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Let Q be a C*valued quadratic form on C™ Let N(Q)
be the 2-step nilpotent group defined on R* X C™ by the group
law

(x, w)- (@, w)=(x+ 2’ + 2Im Q(u, w’), u + u').

Then N(Q) has a faithful representation as a group of
complex affine transformations of C**™ as follows:

9, w) = (2 + o) + 12Q(u, uo) + Qu, uo), s + uo)
where g = (x,, #,). The orbit of the origin is the surface
={z, u)eC*™; Imz = Q(u, )} .

This surface is of the type introduced in [11], and has
an induced 6,~complex (as described in that paper) which is,
roughly speaking, the residual part (along 3) of the d-complex
on C**™, Since the action of N(Q) is complex analytic, it
lifts to an action on the spaces F£? of this complex which
commutes with d,. Since the action of N(Q) is by translations,
the ordinary Euclidean inner product on C**™ is N(Q)-
invariant, and thus N(Q) acts unitarily in the L*-metrics on
Cs (B9 defined by

| Sa,da, | :S Slag ' dV

where dV is ordinary Lebesgue surface measure. In this
way we obtain unitary representations o, of N(Q) on the
square-integrable cohemology spaces HY(E) of the induced 0,
complex.

These are generalizations of the so-called Fock or Segal-Bargmann
representations [2, 4, 10, 13], and the representations studied by
Carmona [3]. In this paper, we explicitly determine these represen-
tations and exhibit operators which intertwine the o, with certain
direct integrals of the Fock representations.

This is accomplished by means of a generalized Paley-Wiener
theorem arising out of Fourier-Laplace transformation in the x (Rez)
variable. Let us describe this result. For £e R™, let Q.(u, v) =
(& Qu, v)). Let HYE) be the square-integrable cohomology of the
d-complex on C™ relative to the norm
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Let U, = {£¢e R™; the quadratic form Q. has ¢ negative and » — ¢
positive eigenvalues}. Let U= JU..

=3 S}all%‘w““'“’du .

§

THEOREM. For &c U, H'(8) = {0} of and only if e U, In
particular the fibration H(&) — & is a (locally trivial) Hilbert fibration
on U, and the following result holds!

THEOREM. Let HUF') be the space of square-integrable sections
of the fibration HYE)— & over U,. Then the Fourier-Laplace trans-
form, defined for functions by

Qs u) = gal(x T iQu, w), we i g
induces an isometry of HUWE) with HY(F).

Furthermore, this transform followed by a suitable variable
change (in C™, dependent on &) is the sought-for intertwining operator.

2. A Paley-Wiener theorem for 0,-cohomology on certain
homogeneous surfaces. Let @ be a nondegenerate C"-valued hermitian
form defined on C™. That @ is nondegenerate means that the only
solution of

Qu,v) =0 for all uweC™
is v = 0. Equivalently, there is a £ ¢ B sudh that the C-valued form
(2'1) Qé(u’ ,U) = <§, Q(uy ’U)>

is nondegenerate. Given such a @ we introduce the real submanifold
of C»™:

2.2) Y=3@Q) ={(z, w)eC"™; Imz = Qu, u)} .

Let N(Q) be the 2-step nilpotent group defined on R® x C™ by the
group law

2.3) (x, w)- (@, w) = (x + o + 2Im Qu, w), u + u) .

Then N(Q) has a faithful realization in the group of complex affine
transformations of C**™ as follows

@4 (e w) G 4w+ iR, w) + QM W), u + w)
so that Y is the orbit of 0. The correspondence N(Q)— 3 given by
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g—9-0, (x, w) — (x + 1Q(u, u), w), is a diffeomorphism, and in certain
contexts we may identify N(Q) with 3 under this correspondence.
If we let dw, du represent Lebesgue measure in R", C™, then dadu
is the Haar measure of N(Q). We shall return, in §4, to the study
of representations of N(Q) connected with its realization as 2; in
this and the next section we shall carry out the relevant analysis.

Y is a surface of the type studied in [11], Chapter I, (with
V = {0}). Here we shall summarize the relevant results in that paper.

Let A— 3 be the complex vector bundle of antiholomorphic
tangent vectors along Y, and E? = A?A* the bundle of ¢-forms on
A. For V— 23 any vector bundle we shall let C=(V) represent the
sheaf of C~ sections of V. Let 9,: C=(E9)— C=(E**") be the differential
operator induced (as in [10]) by exterior differentiation. The complex
(E*, 3,) is referred to as the d0,-complex on 3.

We can make this complex explicit as follows. Letz, ---, 2, -+,
Zpy Uy =", Uy =+, U, be coordinates for C* x C™. Then, the (restric-
tions of the) forms du,, 1 < a < m form a basis for E'. The dual
vectors U, 1 < o < m giving a basis for A are as follows:

0
0%,

0

2.5 =
(2.5) U. P

'J[' 7/ Zk“ Qk(u, Eot)

where @, = z,Q and {¥,} is the basis of C™ dual to the coordinates
U e

Then E? has as basis the forms {du;; I = (¢, ---, %), With 7, <
soo < 7.}, Any g-form is written
(2.6) w = >/ a,di,,
lZi=q

where 3’ refers to summation only over those g-tuples in increasing
order. If Jis an arbitrary g¢-tuple, [J] will refer to the same g-tuple
written in increasing order, and ¢, is the sign of the permutation
J—[J]. We define the coefficients a, of @ for unordered q-tuples
by @, = ¢;a;;7. Now, in this notation we have

50 = 3 3 Ulan)d@, A dir,

(2.7) _ ¥ < n

1d1=g+1

' ey’ Ua(a1)>d@1 ’

where ¢}’ = 0 if al = J set theoretically, and &3’ = ¢, otherwise.
Now, we turn to BR™ x C™. We shall refer to the coordinate

of R~ by & Let A, be the vector bundle on R™ x C™ of anti-

holomorphic vector fields along the C™leaves: the leaves £ = constant.

Let F? be the vector bundle of g¢-forms on A,, and d,: C*(F?) —

C=(F*') the differential operator induced by exterior differentiation.
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We make this complex explicit as follows. Let &, «--, &,, %y, ***, Un
be coordinates in R™ x C™. Then, with the same conventions as
above, F'* has the basis {d%,; I = (%, -, 1), ©, < -+ < %} and any
w € C~(F) has the form

(2-8) @ = Z' ¢Idﬁ1 .
I|=q
We have
(2.9) =S 9 45 A di,.
=g a=1 0%,

We now bring in Lemma I.3.2 of [11] which relates these two
complexes.

2.10. DEFINITION. Let z:R" X C™— R"(z: R x C™— R™) be
the projection on the first factor. Let C(E‘)NCy(F'?)) be the set of
@ € C*(E")(C=(F")) such that mw(support of w) is relatively compact. For
w=23"a,du; € C7(E?), define & e C*(F?) by 3'a,du;, where, for functions

(2.11) a(e, u) = S a(x + iQ(u, w), w)e~<EEriwmBIdy
Rn
= (Fa)(&, wete

where .7, is the partial (in the z-variables) Fourier transform.
2.12. LEMMA (See 1.8.2 of [11].) (d,w)" = 0,®.

Here we shall introduce inner products of the spaces C=(EY),
C=(F?). (Although the expressions we use to define norms could be
infinite, by completion we shall mean in the following, the completion
of the space of norm-finite forms.) First, we consider C™ as endowed
with the standard hermitian inner product in which the set of vectors
{0, «--, 1, .-+, 0)} is orthonormal. Let u, ---, u, be an orthonormal
basis of C™; we shall call {u, ---, %,} an orthonormal coordinate
set. The following definitions are independent of such a choice of
orthonormal coordinate set.

2.13. DEFINITION. For w = X'a,d%; in C~(E"), define
ol =5 | Jaldedu .
I P
For @ = X'¢,d%; in C~(F'), define

ol = 3 S Jpirers e dedu

RM*xX
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2.14. LEMMA. If weCy(EY), we have &eC=(F?) and ||®|} =
o ll3.

Proof. This is an immediate consequence of the Plancherel
formula.

The following formalism (which is fairly standard; see [5, 8])
developing the L*cohomology associated to the complex applies equally
well to either complex. We shall make our definitions for a complex
(G4, 9) which refers to either one of the given complexes. In the
sequel we shall distinguish between them by a subscript (b or u).

2.15. DEFINITION. The formal adjoint &: C*(G?)— C=(G*™?) is
that differential operator defined by the equation

(0a, w) = (a, Jw) (for all a of compact support) .

We can find the expression for ¢ by integrating by parts. For
example, on E? it is given by

(2.16) H(2'a,du;) = >

1 ' (Z Ua(a’aJ)>dﬁJ .
=qg—1\j=1

2.17. DEFINITION. Let L? be the Hilbert space completion of
(the norm finite @ in) C7(G?). Define the W-norm on C7(GY) by

WH@) =W(o, 0) = |o|}* + [[do|} + [[Jo P .

Let W* be the Hilbert space completion of C{(G*) in the W-norm.
Notice that 8: C2(G?) — L+, 9: C3(G?) — L7 extend continuously
to W¢ We shall denote their extensions by the same symbols.

2.18. LEMMA. If weC=(G) and W¥w) < o, then o Wo.

Proof. We must show that @ is approximable in the W-norm
by elements in C3(G?). Let h e C=(R) be such that

(i) 0Z2h(@) =1 forall ¢

(ii) rt)=11if ¢ <£1/2

(i) AE)=0if t = 1.
Define h, on R*(E™) by

h(t) = h(|t|/2), t e R*(E™) .

For we(C~(G%), let w, = h,-w. Since h,—1 boundedly, so long as
welL', w,~w in L?, by dominated convergence. Since 0, J involve
no differentiations in & dw, = h,0w, dw, = hJdw. Thus @, — ®, 0w, —
ow, dw,— dw in L or, what is the same w, — w in W<,
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2.19. DEFINITION. The qth L*-cohomology space of the complex
(G4, 0) is
H(G)={we W% dw = Jo = 0} .

2.20 THEOREM. The correspondence w — @ induces an isometry
HY(E) = H(F).

Proof. (i) We first observe that, by Fourier inversion, the
Lemma 2.12 can be worked from F' to E. More precisely, let ¢ =
Y'¢,du; € Co(F?). Define

6 = 3.0,
where, for a function ¢,

1

(2.21) &z, u) = o7

|96 weeods .

Then, just as in the proof of Lemma 2.12 (see [11]) we can verify
(2.22) (3.9)" = Big -

(ii) Using the above, we can verify that
(2.23) (Pw)” = 8,0, w e CP(E) .

For, let us take o e C2(F?), and let 8 = @&. Then, by the Plancherel
formula

((ﬂbw)’\s C() = (&bwy B) = (G), 51)18) = ((Dy gua) ’

this for all a e C2(F"7), so we must have (¢,0)" = 4,0.

(iii) Let w e C3(E?). Then, by (2.23) and Lemma 2.18, & € W(F),
and WH®) = W*¥w). Thus the map w-— & extends to an isometry
of WUE) into W4F'). Since this isometry transports d, and @, to d,
and J,, it takes HY(E) into HY(F).

(iv) this map is surjective. Let we H'(¥F). Then w =limw,,
w,cCy(F?), with J,w,— 0, ,w,— 0. By (i), w, = &, with (0,a,)" =
0,w,, (9,a)" = ¥,w,. Since the correspondence ® — « is isometric in
the W-norm, the {a,} are also Cauchy, so a, — « for some «, and
d,a,— 0, %, — 0. Thus ac H(E), and & = w.

For the remainder of this and the next section we shall be
concerned with an explicit determination of the spaces H(F). First,
we introduced the L*-cohomology along the &-fibers of R™ x C™, £¢
R,

Let C™? represent the space of C=(0, ¢)-forms on C™. For £é¢ R™,
introduce the &-norm
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IFadal =5 ok du .

Now, we can apply the definitions 2.15-2.19 to the d-complex (C*?, )
together with the &norm. We shall let H%(&) refer to the associated
L?-cohomology space:

(2.24) H(g) = {w e WY&); 0w = J.0 = 0}
where W? is the completion of C*? in the norm
Wiw) = [|o| + 0w} + [[fw] .
For we LA(F), w = XY'a,d%; define w, by fixing &:
wu) = Y'aé u)du; .
Then , is defined and in L&) for almost all &.

2.25. PROPOSITION. For we HYF'), w.e HY&) for almost all &.
Proof. The following facts, for we C*(F'), are easily verified:

lolt = oz,

5“)5 = (574(0)5, P = (F,0); .

(2.26)

Since w € H'(F'), we can find a sequence w, € Cy(F"?) such that v, — v,
0,0,— 0, 4,0,—0 in LF). Replace {w,} by a subsequence converg-
ing so fast that

Slo, -0l ={ Sl - o<
Slaelr = | | Silidw. ki < o
Shtoli = | | Slgw.lpds < .

Then, for almost all & the series being integrated on the right are
all finite. For such a & we will have the first series telescoping
and the general term of the other series tending to zero. Thus
{w,} converges with dw,,— 0, ., — 0 in L%&). Thus lim,, is
in HY¢), but for almost all & limw, . = @,.

3. Computation of H?(£). First, we summarize the situation
of the preceding section. @ is a nondegenerate C”-valued hermitian
form on C™. For £e R™, we introduce the scalar hermitian form

Qf(u'i /U) = <5; Q(uy 7))> .
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3.1. DEFINITION. Let U = {£ée R™; Q. is nondegenerate}.

Our basic hypothesis is that U= @; in this case R™ — U has
measure zero. Let {|) represent the Euclidean inner product on
C™. For &£c U, define the operator A, by

(Aulv) = Qe(u, v) .

Since Q. is hermitian, A4, is self-adjoint, so C™ has an orthonormal
basis of eigenvectors of A4,. If u, = u (&), ---, U, = u,(&) are linear
forms dual to such a basis and A, ---, A, are the corresponding
eigenvalues, we compute that

Q:(u, v) = I uV; .

Now the A, are real and since @ is nondegenerate no A\, is zero.

Reordering, we can find positive numbers ,, ---, ¢, such that
q m

(3.2) Qe(u, v) = > piu, 0, — 3, pu,0; .
=1 i=g+1

The number ¢ is determined by Q., it is the dimension of a maximal
space to which Q. restricts as an inner product.

3.3. DEFINITION. U, = {£¢ U; Q. has the form (3.2)}.

3.4. PROPOSITION. For each &€ U,, we can find an orthonormal

coordinate set for C™ i, -, U,, so that (3.2) holds. The correspon-
dence &—(uy, +++, u,) can be chosen (locally) so as to depend smoothly
on é&.

The proposition is clear. Now, we shall fix a £¢ U,, and, to
keep the notation clear we shall suppress reference to this &, denoting

Hw) = Qulu, w) = 3% 2w — 3 gl

We will now compute the cohomology spaces HE) following the
notation and ideas of Hormander [7].

As in §2, C*? is the space of smooth ¢-forms defined on C™; Cp?,
those of compact support. We consider the Hilbert space norm on
Co?, for w = X'a,du;

(3.5) loif =% laredu.

This expression is valid for @ so represented in terms of any ortho-
normal coordinate set u,, ---, %,. Let, for f a smooth function
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of =2 5,5 = 9L

auj’ 6?70, ’
(3.6) &, f = e 90,6’ f) = 0;6-f + 0;f
9 f = €0’ f) = 0;6-f + 0;f .
Thus,
(8.7 [51', AR 51'?91: - ?9:;51 = 515'7”:' .

Furthermore, if either f or g is compactly supported

i

(8:3) [, 0ngerdu = = 7@.0000du

and similarly for the barred operators. Now, for w = X'a,du; a g-
form we have

(3.9) 5w =SS 50,475 A Ay
T j=1
(3.10) do = 3V S di(a)di;
T =1

where ¢ is the formal adjoint of 9. (Here the ' refers to the sum-
mation convention introduced in the preceding section.) Finally, we
shall need two fundamental identities. First, if f is smooth and
compactly supported,

(3.11) Scmwj £ Petdu — Scmléj fPetdu + Mscm[ Flefdu = 0 .

B

This follows from applying (3.8) to (3.7) in its integrated form:
a1 £ perdu = (13, 9,15 -Ferau
By direct computation we obtain, for w = X'a,du; € C?,
0wl + ||do|P?
= 5 5| Gendan - Gadanedu

K=q—1 3,1
+ > g 10;a; e?du .
1,7 cm

Using the above integration-by-parts formula on the first term on
the right, this becomes

©.12) [30lf + [P0 = 23 [IFalerdu — 5 S (labedu

i

(These are respectively the analogues of (2.1.8) and (2.1.13) of [7].)
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Let ¢ = min || > 0.

3.13. LEMMA. Let N be the multi index (1, 2, ---, g). Then, for
w = Y'a,dit; e Cy?, we have

16w + [P = SV e gm,]wu
+ 3V (g S|z9,-a,;26¢du + jzz::_lgyé,-a,|26¢du> _

Proof. Let us adopt the notation N; = 3,;c;M;. Note that for
I+ N Ay —N=¢>0. We rewrite (3.12) as

@.14) J3o|F + 90|F = (S {1l vepdu — 10 | aslerau ).
We treat each term individually.
; Sléjaﬁze?’du — As Sla,]%%lu
= ; Sléjalize¢du — Ay S[a,l%ﬁﬁdu + vy — M) Slazlze'édu .

Applying (3.11) to the second term (note Iy =\, + -+ + A,), We
obtain

= ZJ] S\E_}jallze'ddu + JZ; (S\z?jfﬁe‘?du — Slgjallzeédu> + vy — M) szlzed’du

= 0w =) |l Petdu + 3 |19: Potdu + 3, (13,1 Fetau
i=1 j=qt1
If I = N, the first term drops out; otherwise it dominates cg lar|%efdu.

The lemma is proven.
Now, we recall that W? is defined as the Hilbert space completion
of those w e C%? such that

WHo) = o]} + [[do|F + [[do] <

in this W-norm. H? = H?(&) = kerd Nker #. The relevance of the
above estimate is that it holds on W?, because C}® is dense in W~
as we NOW prove.

3.15. LemmMmA. C%? is dense in W? in the W-norm.
Proof. Let h be as introduced in Lemma 2.18, and let A,(u) =

h(j%|/2). Suppose w ¢ C? has finite W-norm. Let w,=h,-w. We
shall show that w,-— @ in the W-norm, or, what is the same,
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(8.16) ®, — W, 0w, — 0w, Jw, — JW .

First of all, since h,—1 boundedly we can conclude that
h,-8 — @ in L* for any square integrable form 6. Now, form formulae
(3.9) and (3.10) we easily conclude that

oh,

azdﬁj A d?/—l;l
0%;

o(h,w) = how + 3
2
(3.17) ’

ahu a/jldﬁl .

Hh,w) = hJw + >
7 ou;

It remains only to show that the last terms in (3.17) tend to zero
as Y— . Each term is a fixed linear combination of terms of the
form (D-h,)a, where D is a constant coefficient first order operator,
and ¢ is a typical coefficient of w. Now, the (D-h,) are uniformly
bounded and have disjoint supports, so X(D-h,)° is bounded. Thus
G, D-h,)|a]* is integrable, so the general term tends to zero in L'
Thus the last term in (3.17) tends to zero in L’ so the lemma is
proven.

3.18. THEOREM. (1) For &c U,, we have H*(&) = {0} for p +# q.
(2) Letu, «--, u, be the basts of C™ found in Proposition 3.4, and
let v, = #17’_{’1; crry, Uy = #q@q, Vi1 = Hagilaiyy 00y UV = Wy Then

H(@) = {0 = f()exp(~ 30,1 )da A -+ A da,,
(3.19) where [ is holomorphic and

2 1 2,—||v]2 oo
o] —ngme Wiy < oo}

Proof. Let weH?(¢), w = Y'a,d%;. By the preceding lemma
there is a sequence {w,} © Cy? such that w, —® in L? and dw, — 0,
dw — 0 in L?. By the estimate in Lemma 3.13 we conclude that,
for w, = Y'a; du,, a;,— a;, and

(a) fOI' IiN:{ly'.'yq}ya’Im—-—_)O’
(b) for j>q 9% 0 in Li,,

o ;
() for j =<q,—>—(¢’ay,)—>0 in L.

J

From (a) we conclude that «; =0 for I+ N. Thus (1) is proven,
and for - = ¢, we have ®w = ad#, A -+ A d#, where ¢ = lim a, with
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. é
__a_‘_"__v___,(),.7>q’ aea]v

- 0, ] =
3%,- a/l/Lj J e

in Li,.. Thus f(u) = a(w)exp (G % t2]u; ") is a weak solution of
agf:0,1§j§q,5gf:0,q+léj.§n,

By the regularity theorem for the Cauchy-Riemann equations, it
follows that f is holomorphic in %, - -+, %, Uesy, =+, %, and

|l F@rexp (= 3 plul au = (jalerdu = joff.

This is, up to the desired change of variable, what was to be proved.

The preceding results tell us that the fibration H%(&)—¢& is a
locally trivial bundle of Hilbert spaces, with generic fiber naturally
isomorphic to

(3.20) H, = { fe(Cm); Scm| Fw) e gy < oo} .

We want to observe that HY(F') is a space of square integrable
sections on U, of this bundle.

3.21. THEOREM. Let SYF') be the space of C= sections of F*
over U, such that, for all £€ U, w.c H'(&) and

(3.22) lolp = | Nl < = .
Then HYF') is the completion of SUF) in this norm.

Proof. By (2.26), for such we S(F') we have ||o|] = |lo]|}
0,0 =9, = 0, and so SUF) is isometric to a subspace of H(F).
We have to show that SY(F') is dense.

Let we HYF). By Proposition 2.25, w,c HY(¢) for almost all
Ee U, so w is supported in U,. Fix & ¢ U,, and let N be a neigh-
borhood of &, such that we can find smooth functions w(%, u), ---,
u,(&, #) defined on N x C™ such that

(a) for all & u.(& wu), +--, u,(& u) form an orthonormal coordinate
set for Cm,

() Qulu, w) = 3L, p(EF | ué, w) [P — g pEF ulé, w)f. Let
Q= exp(— S 2w )T A -+ A A, Let d(§) = [102) -+ (O,
Vo= Uy, v, Vg = Uy Vg = Millgyy, ** %y UV = UuW,. Then, for almost
all Ze N,

CU(.E, u) = f(S’ /U)‘Qé ’

and
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ol = | [ 176 oyrean aeas .

The proof of Theorem 2.26 of [10] applies on the right, to show
that f can be approximated by functions of the form >, 1,(&)Pu(w),
where [, € C3(N) and P, is a polynomial.

For such an f, fQ, is in SYF). Thus w|, is the closure of
S*(F). Now, if we cover U, by a locally finite collection of open
sets {N,} of this type, then for any w e H‘F') supported in N,,  is
in the closure of S%F'). Let {0,} be a partition of unity subordinate
to the cover {N,}. It is easy to verify that, for we H{(F), p,we
HY(F) and w = 3, 0,0 in W%F'). Since each p,® is in the closure
of SYF'), so also is w.

4. Representations of N(Q) on HYJX). Recall the group N(Q)
introduced at the beginning of §2 and its action by complex affine
transformations on C**™, as given by (2.4). Since X is an orbit of
N(Q), and N(Q) preserves the complex structure of C"*™, it preserves
the induced CR-structure on Y. That is, for n € N(Q), the differential
dn preserves the bundle A4 of holomorphic tangent vectors tangent
to 2. Since E? = A7(A*), there is induced an action of N(Q) on
C=(E") given by

(4.1) (n-w)v,) = o(dn™(v,)) .
We can make this explicit, referring to the coordinates of §2:
4.1y if w=2Xadit;, (n-o)p)=2Za(n* p)da,

(the reason this is so simple is that the action of N(Q) is by pure
translation). Since N(Q) preserves the measure dxdu on X, this
correspondence @ — n-® defines an isometry of L%Z), as defined in
(2.13). Clearly 0,(n-®) = n-0,w, so we also have, since ¢, is the
formal adjoint of 8,, #4(n-®) = n-%w. Thus the action (4.1) induces
an isometry of W* preserving HJ2).

4.2. DEFINITION. Let p, denote the unitary representation of
N(Q) on HZY) induced by the action (4.1).

Now, we summarize the content of Theorem 3.19 as it applies
to the representation o,. First of all, the correspondence w — @ (as
defined by (2.10) induced an isometry of HY) with HF') (Theorem
2.20), defined in terms of the d,-complex on R™ x C» We shall let
0, represent the transport of p, to HYF') via this correspondence.
Explicitly, @, is induced by this action of N(Q) on Cy(F):

n-@ = (n-w)", ne NQ) .
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Let us explicitly compute 0,. For a € C3(E®), and n = (2, 4,) in N(Q),
we have

n-a(@, w) = a((—x, —u)x, u)) = a(x — x, — 2Im Quy, w), 4 — Up)
n-GQ(¢, ) = (n-a) (& u) = (FAn-a))§, u)et™
= 6*1‘(5.wwzlmQ(uo,u»(%a)(Ey w — uo)le(”’“’

— g R G(E, 1 — 1)
Thus
4.3) N-w(€, u) = ¢ KT n) g2 B (£ 4 — 4 )

for n = (%, u,) and w e C=(F).

The content of Theorem 38.19 is that HYF) can be realized as
the space of square-integrable sections of the Hilbert fibration HY(&)—¢&
over U,. From (4.3) we see that the action of N(Q) is fiber-preserving.
More precisely, we can freeze & in (4.3) and let it define an action
on the gpace C*? of ¢g-forms on C™:

(p(E)m)w(u) = e Ve~Cemomdg e mgy(y, — y,) .

Since Q.(u, u,) is holomorphic in %, this action commutes with 2.
This action is isometric in the norm (8.5) (where ¢(u) = Q(u, u)), so
there is induced an unitary representation o) of N(Q) on HY(%).
Now Theorem 3.19 reads as follows.

4.4, THEOREM. 0, ~ 0, ~ SU P p(&)ds.

Finally, we would like to point out that the representations o(&)
are those (in the case n = 1) found by Carmona [3]. They are
irreducible, and we use Theorem 3.16 to see that. The coordinates
(&), -+, v.(&) found in that theorem are the coordinates produced
by Ogden and Vagi [9] in their description of the Plancherel formula
for the groups N(Q). Theorem 3.16 describes the intertwining
operator which intertwines 0(¢) with their representation mw.. We
can generalize their theorem.

4.5. THEOREM. The representation @po, of N(Q) on PHWE) is
isometric to a subrepresentation of the left regular representation
on L¥N(Q)) in which every irreducible (except for a set of Plancherel
measure zero) occurs with multiplicity one.

In the language of Auslander and Kostant, the vector bundle A
of holomorphic tangent vectors tangent to Y, arises from a Lie
subalgebra Y of ((Q)°. If 3 is the center of £4(Q), then 3°ED Y is a
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polarization at &, for all &ez*(C(Q)*) which is positive if and only
if ceU, If ¢eU,q+# 0, then the new coordinates of Theorem 3.16
relate to a positive polarization at & and Theorem 3.16 exhibits the
intertwining operator between the representations corresponding to
these polarizations.
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