Pacific Journal of

Mathematics

FAITHFUL DISTRIBUTIVE MODULES OVER INCIDENCE
ALGEBRAS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 65, No. 1, 1976

FAITHFUL DISTRIBUTIVE MODULES OVER
INCIDENCE ALGEBRAS

ROBERT B. FEINBERG

Let @ be a lower finite quasi-ordered set and let I(Q) be
the incidence algebra of Q over a field K. In this paper we
determine all faithful distributive modules over I(Q) and
relate the result to the structure of the outer automorphism
group of the algebra. In the case when @ is finite we also
determine all left ideals L of I(Q) such that ;I(Q)/L is
a faithful distributive module over I(Q).

In the abstract characterization of incidence algebras it is nec-
essary to consider the existence and structure of faithful distribu-
tive modules over them. In §1 we determine up to isomorphism
all faithful distributive modules over an incidence algebra. In §2
we relate this result to the structure of the outer automorphism
group of the algebra. In §3 we consider the incidence algebra of
a finite quasi-ordered set and determine for it all left ideals L with
the property that the quotient module determined by L is a faithful
distributive module over the algebra.

Let @ be a locally finite quasi-ordered (g.o.) set, i.e., @ has a
relation » which is reflexive and transitive and for which every
segment [z, y] = {z € Q; xrzry} is finite. The incidence algebra I(Q)
of Q over a field K is the (associative unital) algebra of functions
f:Q X @ — K with the property that f(x, ) # 0— 2ry, under the
product

9@, y) = Zy Sz, 2)9(z, ) -
The unit 6 of I(Q) is defined by
o, y)y=1 if v=y
=0 if z=y.
For arye @, define 9,, € I(Q) by
O, ) =1 if x=uy=2
=0 otherwise.

and set ¢, = 0,,.
The standard topology on I(Q) is defined by stipulating that a

net {f:):ce S I(Q) converges to fel(Q) iff Varye @, fi(, v) = f(=, v)
eventually, i.e., 3¢ cf such that Vi = g, fu(z, 9) = flx,y). It is
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36 ROBERT B. FEINBERG

easy to verify that I(Q) equipped with the above topology is a
topological algebra, when the field K has the discrete topology.
When @ is finite, the standard topology on I(Q) reduces to the
discrete topology.

We now introduce the following equivalence relation on Q:x ~
y iff xry and yrx. Let T denote the ~ equivalence class of xc @
and let Q denote the collection of all equivalence classes. Then Q
is a partially ordered (p.o.) set under the relation =< defined by
Z < ¥ iff wry. Using the these notions it is convenient at this time
to present the following two technical results on I(@), in the case
when @ is a finite g.0. set.

Lemma 0.1 ([2, §2],[5, §1]). The maximal ideals of I(Q) are all
subspaces of the form J; = {felI(Q); f(x, %) =0 V&, 2,€Q with
T,=%,=Z}, where % is some element of Q. Further, assuming F={x,}7_,
and letting K, denote the (simple) algebra of # X n matrices over
the field K, we have that the map x;: I(Q) — K, defined by (7; )., =
f@,2), 1<u, v<mn, is an epimorphism with kernel J;, so that
IQ)/J: = K,.

We will use | S| to denote the cardinality of a set S.

LemMMA 0.2 ([2, §1]). Amn element f of I(Q) is imvertible in I(Q)
off T:(f) is imwvertible in Kz, VT € Q.

Now let A be a topological algebra and let M be a (unital left)
module over A. If the action of A on M is continuous in A4 when
M has the discrete topology, we shall say that M is topologically
compatible (with A). If M has a distributive lattice of submodules,
and is faithful and topologically compatible, we shall say that M is
a faithful distributive module (over A). The following three results
on faithful distributive modules over incidence algebras are from

[5,§2].

Lemma 0.3. Let Q be locally finite. Then I(Q) has o faithful
distributive module iff Q is lower finite.

We will explicitly construct such modules in the course of proving
Theorem 1.1, to follow.

LEMMA 0.4. Let M be a topologically compatible, faithful module
over I(Q). Then M 1is faithful distributive if e,-M 1is 1-dimen-
stonal Vxe Q. In particular, when Q s a finite quasi-ordered set
of cardinality n, a faithful module M s faithful distributive iff
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dim M = n.

LEMMA 0.5. Let M be a faithful distributive module over I(Q).
For each z€ @, chose m,€e,- M\{0}, Then B = {m,},.q is @ basis for
M, and for wrxe @, 0,,-m, = a(w, ¥)m,, for some a(w, x)c K\{0}.

1. Faithful distributive modules. In this section we determine
up to isomorphism all faithful distributive mondules over an in-
cidence algebra. We begin with some new notions. An element
fe I(Q) is multiplicative if (i) f(z, y) # Ovary e Q (i) f(z, v)f(y, ?) =
Sz, 2)veryrze Q. It is easy to show that the collection of multi-
plicative elements forms an abelian group under the pointwise pro-
duct, fo(x, ¥) = f(z, y)9(x, y). We shall denote this group by Z(Q).
The identity ¢ is given by &(x, ¥) = 1, Vary in Q and the inverse f
of feZ(Q) is given by fl(z, y) = [f(», ). It follows from (i) and
(ii) above that for all fe Z(Q), f(x, ) = vz e Q.

Given any a: @ — K\{0}, we define d, € Z(Q) by d(z, y) = a(x)a(y)™.
Let B(Q) = {d,e Z(Q)}. Then B(Q) is a (necessarily normal) subgroup
of Z(Q), and thus we may construct the quotient group H(Q) =
Z(Q)/B(@). It may be shown, for example that H(Q) ~ K for the
quasi-ordered set {x, %, %, x,}, where x.7x,, 7%, 21T, Lrr,. On
the other hand, H(Q) = 0 if @ has an element z comparable to all
others. For if e Z(Q), we may define a: @ — K\{0} by

alw)y=1, if w=z
oz, w), if zrw
o(w,2)™*, if wrz.

Then « is well-defined and o = d, as may be verified, so that o € B(Q).
We can now present our main result.

THEOREM 1.1. If Q is a lower finite q.0. set, then there is o
bijective correspondence between the elements of H(Q) and the isomor-
phism classes of faithful distributive modules over I(Q).

Proof. For any ve Z(Q), let M, be the K-vector space with
basis {#},cq- For feI(Q) and xcQ (considered as a basis element
of M), set

frmw =23 fw, ep(w, tyw .

wre

Then -, is well-defined, by lower finiteness of @, and the fact that
v is multiplicative implies that for all ge I(Q), (f*g9)-.2 = f-.(g9-.%).
Now extend by linearity to define an action -, of I(Q) on M,. It
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is readily verified that this action makes M, a faithful module over
I(@). Further, for each x2¢@Q, e,-. M, = Kz, so that e,- M, is 1-
dimensional. It is easy to see that M, is topologically compatible
with I(@). Hence by Lemma 0.4, M, is a faithful distributive module
over I(Q).

In the case when v = and @ is finite, of cardinality =, M,
affords the canonical representation of I(Q) as an algebra of n X n
matrices over K. See [5, §2] or [6] for details.

Suppose now that v, e Z(Q) and that 7B(Q) = vB(Q). We show
that M, and M. are isomorphic I(@)-modules. Note that ¥ e B(Q),
so that 3a: @ — K\{0} such that 70 =4d,, i.e., for all 2ryec@,
(@, YW, y) 7 = do(, y) = a(x)a(y)”, or (z, y)a(y) = a(x)(z, y). De-
fine @: M, — M. by setting o(x) = a(x)r, for x €@, and extend by
linearity to a map on M. Then @ is a linear bijection. Note also
that for feI(Q) and x € M,

(P(f,,'x) =@ 1%‘; f(w’ x)v(w, x)w
= >, f(w, 2)v(w, x)(w)w ,

while

f2x) = f.a(x)x = w% f(w, x)t(w, x)a(x)w .

It follows that @(f-,x) = f-.2(x), so that ¢ preserves module action
as well. Hence ® is a module isomorphism.

Conversely, suppose that v, 7€ Z(Q) and that M, and M, are
isomorphic I(@)-modules. We show that tB(Q) = vB(Q). Let ¢:
M,— M. be a module isomorphism. Since vy is multiplicative, v(x, x) =
1, vze€ Q. Hence @(x) = ¢[v(z, x)x] = P(e,-.x) = e,+.(x). This im-
plies that o(x) = a(x)x, for some «a(x)e K\{0}. Now for wrxec@,
P(0,,+,%) = P[V(w, )w] = v(w, x)P(w) = v(w, x)x(w)w, while also

@(awz.yx) = wa'r¢(x) = 5wx'1a(x)x = T(w’ x)a(x)w .

This implies that v(w, x)a(w) = (w, x)a(x), or equivalently, i(w, x) =
d(w, ). Hence ¥ = d, € B(Q), so that 7B(Q) = vB(Q).

Now define &: H(Q) — {isomorphism classes of faithful distributive
I(Q)-modules} by &[vB(Q)] = isomorphism class of M,. The above
results show that & is well-defined and 1-1. We show that & is onto.
Let M be any faithful distributive module over I(Q). For each
2€@, choose m,ce,- M\{0}. Then by Lemma 0.5, B = {m,2},o is a
basis for M, and for wrz in Q, d,,-m, = a(w, x)m,, some &(w, x) € K\{0}.
For wrary € Q@ we have a(w, ¥)M,=0,, My =0,,* 04y My =0,,0(x, y)m,=
a(w, x)a(z, yym,. Hence, a is multiplicative, considered as an element
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of I(Q). It follows readily that M and M, are isomorphic as I(Q)-
modules, via the map sending m,e M to €M, Thus &aB(Q)] is
the module isomorphism class of M, showing that & is onto.

COROLLARY 1.1.1. Let Q be a lower finite q.o. set. Then I(Q)
has a unique isomorphism class of faithful distributive modules iff
H(Q) = 0.

These results may be dualized in a straightforward way to the
consideration of isomorphism classes of cofaithful right comodules
over the incidence coalgebra C(Q). See [5] for more details on these
notions.

As a simple application of the results in this section, let @, be
the quasi-ordered set {x,}-,, where x,7x;, 1=<1 =<7 <n. Then I(Q,)
is isomorphic to T,, the algebra of n X n upper triangular matrices
over K, and the faithful distributive modules over I(Q) are exactly
the faithful modules of dimension », by Lemma 0.4. It then follows
directly from Corollary 1.1.1 that I(@,) = T, has a unique isomor-
phism class of faithful modules of dimension n. Note that each
such module affords the canonical n-dimensional representation of
T.. As another application, let @, be the quasi-ordered set {y.}vi,
where y,ry;, 1 < 1,7 < n. Then I(Q.) is isomorphic to K,, the algebra
of n X m matrices over K, and the faithful distributive modules
over I(Q,) are exactly the faithful irreducible modules. It then
follows directly from Corollary 1.1.1 that I(Q.) =~ K, has a unique
isomorphism class of faithful irreducible (= primitive) modules.

2. Automorphisms. In this section we study the automor-
phisms of an incidence algebra, relating our results to those of the
last section. We restrict ourselves to topological automorphisms of
I(Q), i.e., automorphisms which preserve topological structure, and
we let Aut I(Q) denote the group of all such automorphisms of I(®),
where @ is a locally finite q.0. set.

We begin by discussing three classes of (topological) automor-
phisms of I(Q).

1. For feI(@), f invertible, the inner automorphism of I(Q)
with respect to f is given by I.(g) = f*¢9*f~'. Let Inn I(Q) denote
the group of all such automorphisms. Then Inn I(Q) is a normal
subgroup of Aut I(Q).

2. For ve I(Q), v multiplicative, there is an automorphism L,
of I(Q) defined by L,(f) =vf. Let <°[I(Q)] denote the group of all
such automorphisms. Then Inn I(Q) N Z[I(Q)] = {L.<[I(Q)]; « € B(Q)}
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as is shown in [1].

3. Let Aut @ denote the automorphism group of @, i.e., the
collection of order-preserving bijections. For £ ¢ Aut @ there is an
automorphism C, of I(Q) defined by C.f(z, y) = f(xz, £y).

We now examine the structure of Aut @ more closely. For
zeQ, let T be its ~ equivalence class, as defined in §0, and let Q
denote the p.o. set of equivalence classes of Q. It is easy to see
that there is a canonical embedding of AutQ into AutQ given by
® — &, where ®(%) = @x. Further, the image of Aut @ under this
embedding, denoted Aut @, consists of all ¥ € Aut @ such that |4(&)| =
|Z|, VZ€@.

We can now state the following result, which completely de-
scribes the structure of Aut I(@).

THEOREM 2.1. Assume 6¢c Aut [Q), where Q is locally finite.
Then 0 = I;oL,oC,, for suitably chosen I;cInn I(Q), L, € ()], and
/feAlJt Q. Further, £ is uniquely determined wup to its image in
Aut Q.

This theorem is proven by Baclawski [1], assuming that @ is a
p.o. set, and consequently without topological restrictions on Aut I(Q).
The proof for the more general case is a straightforward generaliza-
tion of Baclawski’s proof, and utilizes knowledge about the maximal
closed ideals of I(Q) as well as the fact that every automorphism
of K, is inner. See [4., Ch. 7] for details.

Now let Out I(Q) = Aut [(Q)/Inn I(Q), the outer automorphism
group of I(Q). The following corollary is an easy consequence of
Theorem 2.1, along with our knowledge of Inn I(Q) N Z[I(Q)].

COROLLARY 2.1.1. Out I(Q) ~ Aut (@) iff H(Q) = 0.

In particular, Out I{Q) =~ Aut (Q) in the case when @ is connected
and has an element above or below all other elements. This latter
result is obtained by different means in [7].

The concluding corollary of this section utilizes Corollary 2.1.1,
and provides a purely algebraic relation between the results of the
last section and of this one.

COROLLARY 2.1.2. I(Q) has a unique isomorphism class of faithful
distributive modules iff Out I(Q) =~ Aut (Q).
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3. Faithful distributive left ideals. In this section we study
left ideals L of I(Q) such that ,oI(Q)/L is a faithful distributive
module over I(Q). Such left ideals occur only when @ is finite, and
we begin by working towards a proof of this fact.

The first result needed is readily established.

LeMMA 3.1. Let R be associative ring with unit and let M be
a module over R. Then M is cyclic iff 3 a left ideal L of R such
that M = R/L, where R denotes R regarded as a left module over
itself and = denotes left R-module isomorphism. Further, in the
case when M is cyclic with generator m, we may take L to be {a e A;
a-m = 0}

Before continuing, recall that if @ is a locally finite q.o. set,
then (@) has a faithful distributive module iff Q is lower finite
{(Lemma 0.3).

LEMMA 3.2. Let Q be a lower finite q.0. set and let M be any
Jaithful distributive module over I(Q) which is cyclic, with generator m.

If
m= 3 am,, m,,ce, M0}, a,cK\(0},

then every maximal element x of Q must be ~ equivalent to at least
one 2, 1 <1< nm.

Proof. Suppose there is a maximal element x of @ such that
T +#2,1=1=mn. Since m is a generator of M, m, = f-m, for some
fel(Q). Hence m, = e¢,-m, = (¢,*f)-m. Now since 2 is a maximal
element of Q,

e f = 3 f(@, @) .

It follows then that (e,*f)-m = 0, since for all 2’ ¢ 7, o’ ¢ {z,}.,. From
this contradiction we obtain that any maximal element z of @ is ~
equivalent to at least one of z, ---, 2,.

COROLLARY 3.2.1. Let @ be lower finite. If I(Q) has a faithful
distributive module which s cyclie, then @ 1s finite.

Proof. By Lemma 3.2 there is a finite set {z,}7., & Q such that
every maximal element is ~ equivalent to at least onez, 1 <7< m.
Since @ is locally finite, the ~ equivalence class of any element is
finite. Thus @ has only finitely many maximal elements, say {x;}..
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Now @ = UL, {y; yrx;}, and since @ is lower finite, each set {y; yrx;}
is finite. Therefore @ is finite.

LEMMA 3.3. Let @ be a finite quasi-ordered set. Let M be a
Jaithful distributive module over I(Q) and let B = {m,},.q be a basis
for M, as described in Lemma 0.5. Set

d
m= 3, My, ,
=
where {x;}¢., is the collection of maximal elements of Q. Then m is
a generator of M.

Proof. For every yc@Q3 maximal element z, such that yrx,.
We then have that
d
Oysy® 24 Mgy = Oy My, = Cyy My

% =1

for some «,,, € K\{0}. This shows that I(Q)-m = M, so that m is a
generator of M.

We can now establish the fact cited at the beginning of the
section.

LEMMA 3.4. Let Q be a lower fintte quasi-ordered set. The fol-
lowing are equivalent.

1) @ s finite.

@) IQ) has a left ideal L such that ;o I(Q)/L is a faithful
distributive module over I(Q).

B) I(Q) has a faithful distributive module which is cyclic.

4) Every foithful distributive module over I(Q) is cyclic.

Proof. (1) = (4) Lemma 3.3.
(4) = (3) Immediate.
(3) = (2) Lemma 3.1.
(8) = (1) Corollary 3.2.1.

We shall assume that all q.o. sets @ are finite in the remainder
of this section. Our object of study will be faithful distributive
left ideals of I(Q), left ideals L with the property that ;o I(Q)/L is
a faithful distributive module over I(Q). It is easy to show that
an arbitrary left ideal L’ is faithful distributive iff (i) L' contains
no nonzero two sided ideal I(Q), and (ii) the lattice of left ideals of
I(Q) containing L' is distributive.

We now present the main result of this section, which is es-
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sentially a determination of all faithful distributive left ideals of

Q).

THEOREM 3.5. Let Q be a finite quasi-ordered set. Then given
any isomorphism class #Z of faithful distributive modules over I(Q),
there is a unique isomorphism class &2 of left ideals of I(Q) such
that for all Le ¥ and Me #, ;oI(Q)L and M are isomorphic
I(Q)-modules.

Proof. Let {Z,}7-, be the collection of maximal elements of Q,
where 7, = {x;;}7:, = Q. It then follows from Lemmas 3.3 and 3.1
that

n Ny

m =

2

) m”]. y

1 j=1

is a generator of M, that L = {f € I(Q); f-m = 0} is a left ideal of
I(@), and that M =~ ,,,I(Q)/L.

Now suppose L’ is any other left ideal of I(@) such that ;,I(Q)/L' =
M, via an isomorphism ++. Then m' = 0 + L’) is a generator of
M. Further, forall f e I(Q), v(f + L) = (f[0 + L']) = f-4(0 + L) =
fem'. Hence feL' = 4(f + L') =0 f-m' =0, so that L' = {f € I(Q);

fom' =0}
Assume
n o ng 1
m, = Z % azjmxij + Z bkmyk ’

=1 j=1 k=1

where
{aij}1§l:§n s Abihsisn E K
1Sjsn;

and

{ydizy

are the nonmaximal elements of @. We know by Lemma 3.2 that
for each 7 = n there is at least one j < n, such that a,; = 0.
Forl=:1Zmn, 15550, let

a; =a,; if a;#0
=1 if a;=0
and let
b,; =0 if a,;+0
=—1if a,;=0.

For each y,, choose y; maximal in @ such that y,y,. For 1<
1=n, 175 <mn, —1, define ¢;,;€ K by

Bxiﬂa:,aw Woosjin = CoiMlsy; o
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For 1 <1 = =, define ¢, € K by

M, = C,

T4,m;%1 2451 AT

Finally, for 1 < k < h define ¢, ¢ K by

Bykﬂ}a'mu}c = Ckmyk .

Define g € I(Q) by

n ng ni—l b
’
g=2 { Qij€ry; T Z ; Oyjos,541

=1 =1 =1

b by
By .2 ,
+ c, S”i,nixij + kg} C Bykylc *

(2X23

It is easy to verify that g-m = m’. Note also that for each
Z; eQ, m:(9) is an invertible element of K|, since its determinant

2l

is H ai;; # 0. Hence by Lemma 0.2, g is invertible in I(Q).

Define o: L—L" by o(f) = , for feL. Then p is an iso-
morphism between L and L’ as I(Q) -modules, as is readily verified.
It follows that there is a unique isomorphism class & of left ideals
of I(®) such that for all L* e &% ;4 I(Q)/L* = M The theorem now
follows immediately.

As a simple application of the results in this section, let @, =
{x, ), where z,rz;, 1<¢<7=<mn. Then I(Q) = T,, the algebra of
% X m upper triangular matrices over K, as noted at the end of §1.
Since I(Q,)=~ T, has a unique isomorphism class of faithful distribu-
tive modules, it follows directly from Theorem 3.5 that T, has a
unique isomorphism class of faithful distributive left ideals. Note
that the collection of » X » upper triangular matrices over K with
O’s in the last column is an example of such an ideal. As another
application, let @, = {v,)2,, where y,7y;, 1 <4, j <n. Then I(Q,) =
K,, the algebra of n X n matrices over K. Since I(Q.) = K, has a
unique isomorphism class of faithful distributive modules (which are
exactly the primitive modules), it follows directly from Theorem
3.5 that K, has a unique isomorphism class of faithful distributive
left ideals (which are exactly the maximal left ideals.) Note that
the collection of n X » matrices over K with O’s in a specified
column is an example of such an ideal.
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