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Fix a sequence # = {P.},-, of finite dimensional projections
increasing to the identity on a separable Hilbert space # and let
F(3) denote the algebra of all bounded operators on . The
quasitriangular algebra associated with ? and denoted as
929 (9P) is defined to be the set of those operators T in £(¥) for
which || P, TP, ||— 0.

In this paper we will examine the structure of the 27 (%)
algebras. Specifically, if # = {R.};-, is another sequence of finite
dimensional projections increasing to the identity on the same
Hilbert space, when is 27 () equal to 27 (P)? By an algebraic
isomorphism between two algebras we shall mean a bijection
which preserves algebraic structure: that is to say — addition,
scalar multiplication, multiplication, but we do not impose any
topological condition. When are two quasitriangular algebras
isomorphic?

In [5] we asked the same questions of 2(&)+ 6 (#¥)={T+K: T
belongs to the commutant of E and K is compact} and answered them
completely by arguments very different from those presented here; the
conclusions were different too. The concept of quasitriangularity for
operators was first isolated for systematic study in [3]. The quasitrian-
gular algebra was introduced later in [1] and a formula expressing the
distance from such an algebra to an arbitrary operator was obtained. We
begin our discussion with an algebraic property:

DEerFINITION 1. A subset & of () is said to be inverse-closed if
whenever T in & is invertible in £(%) then T' belongs to .

LEMMA 2. 2J(P) is inverse-closed for every sequence P = {P,},_,
of finite dimensional projections increasing to the identity on a Hilbert
space.

Before verifying Lemma 2 we remark that the assumption that the P,
be finite dimensional is essential.

Proof. From [1, Corollary following 2.2] we know that 27 (?)=
T (P)+ € (), where T (P) is the set of operators T such that P, TP, =0
for all n. Hence, it suffices to assume that S belongs to I (#)+ €(¥)
and is invertible in £ (%) and show that S™' belongs to 29 (%). So,
S=T+C, where T€ 9(?) and C € €(¥). Since S, =T+ P,CP,
tends in norm to S, S,, is invertible for all m greater than a positive
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integer . Fix m > and note that S,P, = P,S,.P, for all n =2 m, and
since dim P, <, S, maps P,# onto itself, so that P,S,'P, = S,'P, (or
equivalently, P;S.'P, =0). Hence, S;' belongs to 27 (%) by definition.
As §,! tends in norm to (T+ C)"' and 29 (%) is norm-closed [1,
Proposition 2.1], we conclude that (T + C)™' belongs to 27 (P).

THEOREM 3. Suppose that T is an invertible operator in £(¥'). Then
T implements an automorphism of 2F (P) (i.e. T2T (P)T'= 29 (P)) if
and only if T belongs to 27 (P).

Proof. <& : Assume that T belongs to 27 (%). To show that T
implements an inner automorphism of 27 (%) it will suffice to show that
T' also belongs to 27 (%?). But that is immediate from Lemma 2.

= : Assume that T implements an automorphism of 27 (%). First
we conclude from [1, Theorem 3.3] that T admits a factorization
T = UA, where A belongs to (%) and U is a partial isometry. Note
that A = U*T has closed range; since ker A = {0}, A is semi-Fredholm
by definition. Since A belongs to 27 (%) the index of A is nonnegative
[2] so that ker A* = {0} and A is consequently invertible. This forces U
to be unitary. Since A € 29 () is invertible, then by the previous
argument, A implements an automorphism of 29 (%) so that we are
reduced to showing that if U is a unitary operator which implements an
automorphism of 27 (%), then U belongs to 27 ().

So, we assume that U does not belong to 27 (%) and arrive at a
contradiction. Since U does not belong to 27 (%) then by the definition
of 27 () there is an a >0 and a subsequence {P,,\}i-, of ? for which
lim, || PawyUP,w»|l Z . From Lemma 2 we know that U * does not belong
to 2T ({Paw)}a-1), so that by definition, there is B >0 and a subsequence
{m(k)};-, of {n(k)}i-, for which lim, |P7nU*P.i| = B. If we let
e = min(a, B)/2, then we can conclude that |P;UP,| and |P,UP:
(=|[PLU*P,|) are both greater than € for all n in an infinite subset M of
N.

We will obtain a sequence {m, n;}7-, of positive integers such that
0<m,<n <m,<n,<--- and projections {F,, E,}i-, such that F, =
P,P. ., and E, = P, P;, for which |FLUE,| and ||E,UF,| are both
greater than €/2. We do so inductively.

For k =1, define F, = P,,, where m, is the first integer in M. Let n,
be the first integer such that | P, P, UP,| and || P, UP},P,]| are both
greater than €/2 (such an n, exists because || P, UP,, || and || P,,UP,,| are
greater than € and the P, tend strongly to the identity).

Assume that we have obtained {E,, F; }-,. To obtain m,,, and n,,,,
note that UP,, and P, U are compact; hence, there is a positive integer j
such that | P; UP, || and || P,,UP;| are both less than €/4 foralln = j. Let
my., be the first integer in M greater than j.
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Then

Ilel |UPnu 1I)l

ml +1 ml+|” ||Pml KUP"IUIP"( ”
z e~ ||Pn..UP.|

Ze—€ld=1

Similarly, || P,...,P5UP%,. || = 3€/4 by the same argument. Let n,,, be the
first positive integer greater than m,., for which | P,,. P, UP,,. P:| and
|P....P+UP:,. P,.| are both greater than €/2. Let F,, = P,,.,P» and let
E,.,= P,. P,... Continue inductively.
We select a subsequence {E,, F,};-, of {E, F.}i_, as follows: first, we
let {a;};;-) be any sequence of positive real numbers such that =, ;a}=
€’/16. Let i;=1. Assuming that we have obtained i, let ., be the next
positive integer such that for all [ £ k + 1, || E,.,UF, || and | F,..,UE, || are
less than a.,; while | E,UF, | and | F,,UE,k,,ll are less than a;,.,. This
is possible because UF,, F,U (respectively UE,, E,U) are compact and
the E; (respectively F;) tend weakly to zero. Continue inductively. Now
for each i, there is a rank one partial isometry T, € £(E, ¥, F, %) such
that | E,UT,U*F, | = €*/4. Clearly, T = £;_, T, is a partial isometry in
T (P). So, for arbitrary [ in N,

E,(UTU*F, = 3, E,UT,U*F, = ElUT,U*F, + >, E.UT,U*F,
k=1 k=1

k #1
Hence,
|E.(UTU*)F,| + || > E.UT,U*F,|| =z |E.UT,U*F,].
Al
| E.(UTU*F,|| + > |[E.UT,U*F,| = (/2 = €*/4
Al
Therefore,
| E.(UTU*F, ||z & - E |E.UF, |- | E,U*F,]|
- ée_z
=2

Since i; was arbitrary, it follows from the construction that

3e’

g = | E(UTUE, | | Pi(UTU*)P,, .
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Hence,

lim || P{(UTU*)P; || > 0

and it follows by definition of 27 (%?) that UTU* does not belong to
2 (2). This contradicts our assumption that U implements an au-
tomorphism of 29 (%) and thus concludes the argument of the proof of
Theorem 3.

DEerFinITION 4. Let ? = {P,};-, be a sequence of finite dimensional
projections increasing to the identity on a Hilbert space #. An operator
T is said to be strictly upper triangular for ? if P, TP,.,= 0 for all n in N.

REMARK 5. Note that in the proof of Theorem 3 we showed that if
U does not belong to 27 (#) then there is an operator T, which is strictly
upper triangular for 2, and such that UTU * does not belong to 27 ().

REMARK 6. Let & ={S,} -, be any sequence of finite dimensional
projections increasing to the identity on #. Let ? ={P,};-, be a
subsequence of . Then 29 (¥)C 29 (2). Equality may fail; however,
if T is strictly upper triangular for 2 then T belongs to 2% (&).

DEFINITION 7. A sequence of projections & = {S,}-, increasing to
the identity on a Hilbert space # is said to be a defining sequence for a
quasitriangular algebra of if and only if o = {T € L(%): || S+ TS, ||— 0}.

REMARK 8. Suppose that U is a unitary operator which imple-
ments an isomorphism T — UTU* from 29 (#) onto 27 (¥). Then U
maps defining sequences of 27 (%) to defining sequences of 27 (¥).

LEmmA 9. Suppose that P ={P,},_, and & = {S,}.-, are sequences
of finite dimensional projections increasing to the identity such that ? U ¥
is totally ordered by inclusion. Then 2J (P) = 2T (¥) if and only if there
exist positive integers m, and n, such that P, = S, for all k in N.

Proof. < : This conclusion is clear.

= : Assume that 27 (P)= 29 (¥). Then 29 (P)=29(P U ¥).
We assert that ? contains all but perhaps finitely many of the projections
in ? U ¥. Contrapositively, assume not. Let % ={R,};., be a total
ordering of ? U ¥ and choose an infinite subsequence {n, };-, for which
R, & P but R,,., € ?. Let T, be any rank one partial isometry with initial
space (R,, © R,,-))# and final space (R,...® R,,)#. Then T =Z;_, T, is
a partial isometry which belongs to 27 (%) but not to 27 (? U ¥).
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Hence, 29 (P U ¥)E 27 (P). We conclude that ? contains all but
perhaps finitely many of the projections in ? U &.

By symmetry, & contains all but perhaps finitely many of the
projections in ? U ¥. So there exists a positive integer k such that
{P,:dimP,Zzk}C¥ and {S,:dimS,=k}C P Let m, be the first
positive integer such that dim(P,,) = k and let n, be the first integer such
that dim(S,)= k. Then P,., = S, for all k €N.

THEOREM 10. & ={S.};_, is a defining sequence for 2I (P) if
and only if there exist positive integers m, and n, such that
limk ” Pmo+k - Sm;+k ” = 0.

Proof. < :Wenotethat 29 (¥)C 29 (%) since for T in 27 (¥),

1P TPt || = 1S 50k TS |+ | Pk = S20e) TS |
+ | Phyck TPk = Smei)|
= 1S4 TSmeicll + | i = St - [ T |
T Pk = S|l

and the other inclusion follows by symmetry.

=> : We assume that ¥={S,};., is a defining sequence for
2F(P). Let V be any unitary operator such that {VS,V*}._, U{P,};_,
is a sequence of projections totally ordered by set inclusion.

Let W ={W,};., with W, = VS,V* for each n. We assert that V
belongs to 27 (W'). So assume that T is strictly upper triangular for %';
it suffices to show that VTV* belongs to 27 (%) by Remark 5. By
Remark 6, T belongs to 27 (P U W)C 29 (P) so that it remains to
observe that VAT (P)V*C QT (W): Wi(VTV*W, =
(VS:V*)(VTV*)(VS,V*)= VSLTS,V*, so that |Wi(VTV*W,|=
IVS:TS.V*| =S TS, |- 0.

Hence, we conclude that V belongs to 27 (#'). Since 29 (W) is
inverse-closed by Lemma 2, it follows that [|W.VW,[|—0 and
[W,VW:[ = || WiV*W, |—0.

(1) Since W,V = VS, we have that W,VW.= VS, W} so that
W, VW[ =] VS,Wi| =S, W:|—0 and

(2) Since W,V = VS, we have that W, VW, = VS.:W, so that

IWLVW, = IVS, W, [ =IS:W.|—0.
Since ||S, — W, || = max{||S: W, |, |S.W:]||} [5, Lemma 6] it follows
that lim, | S, — W, || = 0 and by a previous argument that %" is a defining

sequence for 27 (). It follows from Lemma 9 that there are integers
m, and n, such that W, ., = P,... for all k in N. Hence
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lim, || Stk = Ptk “ =0,
which concludes the proof.

ExAaMPLE 11. As an easy consequence of Theorem 10, it follows
that there exist defining sequences ? ={P,}.-, and # ={R,},_, for a
quasitriangular algebra & such that {P,v R,};-, is not a defining
sequence for o (‘“v”’ denotes the supremum of two projections). This
phenomenon is suggested by an example in [3, p. 285].

We shall say that two subsets of £(¥#), ¥ and 7, are locally
isomorphic if each operator in & is unitarily equivalent to an operator in
J and conversely. Because every quasitriangular operator is a compact
perturbation of a triangular operator, it follows that any two quasitrian-
gular algebras are locally isomorphic; from Theorem 12 we conclude that
they are not necessarily isomorphic.

THEOREM 12. Let 29 (P) and 29 (¥) be quasitriangular algebras.
Then 2T (P) and 29 (¥) are algebraically isomorphic if and only if there
exist positive integers j, and l, such that dim(P,.,)= dim(S,..) for all k in
N.

Proof. <& :If we assume that there exist positive integers j, and [,
such that dim(P,.,)= dim(S,.,) for all k in N, then we can define a
unitary operator U such that UP,,,U* = S,., for all k in N. We assert
that U implements an isomorphism from 27 (?) to 29 (¥).

= : Assume that there is a map a from 29 (2) to 29 (¥) which
preserves algebraic structure. Since 27 (?) and 29 (¥) are Banach
algebras, each of which contains the set of finite rank operators, it follows
from [6, Theorem 2.5.19] that there exists an invertible operator S such
that a(T)= STS™' for all T in 27 (P).

We conlude from [1, Theorem 3.3] that S has a factorization
S = UA where A belongs to 7 (2) and U is unitary. Then we note that
R, = UP,U* is a defining sequence for 27 (¥); by Theorem 10, we note
that there exist positive integers m, and n, such that || Rk = Swsx | = 0.
So, there exists a positive integer d such that || Rpeask = Sweasx || < 1 for all
k in N. Hence, dim(R,.q4:x)=dim(S,.4:«) for all k in N. Since
dim(P,) = dim(R,) for all n in N, let j,=m,+d and let [,=n,+d to
obtain the theorem.
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