R,. It satisfies

(@) r(¢) is continuous convex such thatr(t)= o(1,%) and r(0) = 1.

(b) r®(t) is abs. cont. on [e,°) ¥ € >0 and r®(t)t* is 0(1,*) and
0(1,0) for k =1,2,---,(n/2).

© (—1)("’2’”(%{t w-——ﬂLdu}

LUV ur-p

is nonnegative and nonincreasing in t where
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(=178 = (= 17" (o) = 2 4 renrou)

is nonnegative.
(B) Let r(¢) satisfy (a), (b) and (c). Then f(t) given by

—(_1)(n/2)+1 2 tnl @( )
(1.5) fur) = (n=2) dt[ f "\ u? - ¢ du]

is a density function on [0, ) such that f(x)/x""" is nonincreasing and r(t)
is an isotropic covariance function in R, given by (1.2) for this f.

Corollary 1 gives a recursive property of the classes V, similar to
that of K, given in Matérn ([5]; 2.3.12). Corollary 2 shows that V, is
nonincreasing in n and Corollary 3 proves that V, are closed under
mixtures. The exact statements are as follows.

CoRrROLLARY 1. If r(t) is in the class V, for the associated density
function f, then p(t) defined as

, n-2 ¢,
r(t)) n—3

cn—Z

(1.6) o) = (r)- 15

belongs to the class V,_, for the same density function f and n =4.
Cn :f sin"*ada.
0

CoRrOLLARY 2. (1) Let r(t) be in V,, n =3 and f be the associated
density function. Then r € V,_, and the associated density function is
given by

(1.7) g =2 1 | e

where n(n)=3-5---(n—-2)/2-4---(n—3)) if n is odd and n(n)=
5--(n=3)/Q2-4---(n—4)) if nis even.
(2) Ifrisin 'V, for n = 4 and f is the associated density function then
r belongs to V,_, for the density function g such that

(1.8) g(t/2) = 2 t”f [x) gy,

n X"

CoRrOLLARY 3. Let F be a distribution function with F(0*)=0 and r

belongsto V,then w(t) = f r(t/a)dF(a) is a covariance function in V, for
0
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the density function g(x)= f f(x/a)-a"'dF(a); f being the density
0
function of r.
The class V, is given particular attention, especially its relation with

the class # of Hajek and Zubrzycki [2]. p € % if and only if there exists
a distribution function G with G(0*) =0 such that

= [t

(1.9) )= [ v(£) d6(@)
where
(1.10) y(a)=%[arcosu—u(l—uz)”z] O=u=1

=0 u>1.
Thus
(1.11) =2 g=u<]
' Y = A=) =

=0 u>1.

The following is Theorem 5.1 in [2].

THEOREM (Hajek, Zubrzycki). The correlation functions p(t) given
by (1.9) are characterized by the following properties

(1)  p(t) is continuous, convex with p(») =0
(1.12) (i) p’'(t) is abs. cont.

(1ii) fx (1/u?)y"(t/u)p"(u)du is a nonincreasing function of t.
0

In the last section the following proposition is proved.

ProrosiTiON. (1) The covariance function y(u) given by (1.10)
belongs to V, for the associated density function f(x)=8x;0=x =1/2.

(2) Every covariance function belonging to V, satisfies (iii) of the
above theorem.

Thus V,= %.

2. Preliminary lemmas. The following lemmas will help to
avoid repetitions in the proofs of the Theorems 1 and 2.

LEmMMA 1. Let f(x) be a density function on [0,%) such that
f(x)/x"""is nonincreasing. Define the functions for K =1,2,---,[n/2] and
t>0,
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@1 L= CEEE =)0 S) (2K )

c4x-1

» ¢ \2\ (2K-D2 (e
X J:/z <1 a <§> ) x K1 dx

and I (0) = It I« (t). The product (n —3)---(n — 2K + 1) is interpreted to
be 1 foreither K =1 orn = 2,3. Then I (t) is bounded on [€,0) V € >0,

2.2) d% Ie(t) = 5—}1 Le(6) + Txnn(?)
for K=1,2,,[(n - 2)2],
2.3) f Le(u)du = — I \(u)— (K —2) f Lalu) g,

for K =2,3,---,[n/2] and
2.4) t5Ie(1) is o(1,®) and o(1,0)

for K =1,2,---,[n/2]. Notice also that Ix(t) has alternate signs for values
of K, with I,(t) being negative.

Proof. The uniform convergence on [e€,%) of the integral in the
R.H.S. of (2.1) is obvious for all K such that n —2K — 1> — 1. Suppose
n—2K—-1= —1, ie., K= n/2, then the integral is

g (TS Ry L (N
o VxP=()2)¢ x? w Vx—t2Vx+t)2 x"?
) f(x)
’ f(r/zw X"V x?t = (12

The second integral in the R.H.S. above is uniformly convergent since
n = 2. Now, f cannot be unbounded on [¢/2,(¢/2)+ 1] since f(x)/x"" is
nonincreasing. Hence the first part is uniformly convergent. By taking the
derivatives under the integral sign, (2.2) follows.

f'm Ie(u)du = (- 1)K(n—3)(nc—4’521...(n 2K +1)

© 2x 2\ (n—2K-1)/2
X f ﬂ—zxz,)f_, (J ukt (1 - (%) ) du) dx.
t2 t
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The interchange of the order of the integration is justified by Fubini’s
theorem. The R.H.S. above is equal to

4 © f(X) [J'Zx Koa (( _<_u_>2>(n—2K+l)/2]
n—2K+1)J), x*3 |/, utd{|1 2x ) dx

apart from a constant provided K# 1 and (n + 1)/2> K. The above is

4 f(X) ‘- 2< <_t__)2)("—2’(“)/2
n—2K+l{,,2 w3 ! 2x dx
«© © 2\ (n=2K+1)/2
+(K—2)f u""‘J’/z (1—(5—‘;)) g,%%dx}.

The order of the integration in the second term is changed again by
Fubini’s theorem. Notice that for K = 2, the second term is taken to be
zero. Substituting values, (2.3) is obtained.

Lastly, notice that f(x)/x""' nonincreasing implies that

o=ys [ s ()] reoa

and xf(x)=0(1,0) and o(1,©). For proving (2.4), we use the fact that
t"IK(t)éj f(x)dx for all + and K =(n-1)/2. Thus t*Ix(¢t) is

/2

0(1,»). For t small, choose A > /2 so small that xf(x)=eV0<x <A.
Then

p = e [ (- (L)) e a
N o 12 2x x K
(n-2K-1)2 :

s (=) e

2K-1 A dx t2K—1 fm
= x2— (t2) dx.
¢ f'/z VA2 AN (12) (t/2) flods

Substituting x = (¢/2) sec 6 in the first integral in the R.H.S. above
t* I (1) = 0(1,0).

LEmMMA 2. Let f be a density function on [0, ) such that f(x)/x"" is
nonincreasing and

2.5) () = 2 f ’ ( fo ’ sin"'zada) f(x)dx

2

where ¢ and @ are defined at (1.2). Then
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K-2 K

(2.6) r®) = > &L o) 4 L (1)

i
=i

for K=1,2,---,[n/2]. The constants af satisfy the recursive relations
i) af'=af+K-1

2.7) () af'=a¥—(K+i—-2)ak, fori=2,3,---,(K-2)
(iii) ag’i= —(Q2K-3)ax.,

for K=3,4,---,[n/2] and a}=ai=0; ai=1.

Proof. f(x)/x""' nonincreasing implies that f(x) is bounded on
[£/2;(t/2)+ 1]. Hence the integral in the R.H.S. of (2.5) is uniformly
convergent for K = 1,2, - - -, [n/2]. Differentiating under the integral sign
would verify (2.6). Thus

K-2 Kp(K=1+1)( ja Kr&-(t K -1
g = 3, (S e Q) = I (D) F o).

=1

The constants af*' for i =1,2,--+,(K —1) are defined such that the
R.H.S. above is

K+1

K-
2 r&TE() + Tin(t).
Some algebra will give (2.7).

LEMMA 3. The constants af of Lemma 2 are given by

i) ar= E=DEK=2)

2
2.8) (i) a¥,=(—1)*"1-35---QK-5)= —ak_,
(K+i-2)!

i) af= Gt =72y @i fori =23, (K-2)
for K =3,4,---
Proof. Direct computations give a{ = a}=0and a} = 1. Using (2. 7)

(1) and (iii), (2.8) (i) and (ii) are obtained. Now first (2.8) (iii) for i =2 is
verified, that is,

2.9) ak = <ﬂ ai=(-1) K(K - 1)(?4 2)(K —- 3)

Since ai= —3. By (2.7) (iii),
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Il

—3ai—4aj—---—(K—-1arf"
Substituting the values for a/, the R.H.S. becomes

-1/2 K}j I1+1)(1+2)

(K —3P(K ~2)* , 3(K=3)(K ~2)(2K - 5)
4 6
o (K—3)2(K—2)} .

=—1/2{

Simplifying, (2.9) is verified. Now, assume that (2.8, iii) is true for
i=2,3,--+,(j —1). To show it for j, i.e.,

K+j-2\ .
(2.10) a}‘=< 5 )a;Z.

By (2.7 i)

af=af"'—-(K-1+j—-2)a’
=af?—(K+j—4)al’?—(K+j—-3)af".

=~ (j - Daji-2jaji—- (K +j-3aky.

Using (2.8 iii) for i =j — 1,

K-j-2 .
. 2+ 1 -2 .,
ok = _{ (2,+1—1)LL—l(2].~2)!“} o
K-j-2 .
. . 2]+l—1>
- _ _ j+1
@ 1)(1,.71 =0 ( 2j -1
_ K+j-2> 2
( 2 a;’”.

(See e.g., [4], 0. 151). Simple substitution verifies ag_,= — ag-;.
LEmMMA 4. Let r(t) be as in Lemma 2. Then (1) r®(t) are abs.

cont. on [e,©) V€ >0 for K=0,1,---,[n/2] and
(2) t*r®(t) is o(1,%) and 0(1,0) for K =1,2,---,[n/2].
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Proof.

fr(u)du———ff 1- §¥>>( mﬂ—)dxdu

Interchanging the order of integration by Fubini’s theorem and substitut-
ing u/(2x) = cos a, the R.H.S. above is seen to be equal to — r(¢). The
abs. continuity of r(¢) follows by definition. Suppose r®(t) is abs. cont.
for K=0,1,---,(j —1). Then r%(t) will be if r9*"(¢) exists and is
integrable. Looking at (2.6) for K = j + 1, it is true if [;,,(¢) is integrable.
Lemma 1, (2.3) gives the result for j+1=[n/2]. If n is odd then
[n/2] = (n—1)/2 and

(n=5)12 a(n 12
r((n—l)/Z)(t)_ S t pn-1- 2‘)/2(t)
=1

LD =3 (n=5) 2 7 f(x)

c 4mn " X"

The first part in the R.H.S. above involves r®(t) for K=
1,2,--+,(n—3)/2 and the second part is abs. cont. by definition. If n is
even then [n/2] = n/2. By (2.6) for K = n/2,

rea(r) = (ni—z Etil/f r((n/Z)—i)(t)+ = 1)"/2'1";;_'2' (n—-2)
i
. p2-1 fw f(x) dx
b X n—z\/xz _ (1/2)2

and it only needs to be shown that

— o [ f(x)
h(t)=1t"? J:/z xn_z\/————xz_(t/z)zdx

1s abs. cont. Define

W= (5-1)e) vk e ,2 \/;z_l(t/z)z a(£).

X

It will be shown that fmh'(u)du = — h(t) for all + >0. Consider first

fl “ w2 \/x —l(u/2)2d<f("x?> !
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by Fubini’s theorem. The R.H.S. above is equal to

L[ o) [ e

R s a]

= (/21 f,; \/xz——(md(f(x )

xn—l

+(5-1) [Cwe [ vy a(B2)

2x

ud2\/ x*— (u/2) du}

using Fubini’s theorem again. (If n = 2, the second term above is taken
to be zero.) Finally, integrating by parts and noticing xf(x) = o(1, ®), the
result is obtained.

Now, r'(t) = I,(t) and (2) follows for K =1 by (2.4). Suppose (2)
holds for K =1,2,---,(j —1). Then

j-2

00 = 3 & oo+ 1)

i=

and (2) follows for K =j by the above assumption and (2.4) provided
j=[n/2].

LEMMA 5. Let r(t) be as in Lemma 2. Then

oo K-2 K
(2.11) f p K- {z a_ii r&=0(y) — r“"(u)} du = — ak*!
0

i-1 U

forK =2,3,---[(n+1)/2). The constants af are given in Lemma 2 and
3.

Proof. Using Lemma 3, first it will be verified that
(2.12) (K—i—1af"'"=(K+i—1)af
fori=1,2,---,(K—2)and K =2,3,---,[(n +1)/2]. When i =1, (2.12)
states that (K —2)af*' = Kaf, which is true in view of (2.7 i). By (2.8 iii),
(2.12) becomes

(K+1+i-2)
CHIK —i-1)

By (K +i-2)!
) GHN(K =i -2

(K—i—1) =(K+i-

for i =2,3,---,(K —2), which is an identity.
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Write Sj(u)=ZK7afu*"'r®(u). Then the L.H.S. in (2.11) is

=]

Jw u*'r®u)du + fw Si(u)du
0 0

=(af+K-1) jw r®O(uw)u*du + J:o Sy(u)du.
0

Notice r®(u) are abs. cont. and t*r®(u) = o(1,) and o (1,0) by part (2) of
the last lemma for K =0,1, - - -, [(n — 1)/2]. Successive integrations and
use of (2.12) would evaluate the above to be

aﬁ*éf ru)-udu =akt= —ax’l.
0

Hence the result.

3. Proof of the theorems and related results. The
functions being considered are of the type

3.1) (1) = 2 f ) ( L ’ sin"‘zada) f(x)dx

12

where 6 = arcos(t/2x) and ¢ = f sin"ada.
0

Proof of Theorem 1. Note that n =3 is an odd integer.

Part A. f(x) is a density function on [0, ) such that f(x)/x""" is
nonincreasing and xf(x)= 0(1,0). (a), (b) and (c) in the statement of
Theorem 1 from the last section must be proved.

Since n = 3, the first two derivatives always exist, the first is negative
and the second positive on [€,2) V € > 0. Also n odd implies [(n — 1)/2] =
(n —1)/2. Lemma 4 and the following will show (b). Differentiating (2.6)
for K =+(n —1)/2,

(n=3)2 , (n+1)2 (n+1—2i)/2(t)
3.2 pesimpy = SV Al
(32) 1) =2 "

B <(__ 1)(n—1)/2 t(n—3)/2(n _ 3)(" _ 5) e 4 . 2

C 4(n—3)/2

fap) |1
X2y 2> :
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Thus t(n+1)/2r((n+1)/2)(t) iS 0(1,0) lf r(n+1—2i)/2(t)t(n+1—2i)/2 are fOI' i=
,(n—3)/2 and tf(t) = 0(1,0).
Lastly, the fact that the transform r(¢) is invertible is obvious from
(3.2). It is equivalent to

t(n 1)/2(_ 1)(7: 1)/2 (n=3)/2 a(n+l)/2 r(n+l—2i)/2(t)

(33) f(t/z) = (n — 3) { 2 i y — r((n+l)/2)(t)} .

The quantity in (c) is in fact f(z/2)/t""" apart from a positive constant and
hence nonnegative and nonincreasing by assumption.

Part B. r satisfies (a), (b) and (c). It needs to be shown that r is
given by (3.1) for f given by (3.3) and f is a density function on [0, %) such
that f(x)/x""" is nonincreasing.

Since (3.3) is equivalent to (3.2) and r™®(¢t) are abs. cont. for
X =0,1,2,---,(n —1)/2, successive integrations will reduce (3.2) to (3.1).
f(x)/x"" nonincreasing follows easily from (c). It remains to be shown
that f is a density function.

J' f(t/z)dt A__l%(;_i/z_:;) fx MG

(nt)2 , (n+1)2 ,(n+1-2i)2
al"’r u
x{ S ; TT(u) ,«nﬂ)m(u)} du

i=1 u'

c (- 1 (n+1)/2
-J—L-2 2 (n=3) aiys by (2.11) of Lemma 5

_c(=D)""1-3-5---(n=-2)
4--+(n-3)

by Lemma 3

since n is odd and
c=2J' sin"ada =2-(2-4---(n—-3))/3-5---(n-2)).
0

This completes the proof of Theorem 1.
Proof of Theorem 2. Now n =2 is an even integer.
Part A. r(t) is defined by (3.1) where f is a density function with

the usual assumptions. It will be shown that (a), (b) and (c) of the
statement of Theorem 2 in the last section are satisfied.
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The function r(t) is at least twice differentiable. r'(t) = I,(t) =0. If
n=4, r'(t)=I1(t)=0. Also if n =2

"0 =5 7——t(7/5 (-5 =0

and r is convex. Lemma 4 implies (b). To show (c), again it is verified
that the transform r(t) is invertible and the quantity in (c) is f(¢/2)/t""!
apart from a positive constant. (2.6) for K = n/2 gives

(n/2 n/2
(B.4) (1) = 2 S rerin)
+ (=1)"-2-4---(n Z)t(n/z)- f f(x) dx
w2 2 X"V1=(t2x)

This is equivalent to

i f(x) N2 Blu)
(3.5) ‘fuIZ x"_z\/xz— (u/2)2 dx 24 (n — 2) u -1

where

(n/2 an/2 .
B(“) — r(nlz)(u) _ _t_ r((n/ )- :)(u)
i=1

Notice that (— 1)"?B(u)= 0. By Fubini’s theorem

it 5
X

* f(x)-2x [ du
j, u\/uz—t"\/(2x)2—u2dx

Thus

2n—2 - (__ 1)n/2 . o (u) _ ﬂ_)
1 (n-2) tj’ 1PN — (t/u )zdu /2 o dx.

Taking derivatives and simplifying,
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(n/2
— n/2)+17y , ¢n-1 o r‘"’z’(u)— j a' r((n/2)—:)(u)
(3.6) fa2) = S0 i[r | | S _u }du
2:4---(n—2) dt , N —

Part B. r satisfies (a), (b), (c) of the statement of Theorem 2 of last
section. It needs to be shown that r is given by (3.1) for f given by (3.6)
and f is a density function on [0,%). The fact that f(x)/x""' is nonnega-
tive and nonincreasing is obvious from (c).

First,
67 suma= 32 [T s ol
=_m—n—tﬁ2%5f Hffﬁ%%Twm

The last equality follows in view of (c) and using (b) to show that

vt

is 0(1,0) and o(1,»). Since (—1)"?B(u) is nonnegative, by using

Fubini’s theorem in the above the integral in the R.H.S. becomes

~on- [ERN ] T ) o

=—(n_2)(:_—_3‘§ Lxﬁ(u)u(nﬁ)—ldu

since
u tn—l

—__dt—_-u -n_2...
o Vu?—1t? n—1

.2
3

(interpret the R.H.S. to be u if n=2). By (2.12) of Lemma 35,
f Bu)u"'du = a{/3*]. Substituting in (3.7), the total mass of f is
0

observed to be one.

To show that r is given by (3.1), it is sufficient to establish the
equality (3.4), in view of the abs. continuity of r® K =0,1,---, n/2. But
(3.4) is equivalent to (3.5). Hence (3.5) will be established from
(3.6). Write W,=(—1)"?""-2-4---(n—2)/2. Thus

(3.8) wJT@9w=ﬂf—JiL—w
., oxm! "’2\/u —t?
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Get B(u) from (3.8) by the same inversion method used before.

) _ﬂ_)__
t
f 2\/u —t2 f X"V x2— u? dx du
_ ["BX) [* du
= ¢ d
x"* ), uNVui-2Vxi-u? *

_7m " B(x) d
—5 § X.
t

Thus

7 [ B(x * x/2
Eﬁ%dx=—tWof[ ZVu—tJ’f( )dxdu

_ f(x/2) du )
O v e B

- —w f""f(x/Z) Vx2- ¢ dx
0 , xn .

t

Taking derivatives on both sides and simplifying, (3.5)
follows. This completes the proof of Theorem 2.

Proof of Corollary 1. For r € V,, it needs to be shown that
(3.9) ) = (1) - 55 r0) 25 =

belongs to the class V,_, foralln = 4 (c,. = ]

sin"‘zada> and that p and r
0

have the same associated density function.

(3.10) Hi) = (% f ’ ( f ' sin"ada) f(x)dx

12

where 6 = arcos(¢/2x). Thus

r0= L[ (1= () g

t2
Now

0 ]
f sin"*ada = f sin" 3« sin ada
0 0

] 0
= —c0s0(1 —cos’ 0)" ¥+ (n — 3) f sin"“ada — (n — 3) f sin"ada.
0 0
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Transferring the third term in the R.H.S. to L.H.S,,

t 2

0 . ne2 0 . nea t (n=3)/2
(""2)L sin"*ada —(n—3)L sin ada—g(l—(-z—x)) .
Thus

r(t) = ( — {(n 3) f (fo osin"““ada) f(x)dx
3, (-G)) e,

p(1) = - f /2 ( L ’ sin"“‘ada) £(x)dx.

The result follows from the definition of the classes V..

Substituting,

Proofof Corollary 2. The objective is to show that V, D V,_, D -
Let r be given by (3.10). Suppose n = 3 is odd; then by Theorem 1, part
A, the conditions (a) and (b) of Theorem 2 will be satisfied by r, for
m = n — 1. It remains to be proved that

m+2)2 2

is nonnegative and nonincreasing where

m/2

ui i r(m-zi)/z(u)

m/2
B =) =3,
is such that (—1)"”B(u)=0. By (2.6) for K=n—1,
B(u)= W,u3" fm 'xﬂ,?_)z dx
u/2

where

_ )" (n=3)(n-5)--
¢ 4n

Therefore

f——ELLdFW]r I IO g ay

2
"Vur- u'—rJ, x

[ 1) [
2 x" ¢ u\/u2~t2 dx

ﬂ—2 arcos =— dx.
t/2 2x
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The quantity in (3.11) is thus

3:5---(n=3) [~ f(x)
(3.12) on-2 . xn_z\/m

The derivative under the integral sign in the last step is valid because of
the uniform convergence of the integral in (3.12). Next it will be shown
that (3.12) is nonincreasing in t. Let § >0,

T fx) 4 f fx)
0" "zv(zx)z_t aroyy X" \/(2)‘)2 (t+8y

(t+8)2 f(x)
- )y
J:,z N -

- f(;),z j;(f-z {\/(Zx )21 (t+o)y v(le)z— t"} dx

But
f(ms)/z f(x) = J’(t+8)/2 f(x) y (VW_’_?)
n X"V (QRx) -1 no x" 4
t+96
(%)
2 1 .
z 5 ,_I-Z-\/2t8+6.
(%)
Note that f(x)/x""' is nonincreasing. Also
S 11,
wor X"P WWQRxY=(t+8) V(@xy-r

_(e+e). f(’ + 5)

* X
(0" P f @y—r o
2

G 52)”2f<‘ * 5)
s (5°)"

Substituting, (3.12) is nonincreasing. By part B of Theorem 2, r must
belong to V,_;. The associated density function in R, will be given by
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_En)rzemtd [ (7 BQu)
8(112) 2:4---(m—-2) dt {t LUt u =g du}
_2-t"? 3-5---(n=2) (" fx)

2n—2 2. 4. (n — 3) 2 x"—z\/(zx)2 - t2

If n is even, then m = n — 1 is odd and by Theorem 2 part A, the
conditions (a) and (b) of Theorem 1 are satisfied for m. It remains to
verify that

_1\m-D2 ((m=32 , (m+1)2 )
R I G OB )

is nonnegative and nonincreasing. But by (2.6) for K = n/2, the quan-
tity in (3.13) is
,. D) =3)---5-3 (7 f(x)

¢ 40 " xn—z\/(zx )2 —7

The rest of the proof is similar to the first part.

Proof of Corollary 3. Let F be a distribution function with F(0*) =
0 and let

(6) = fo ’ [_Cz_ f ) ( L e sin"’zada> f(x)dx] dF (a).

/a

Making the transformation xa = v,

0= ([ i) 2)
- %f (Le sin"‘zada) (L f(%) . dF(a)) dx

where 60 = arcos(¢/2x). Define g(x)= fwf(x/a)(l/a)dF(a). Then
g(x)=0, and

[ scoa = [([1(2) 4 ar@) ac=1

g _ [* fela) 1 e

x o (x/a)*! a"

Also

is nonincreasing in x.
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4. The two dimensional case. Let ¥ be Héjek and Zub-

rzycki’s class of planar covariance functions. The class is generated by the
covariance function

4.1) y(u)=%[arcosu—u(l—uz)l’z] O=u=l
=0 u>1.

Proof of the Proposition. (1) y(u) satisfies the requirements of part
B of Theorem 2. Hence y € V, and the associated density function f is
such that

f(x/2)=—i—x£{xflﬂdu} 0=sx=1

(2) reV, hence

N U S )
"0 = ,,zvx—z-(wd< )

The proof will be complete if

(4.2) fom # y" (—t> r"(u)du

u

is a nonincreasing function of 7, where y”(u) is given by (1.11). The
quantity in (4.2) is

4.t f du Tod(— f(x)/x)
7 4w, uwNVui-1 ), Vxi-(u2y

e 2x .
= —%f d(— M) (f 2-du ) dx by Fubini’s theorem
™ t/2 t

x uVur—VQ@Rexy-r
1 (=1 ( [(x[)
= —d| - .
27 Jip X b
Note that

(4.3) dF(a)=:i(f(a/2)—(a/2)f(a/2)).
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Hajek and Zubrzycki [2] show that the covariance functions e™

and (2/\/5;;),( e “”du belong to ¥ and hence to V,. They also have an
t
example of an isotropic covariance function that does not belong to #.
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