THE DUNFORD-PETTIS PROPERTY FOR CERTAIN UNIFORM ALGEBRAS

FREDDY DELBAEN
A Banach space B has the Dunford-Pettis property if $x^*_n(x_n) \to 0$ whenever $x_n \to 0$ weakly and the sequence x^*_n tends to zero weakly in B^* (i.e. $\sigma(B^*, B^{**})$). Suppose now that A is a uniform algebra on a compact space X. If ϕ is a nonzero multiplicative linear functional on A then M_ϕ is the set of positive representing measures of ϕ. If A is such that a singular measure which is orthogonal to A must necessarily be zero and if all M_ψ are weakly compact sets then the algebra A as well as its dual have the Dunford-Pettis property.

The idea of the proof is that A^* the dual of A can be decomposed into components for which the results of Chaumat [1] and Cnop-Delbaen [2] can be applied. The fact that an ℓ_1 sum of Dunford-Pettis spaces is also a Dunford-Pettis space then gives the result. In paragraph two some conditions ensuring the weak compactness of M_ϕ are given. These conditions are related to those used in the definition of core and enveloping measures (see [6]).

1. Notation and preliminaries. X will be a compact space, $A \subset C(X)$ a closed subalgebra of the space of continuous complex-valued functions on X. The algebra A is supposed to contain the constants and to separate the points of X. The spectrum M_A is the set of all nonzero multiplicative linear functionals on A. If $\phi \in M_A$ then M_ϕ is the set of all positive measures on X representing ϕ, i.e.

$$M_\phi = \left\{ \mu \in M(X) \mid \mu \geq 0 \text{ and } \forall f \in A \text{ we have } \phi(f) = \int f d\mu \right\}.$$

As well known M_ϕ is a convex set, compact for the topology $\sigma(M(X), C(X))$. We say that two multiplicative linear forms ϕ and ψ belong to the same Gleason part if $\|\phi - \psi\| < 2$ in A^*, the dual of A. It is well known that being in the same Gleason part is an equivalence relation and hence $M_A = \bigcup_{\pi \in \Pi} \pi$ where Π is the set of all Gleason equivalence classes. For more details and any unexplained notion on uniform algebras we refer to [6].

If E is a Banach space then E has the Dunford-Pettis property if $e_n^*(e_n) \to 0$ whenever $e_n \to 0$ weakly and $e_n^* \to 0$ weakly (i.e. $\sigma(E^*, E^{**})$).

For more details and properties of such spaces see Grothendieck.
[4] or [5], where it is also proved that L^1 spaces and $\mathcal{C}(X)$ spaces have the Dunford-Pettis property.

2. Weak compactness of M_ϕ. We investigate under what conditions M_ϕ is weakly compact. First we remark that if ψ and ϕ are in the same Gleason part then there is an affine isomorphism linking M_ϕ and M_ψ, see [6, p. 143]. It follows that M_ϕ is weakly compact (i.e. $\sigma(M(X), M(X)^*)$) if and only if M_ψ is weakly compact. Moreover if m_ϕ is dominant in M_ϕ and m_ψ is dominant in M_ψ then m_ϕ is absolutely continuous with respect to m_ψ. (The existence of a dominant measure in M_ϕ is given by [3, p. 307].)

Lemma. If ϕ is an element of M_A then following are equivalent
1. M_ϕ is weakly compact.
2. If u_n is a sequence of continuous functions on X such that $1 \geq u_n \geq 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $v_k \in A$ such that $\text{Re } v_k \geq u_{n_k}$ and $\phi(v_k) \to 0$.
3. If u_n is a sequence of continuous functions on X such that $1 \geq u_n \geq 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $g_k \in A$ such that $|g_k| \leq e^{-u_{n_k}}$ and $\phi(g_k) \to 1$.

Proof. (1) \Rightarrow (2) If M_ϕ is weakly compact and u_n is a sequence as in (2) then $\sup_{\mu \in M_\phi} \mu \to 0$ (see [4]). Hence if ε_n is a sequence of strictly positive numbers tending to zero then $\exists v_n \in A$ such that $\text{Re } v_n \geq u_n$ and $\phi(v_n) \leq \sup_{\mu \in M_\phi} \mu + \varepsilon_n$ (see [6, p. 82]). Clearly $\phi(v_n) \to 0$.

(2) \Rightarrow (3) Write $g_k = e^{-v_k}$ and observe that $|g_k| = e^{-\text{Re } v_k} \leq e^{-u_{n_k}}$ and $\phi(g_k) = e^{-\phi(v_k)} \to 1$.

(3) \Rightarrow (1) If M_ϕ is not weakly compact then following [4] there is a sequence of functions $u_n \in \mathcal{C}(X)$ and a sequence of measures $\mu_n \in M_\phi$ as well as $\varepsilon > 0$ such that

(i) $0 \leq u_n \leq 1$ and $u_n \to 0$ pointwise

(ii) $\int u_n d\mu_n > \varepsilon$.

Let now g_k be as in (3) then

$$|\phi(g_k)| \leq \int |g_k| d\mu_{n_k} \leq \int e^{-u_{n_k}} d\mu_{n_k} \leq 1 - \frac{e - 1}{e} \int u_{n_k} d\mu_{n_k} \leq 1 - \frac{e - 1}{e} \varepsilon$$

and this contradicts $\phi(g_k) \to 1$.

Remark. The conditions (2) and (3) are of course related to the conditions of being enveloped and being a core measure. The dif-
ference is that the sequence \(u_n \) is supposed to be uniformly bounded.

Corollary. If \(A \) satisfies one of the following conditions then for all \(\phi \in M_\alpha \), \(M_\phi \) is weakly compact.

1. If \(1 \geq u_n \geq 0 \); \(u_n \in \mathcal{C}(X) \) and \(u_n \to 0 \) pointwise then there is a subsequence \(n_k \) and \(v_k \in A \) such that \(v_k \) are uniformly bounded, \(\Re v_k \geq u_{nk} \) and \(v_k \to 0 \) on \(X \).

2. If \(1 \geq u_n \geq 0 \); \(u_n \in \mathcal{C}(X) \) and \(u_n \to 0 \) pointwise then there is a subsequence \(n_k \) and \(g_k \in A \) such that \(|g_k| \leq e^{-u_{nk}} \) and \(g_k \to 1 \) on \(X \).

3. The D.P. property for some uniform algebras. In the following theorem we say that a measure \(\nu \) is singular to \(A \) if for all \(\phi \) and all \(\mu \in M_\phi \), the measure \(\nu \) is singular with respect to \(\mu \).

Theorem. A has the Dunford-Pettis property if

1. for all \(\phi \in M_\alpha \), the set \(M_\phi \) is weakly compact,
2. if \(\lambda \) is orthogonal to \(A \) and \(\lambda \) is singular to \(A \) then \(\lambda = 0 \).

Proof. Of course we only have to prove that \(A^* \) has the D.P. property, since it follows from the definition that a Banach space is a Dunford-Pettis space as soon as its dual is a Dunford-Pettis space. We first prove the following lemma.

Lemma. If \((E_\beta)_{\beta \in B} \) is a family of Banach spaces all having the D.P. property and if

\[
\left(\sum_\beta \oplus E_\beta \right)_{\text{top}} = E = \left\{ e = (e_\beta)_{\beta \in B} \mid e_\beta \in E_\beta; \sum_\beta \| e_\beta \| = \| e \| < \infty \right\}
\]

then \(E \) has the D.P. property.

Proof. \(\forall \beta \) let \(P_\beta : E \to E_\beta \) be the canonical projection.

Let \(e_n \in E \) such that \(e_n \to 0 \) weakly and \(\| e_n \| \leq 1 \); \(e_n^* \in E^* \) such that \(e_n^* \to 0 \) weakly and \(\| e_n^* \| \leq 1 \); \(P_\beta e_n = e_{n,\beta} \); \(P_\beta^* e_n^* = e_{n,\beta}^* \); \(t_{n,\beta} = e_{n,\beta}(e_{n,\beta}) \).

Only a denumerable part of the numbers \(t_{n,\beta} \) can be different from zero so we can take \(B = N \). We first prove that the sum \(e_n^*(e_n) = \sum_\beta t_{n,\beta} \) converges uniformly in \(n \), i.e.

\((*) \) for all \(\varepsilon > 0 \) there is \(N \) such that \(\forall n \) we have \(\sum_{\beta > N} | t_{n,\beta} | < \varepsilon \). If this is not the case then we start a well-known procedure. Let \(\varepsilon > 0 \) be such that \((*) \) does not hold for this \(\varepsilon \), take \(\delta_0 > 0 \) such that \(\sum_{n=1}^{\infty} \delta_n \leq \varepsilon / 4 \). Let \(n_1 = 1, N_0 = 0, N_1 \) such that \(\sum_{\beta > N_1} \| e_{n_1,\beta} \| \leq \delta_1 \).

Since \(e_{n_1,1}, \ldots, e_{n_1,N_1} \to 0 \) weakly we can find \(n_2 \) such that for all \(n \geq n_2 \) we have \(\sum_{\beta > N_1} | e_{n,\beta}(e_{n_1,\beta}) | \leq \delta_2 \). Let now \(n_3 \geq n_2 \) be such
that $\sum_{\beta>N_1} |t_{n_{\beta}, \beta}| > \varepsilon$ and $N_2 > N_1$ such that $\sum_{\beta>N_2} \|e_{n_{\beta}, \beta}\| \leq \delta_2$. Continuing this procedure we find two strictly increasing sequences (n_k, N_k) such that

1. $\sum_{\beta>N_k} \|e_{n_k, \beta}\| \leq \delta_k$
2. $\forall n \geq n_k$ the sum $\sum_{\beta=N_k}^{N_{k+1}} |e_{n, \beta}(e_{n_{k-1}, \beta})| \leq \delta_k$
3. $\sum_{\beta>N_{k+1}} |t_{n_{k}, \beta}| > \varepsilon$.

Let now

$$e^* = (\gamma_1 e^*_{1,1}; \cdots; \gamma_{N_1} e^*_{N_1,N_1}; \cdots; \gamma_{N_2} e^*_{N_2,N_2}; \cdots)$$

where γ_β is such that if $N_{k-1} + 1 \leq \beta \leq N_k$ then $\gamma_\beta e^*_{n_k, \beta}(e_{n_k, \beta}) = |t_{n_k, \beta}|$. Clearly $e^* \in E^*$ and $\|e^*\| \leq 1$. For all $k \geq 2$

$$e^*(e_{n_k}) = \sum_{j=1}^{k-1} \sum_{\beta=N_{j-1}+1}^{N_j} \gamma_\beta e^*_{\beta}(e_{n_j, \beta}) + \sum_{\beta=N_{k-1}+1}^{N_k} |t_{n_k, \beta}| + \sum_{\beta>N_k} \gamma_\beta e^*_{\beta}(e_{n_k, \beta}) .$$

So

$$|e^*(e_{n_k})| \geq -\sum_{j=1}^{k-1} \delta_j + \sum_{\beta=N_{k-1}+1}^{N_k} |t_{n_k, \beta}| - \delta_k$$

$$\geq -\sum_{j=1}^{k} \delta_j + \sum_{\beta>N_{k-1}} |t_{n_k, \beta}| - 2\delta_k$$

$$\geq \varepsilon - 2\sum_{j=1}^{\infty} \delta_j \geq \varepsilon/2 .$$

But this contradicts $e_{n_k} \rightharpoonup 0$ weakly. This proves that $(*)$ is verified and hence $\lim_{n \to \infty} \sum_{\beta} t_{n, \beta} = \sum_{\beta} \lim t_{n, \beta} = 0$, since each of the E_β has the D.P. property.

Remark. If $E_n = l^2_n$ (i.e. the n-dimensional Hilbert space) then $E = (\Sigma \oplus E_n)_1$ has the D.P. property but E^* has not, because as easily seen, the space E^* has a complemented subspace isometric to l^2, this contradicts D.P. (see [4]).

Proof of the theorem. For each $\pi \in \Pi$ we select $\phi_\pi \in \pi$ and $m_\pi \in M_\phi$ dominant. By [6 p. 144] all m_π are mutually singular. Select now probability measures $(m_\phi)_{\phi \in B}$ such that $\{m_\pi | \pi \in \Pi\} \cup \{m_\phi | _{\phi \in B}\}$ is a maximal family of mutually singular measures. (This can be done using Zorn's lemma.) An application of the Radon-Nikodym theorem yields:

$$M(X) = \mathcal{C}(X)^* = (\sum_{\pi \in \Pi} \phi \in B)_{l_1} .$$
For each \(\pi \) define \(N_\pi \) as the set \(\{ \pi \in L^1(\mu) \mid \mu \perp A \} \). The abstract F. and M. Riesz theorem [6] and hypothesis 2 give that

\[
A^1 = \left(\sum_{\pi \in \mathcal{H}} \bigoplus N_\pi \right)_{1_1}
\]

and hence

\[
A^* = \left(\sum_{\pi \in \mathcal{H}} \bigoplus L^1(\mu_\beta)/N_\pi \right)_{1_1} + \left(\sum_{\beta \in \mathcal{B}} \bigoplus L^1(\mu_\beta) \right)_{1_1}.
\]

In [2] and [1] it is proved that the spaces \(L^1(\mu_\beta)/N_\pi \) have the Dunford-Pettis property. By the preceding lemma and Grothendieck's result that an \(L^1 \) space is a Dunford-Pettis space we have that \(A^* \) has the D.P. property.

Remark. (1) If \(D = \{ z \mid |z| < 1 \} \) and \(A \) is the so-called disc-algebra i.e. \(A = \{ f \mid f \text{ analytic on } D, \text{ continuous on } \overline{D} \} \) then \(A \) satisfies all requirements hence \(A \) and \(A^* \) have the D.P. property.

(2) If \(K \) is a compact set which is finitely connected then by Wilken's theorem \(R(K) \) satisfies hypothesis 2 and by [6, p. 145, paragraph 3], \(R(K) \) also satisfies hypothesis 1. Consequently \(R(K) \) as well as \(R(K)^* \) have the Dunford-Pettis property.

References

Received August 4, 1975 and in revised form November 20, 1975.

VRIJE UNIVERSITEIT BRUSSEL
David Lee Armacost, *Compactly cogenerated LCA groups* 1
Sun Man Chang, *On continuous image averaging of probability measures* 13
J. Chidambaramwamy, *Generalized Dedekind ψ-functions with respect to a polynomial. II* ... 19
Freddy Delbaen, *The Dunford-Pettis property for certain uniform algebras* 29
Robert Benjamin Feinberg, *Faithful distributive modules over incidence algebras* ... 35
Paul Froeschl, *Chained rings* ... 47
John Brady Garnett and Anthony G. O’Farrell, *Sobolev approximation by a sum of subalgebras on the circle* ... 55
Hugh M. Hilden, José M. Montesinos and Thomas Lusk Thickstun, *Closed oriented 3-manifolds as 3-fold branched coverings of S^3 of special type* 65
Atsushi Inoue, *On a class of unbounded operator algebras* 77
Peter Kleinschmidt, *On facets with non-arbitrary shapes* 97
Narendrakumar Ramanlal Ladhawala, *Absolute summability of Walsh-Fourier series* ... 103
Howard Wilson Lambert, *Links which are unknottable by maps* 109
Kyung Bai Lee, *On certain g-first countable spaces* 113
Richard Ira Loeb, *A Hahn decomposition for linear maps* 119
Moshe Marcus and Victor Julius Mizel, *A characterization of non-linear functionals on W_1^p possessing autonomous kernels. I* 135
James Miller, *Subordinating factor sequences and convex functions of several variables* ... 159
Keith Pierce, *Amalgamated sums of abelian l-groups* 167
Jonathan Rosenberg, *The C^*-algebras of some real and p-adic solvable groups* ... 175
Hugo Rossi and Michele Vergne, *Group representations on Hilbert spaces defined in terms of ∂_b-cohomology on the Silov boundary of a Siegel domain* 193
Mary Elizabeth Schaps, *Nonsingular deformations of a determinantal scheme* ... 209
S. R. Singh, *Some convergence properties of the Bubnov-Galerkin method* 217
Peggy Strait, *Level crossing probabilities for a multi-parameter Brownian process* ... 223
Robert M. Tardiff, *Topologies for probabilistic metric spaces* 233
Benjamin Baxter Wells, Jr., *Rearrangements of functions on the ring of integers of a p-series field* ... 253
Robert Francis Wheeler, *Well-behaved and totally bounded approximate identities for $C_0(X)$* ... 261
Delores Arletta Williams, *Gauss sums and integral quadratic forms over local fields of characteristic 2* ... 271
John Yuan, *On the construction of one-parameter semigroups in topological semigroups* ... 285