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TOPOLOGIES FOR PROBABILISTIC METRIC SPACES

RoOBERT M. TARDIFF

Profile functions are used to construct a family of closure
operators (in the sense of éech) on a probabilistic metric
space. Relationships among the various closure operators
are considered, and products and quotients of probabilistic
metric spaces are reexamined in light of this new topological
structure.

0. Introduction. In their original paper [9], B. Schweizer
and A. Sklar introduced a neighborhood structure for a probabilistic
metric (PM) space, which, under suitable conditions, is metrizable
[11]. However, the usefulness of this neighborhood structure is
limited to those spaces in which, for every ¢ > 0, there exist pairs
of distinet points which have probabilities greater than 1 — ¢ as-
signed to the event that the distance between them is less than e.
For example, C-spaces [10] do not have this property, with the
result that the neighborhood structure of Schweizer and Sklar is
discrete.

In [13] E. Thorp and in [6] R. Fritsche tried to overcome this
difficulty, but, in so doing, each imposed a neighborhood structure
on the PM space which, in general, failed to satisfy the following
fundamental neighborhood axiom: If N, and N, are neighborhoods
of a point p, then there is a neighborhood N; of p such that N, is
contained in the intersection of N, and N,. Thus, each of their
neighborhood structures did not yield a topology on the PM space,
nor even a closure operator in the sense of Cech [2].

In this paper we use the profile functions introduced by Fritsche
in [6] to construct a family of neighborhood structures for a PM
space. With these neighborhood structures the difficulties incurred
by Schweizer and Sklar are easily overcome. Furthermore, we
show that for each profile function, the associated neighborhood
structure satisfies the aforementioned neighborhood axiom, and hence,
yields a closure operator on the PM space in the sense of Cech, and
we determine sufficient conditions for this closure operator to be a
closure operator in the sense of Kuratowski. We also study the
relationships among the neighborhood structures determined by
different profile functions and discuss the separation axioms in this
context.

Next, we extend the work of R.J. Egbert [3] on products of
PM spaces, the probabilistic diameter, and the probabilistic Hausdorff
metric in two directions: First, we redefine these concepts in terms
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of triangle functions rather than ¢-norms [7]; second, we study their
properties in terms of our new family of neighborhood structures
rather than the neighborhood structure introduced by Schweizer
and Sklar. Finally, we show that under suitable conditions, a pro-
file function and the probabilistic Hausdorff metric can be used to
define an equivalence relation on the points of a PM space which is
related to the tolerance relation recently studied by B. Schweizer [8].

1. Preliminaries. The axiomatic characterization of a PM
space is quite similar to that of a metric space. In such a space
the range of the distance function is the set 4% of one dimensional
cumulative distribution functions on [0, ), rather than the set of
nonnegative real numbers; and a suitable semigroup operation defined
on 4" replaces the operation of addition in the triangle inequality.

More precisely, let

47 ={F: R~-[0,1] | F is nondecreasing, left-continuous,
and F(0) = 0} .

The set 4" has a natural partial order; namely, F' = G if and only
if F(z) = G(x), for every x. The maximal element in 4% with respect
to this order is the distribution function

0, for x <0,

@) = 1, for x > 0.

In [12] D.A. Sibley exhibited a natural metric for 4%, called the
modified Lévy metric ¥ and showed that the metric space (4%, &)
is compact and arc-wise connected. This metric can be defined as
follows: for any F and G in 4" and any & > 0, let A and B denote
the following properties:

1.1y A(F, G; h) = F(x — h) — h = G(z) , for 906[0,%——!—]@),

(1.2)  B(F, G; h) — F(z + h) + h = G(z), for = e[o, %) .

h
Then,
(1.3) A(F,G) =inf{h | A(F, G;h) and B(F, G;h)}.

DEFINITION 1.1. A probabilistic semi-metric space (briefly, a
semi-PM space) is an ordered pair (S, %), where Sis a set, and &
is a mapping from S x S into 4 such that for all pairs of points
p and q in S:



TOPOLOGIES FOR PROBABILISTIC METRIC SPACES 235

(i) F(p,q) =¢, if and only if p = g,

(ii) F(p, @) = .7 (g, »).

The function .# (p, q) is usually denoted by F,,, and Fl,(x), its
value at wx, is interpreted as the probability that the distance
between p and ¢ is less than z.

DEFINITION 1.2. A two place function = mapping 4+ x 4t into
47 is called a triangle function if, for all F, G, and H in 4*

(@) (F,e)=F,

B) o(F,G) = (F, H) whenever G = H,

(M) o(F,G) =G, F),

©®) =(F, (G, H)) = ©(z(F, G), H).

For any argument z, the value of the distribution function
o(F, G) at x is denoted by 7(F, G; x). A triangle function is conti-
nuows, if it is a continuous function from 4+ x 4% into 4*, where
47 is endowed with the topology induced by the modified Lévy
metric, and 4% x 4%, with the corresponding product topology.

There are many examples of triangle functions in the literature
(see [7]). One is convolution. In addition, two families of triangle
functions arise from ¢-norms [7]; i.e., suitable semigroups on the
unit interval [0, 1], which satisfy conditions corresponding to («)
through () of Definition 1.2. These are given by:

(1.4) (F, G; x) = s+u£) T(F(w), G(»));

(1.5) II,(F, G; x) = T(F(x), G(z));

where T is a t-norm. For example, Min (a, b), Prod (a, b) = ab, and
T.(a, b) = Max (a + b — 1, 0) are all ¢{-norms.

DEFINITION 1.3. Let (S, &) be a semi-PM space, and let 7 be a
triangle function. Then (S, %) is a probabilistic metric space under
7 (briefly, a PM space) if, for every triple of points p, ¢, and » in S:

F,, = o(F,, F,) (triangle inequality).

If this is the case, then we say that (S, &#, 7) is a PM space.

Finally, we collect the results about closure spaces which will
be needed in the sequel. The concept of a closure space is due to
E. Cech, and the proofs of the various statements may be found
in his book [2]. Many of the results may also be found in the
work of M. Frechet [5] and A. Appert and Ky-Fan [1].

DEFINITION 1.4. A closure space is a pair (S, C), where S is a
set, and C is a mapping from .Z7(S), the power set of S, into itself
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such that

(1) ¢ =10,

(2) AcC(A) for every AecF#(S),

(3) C(AUuB)=C(A)UC(B) for all A, Be F(S).

Note that, in general, the mapping C, defined above, fails to
be a closure operator in the sense of Kuratowski, since it is not
required that C(C(4)) = C(4). A subset 4 of S is C-closed, if
C(4) = 4; and, C-open, if its complement S\A is C-closed. The
interior of any subset A of S, denoted by Int(4), is the set
S\C(S\A4).

THEOREM 1.5. Let (S, C) be a closure space. Then the collection,
&, of all C-closed subsets of S is closed under finite unions and
arbitrary intersections.

THEOREM 1.6. Let (S, C) be a closure space. For each A F(S)
let &, = {Be&|ACB}, and define C*(A) = Nzew, B. Then C* is
a Kuratowski closure operator; i.e., satisfies (1), (2) and (3) of
Definition 1.4 and

C*(C*(4)) = C*(4) .

Furthermore, if A 1is C-closed, then A is C*-closed.

Thus, every closure space (S, C) has a natural Kuratowski
closure operator associated with it, and a topology in the usual
sense. In this topology the closed sets are precisely those subsets
of S which are C-closed. It is easily shown that the inclusion
C(A4) & C*(A) is possible.

Closure spaces may also be characterized by their neighborhood
structure:

DEFINITION 1.7. Let (S, C) be a closure space, and let p€ .S be
given.

(1) A C-netghborhood of p is any subset, N, of S such that
pelnt (N).

(2) The C-neighborhood system at p, A43(p), is the collection of
all C-neighborhoods of ».

(8) A local base at p for _#(p) is any collection Z of C-neigh-
borhoods of p which is equivalent to _#5(p).

(4) The C-neighborhood system, 47, is the collection U es-#¢(q).

(5) A base for 47 is any family, %, of C-neighborhoods such
that for each p € S there is a subfamily Z/(p) of % which is a local
base at ».
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THEOREM 1.8. If (S, C) is a closure space, then for each pe S,
A(p) satisfies the following three neighborhood axioms:

(nbd 1) The collection A4 (p) is mot empty;

(nbd 2) For each Ne _43(p), peN;

(nbd 3) For every N, and N, in 4Hp), there is an N, € A4Hp)
such that N, N, N N,.

To state a converse of Theorem 1.8 the following definition is
needed:

DEFINITION 1.9. Let S be a nonempty set and suppose that for
each pe S there is a collection Z (p) of subsets of S. Then C, is
the mapping from Z7(S) into Z2(S) given by:

C.(A) ={qeS|UNA =[] for every Ue Z(q)} .

THEOREM 1.10. Let S be a nonempty set, and suppose that for
each pe S there is a collection Z (p) of subsets of S which satisfies
(nbd 1), (nbd 2), and (nbd 8). Then (S, C.) is a closure space and,
Sor each pe S, Z(p) is a local base for Ng (p). In addition, if, for
each p e S, there is another collection 7°(p) of subsets of S which is
equivalent to 7z (p), then C,(4) = C,(A) for every ACS.

The importance of Definition 1.9 and Theorem 1.10 lies in the
fact that together they yield a method for generating closure
spaces. Indeed, this method will be used to induce a closure space
structure on a semi-PM space. The next theorem yields necessary
and sufficient conditions for a closure operator to be idempotent.

THEOREM 1.11. Let (S, C) be a closure space. The C-closure
C(A) of each Ac S is C-closed if and only if the following condition
18 satisfied:

(nbd 4) For each peS and for each Ne_44(p), there is a
Ve 1:(p) such that g€V implies [there is a We _+:(q) such that
W C N.

2. A family of closure operators for semi-PM spaces. Let
(X, d) be a metric space. For each & = 0 a closure operator C, for
X can be constructed in the following manner: For each pe X the
(h, €)-neighborhood of p is the set Ny(h,e) = {qeS|d(p, ¢) < h + ¢}
The h-neighborhood system at p, _47(p), is the collection of all (&, ¢)
neighborhoods at », €¢>0. For any AcC X, let Ci(4) ={qe
XINyh,e)NA=[], €>0}. It is clear that for every » in X,
A3(p) satisfles (nbd 1), (nbd 2), and (nbd 3); and hence, by Theorem
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1.10, (S, C,) is a closure space. Furthermore, in general, _45(p)
fails to satisfy (nbd 4).

In an analogous fashion, we shall show that if(S, &) is a
semi-PM space, then for each ¢ in 4%, there is a closure operator
C; for S. We begin with:

DeFINITION 2.1. Let (S, &) be a semi-PM space; let ¢ be in
4%; and let ¢ be a positive number. For each p in S:
(1) The (¢, &)-neighborhood of p is the set

A57(3, €) = {ge S| Folw + €) + ¢ = ¢(x), for xz€[0,1/e)}.
(2) The (¢, €)-netghborhood system at p is the collection
A7 () = {A77(3,8) | e > 0} .
(3) The (¢, &)-neighborhood system is the collection
{757 (®)|p in §}.

When there is no ambiguity, the “.% ” in the definitions of
N737(8, €)y A37 (D), and 5" will be suppressed.

Note that g e N,(4, ¢) if and only if B(F,, ¢, €) (viz. (1.2)). The
function ¢ is called a profile function [6], and its value at x, ¢(x),
is interpreted as the maximum probability assignable to the event
that the distance between p and ¢ is less than z.

THEOREM 2.2. Let (S, &) be a semi-PM space; let ¢ and + be
profile functions; and, for any AC S, let
(2.1) Cy(A) = {peS|Nys, &) A =[], for every ¢ > 0}.
Then (S, C,) is a closure space, having a countable local base at each
peS. Moreover, if ¢ = +r, then C{A) < Cy(A) for every ACS.
Proof. Let peS. Since F,, = ¢, (nbd 1) and (nbd 2) follow
immediately. Next, if ¢e N, (¢, 6) and if % > d, then

1 1
> > = =
Folx+7) +1n=F,(x+0)+ 0 =), for xe[O, 5)3[0, 77),

whence g€ N,(4, 7) and N,(¢, ) T N(4, 7). It follows that for any
€,y & > O,
Ny(g, Min (e, &)) © N9, &) N N9, &) ,

and (nbd 3) holds. Thus, by Theorem 1.10, (S, C,) is a closure
space. Furthermore, the family 7°(p) = {N,(¢, )| r is rational} is a
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countable local base for _#5(p). Lastly, if ¢ = 4, then N,(g, ¢)C
N, (4, €) for every ¢ > 0, and thus, by (2.1), C,(4) < Cy(A) for every
AcCS.

Thus, if (S, &) is a semi-PM space, then each profile function
¢ induces a closure operator C; on S; and hence, a natural topology
on S in the sense of Theorem 1.6. This is an improvement over
Theorem 3.1 of [6], since the function ¢ is not restricted in any way.

In order to develop some of the deeper properties of the closure
spaces (S, C;), we need several lemmas. We begin with:

DeFINITION 2.3. Let Fedt, and let he[0,1] be given. Then
F* is the function in 4% defined by:

0, for «=<0;
2.2) (Fz)=Min[F(+ k) + k1], for xe(0, ﬂ ;
1
1, f = .
or x > b

(Note that F°* = F and F' = g,.)
It is easily shown that < (F, F'*) < h for any F € 4* and any % €]0,1].

LemMA 24. If 7 is a continuous triangle function, then for
every € > 0 there is a 6, > 0 such that for all 6 <0, and for all
(F, G)e 4" x 4%,

L ((F, G), «(F°, ) <e;
i.e.,
oF, Gz + ¢) + ¢ = o(F’, G z), for we [o, %) ,
and

o(F, Gio— ) — ¢ = <(F", G 0), for wel0, L +¢).

Proof. Since (4%, &) is compact and since 7 is continuous, 7
is unifermly continuous.

LEMMA 2.5. Let (S, %) be a semi-PM space; let ¢ be a profile
Sunction, and let p, g€ S. Then qe NS¢, €) tf and only if F;, = ¢.

Proof. This follows immediately from Definition 2.1.

THEOREM 2.6. Let (S, %) be a semi-PM space, let p,qcS and
let ¢ be a profile function. Then
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g € Cy{p} of and only if Fo, = ¢ .
Proof. By (2.1),
2.3) g€ Cy{p} if and only if pe N(g, ¢) for every ¢ > 0.
This, combined with Lemma 2.5, yields
2.4) g€ Cy{p} if and only if F¢, = ¢ for every ¢ > 0.

But since F',, is nondecreasing and left-continuous, it follows that
F:, = ¢ for every ¢ > 0 if and only if F,, = ¢.

An immediate consequence of Theorem 2.6 is the following neces-
sary and sufficient condition for the neighborhood system _#; to be
T,.. This was obtained previously, first by E. Thorp [13; Theorem
3.4} and subsequently by R. Fritsche [6; Theorem 3.3].

COROLLARY 2.7. Let (S, &) be a semi-PM space, and let ¢ be
a profile function. The neighborhood system 45 is T, if and only
iof for each pair of points p,qe S, » #* q, there is an x,0 > 0 such
tha’t qu(qu) < ¢(qu)'

The next theorem yields an interesting and useful connection
between the neighborhood structures induced by two profile functions

¢ and .

THEOREM 2.8. Let (S, &, 7) be a PM space with a continuous
triangle function z, and let ¢ and + be profile functions. Then
for every pe S and for every ¢ > 0 there is a 0 > 0 such that

(2.5) q € Ny(y, 6) tmplies Ny(g, 0)  N,(z(8, ¥), ¢) .
Proof. Let ¢ >0 be given. By Lemma 2.4 there is a d >0
such that for all F, Ge 4"

(2.6) oF,Gyx +¢)+e=(F° G x), for x 6[0, —t—) .

If ge N(+, 0) and if r € N4, §), then by Lemma 2.5,
(2.7) Fi, =+ and Fi =

From (2.6), (2.7), and the triangle inequality, it follows that for
xe[0, 1/¢)

Folz +¢e) +ezt(Fy, Fo.,o+e) +e¢
= T(F5 Fis ®) Z (g, ¥3 @) -

Whence, 7€ Ny(z(g, ¥), €) and N(g, 3) C Ny(z(g, ¥), ).
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THEOREM 2.9. Under the hypotheses of Theorem 2.8, for every
AcCS,

(2.8) Ci(Cy(A)) C Cepr(4) .

Proof. Let pe Cy(C,(A)), and let ¢ > 0 be given. By Theorem
2.8, there is a ¢ > 0 such that (2.5) holds. Since p € Cy(C,(4)), there
is a ge N,(v, 0) N C,(4). Since q € N,(v, 0), our choice of ¢ yields:

N4, 0) C Ni(z(y, ¢), &) .
But ¢ € Cy(4), so that N(4, ) N A = [].

An inclusion similar to (2.8) occurs in the definition of a pro-
babilistic topological space [4], where (A#)* is required to be contained
in AT®#, Hxample 2.13 shows that the inclusion (2.8) can be proper,
and thus the result of this Theorem is best possible.

We now consider necessary conditions for C, to be idempotent.

COROLLARY 2.10. Let (S, &, 7) be a PM space, and let ¢ be a
profile function. If v is continuous and (s, ¢) = ¢, then C, is a
Kuratowski closure operator.

Proof. By (2) of Definition 1.4, Theorem 2.9, and the hypothesis
that z(¢, ¢) = ¢, for every AC S

Cy(A) C Cy(Cy(A)) C Cyy,(4) = Cy(4) .

Thus C; is idempotent and the conclusion now follows.
Letting ¢ = ¢, yields the following result:

COROLLARY 2.11. Let (S, ., 7) be a PM space. If t is conti-
nuowus, then C. is o Kuratowski closure operator.

The conclusion of Corollary 2.10 can also be formulated in
terms of neighborhoods:

COROLLARY 2.12. Let (S, &, 7) be a PM space, and let ¢ be a
profile function. If T is continuous and (¢, ) = ¢, then the neigh-
borhood system _1; satisfies (nbd 4); i.e., for any peS and ¢ >0,
there is a 0 > 0 such that g € N,(¢, 6) implies N (4, 6) C N,(g, €).

Corollary 2.12 generalizes Theorem 7.2 of B. Schweizer and A.
Sklar [9], (the case ¢ = ¢,); and also both Theorem 3.13 of E. Thorp
[13] and Theorem 3.2 of R. Fritsche [6], (the case ¢ = ke, 0 < k < 1).

The next example shows that the result of Corollary 2.10 is
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best-possible for continuous triangle functions.

ExampLE 2.13. Let S be the set of real numbers endowed with
the Euclidean metric d; let #:S x S— 4" be given by F,(z) =
Cupa(®); and let v =17, . It is easily verified that (S, #,7) is a
PM space. Let ¢(x) = 1/2¢,,,(x) and note that

Colp} = {a|d(p, ¢) = 1/2};
CiCulp} = {g | d(p, @) =1} ; C.o0fp} = S.
(This last equality follows from 7(g, ¢) = €. = 0.)

Thus Cy{p} & Co(Cy{p}) & C.is,0{0}.

THEOREM 2.14. Let (S, &, 7) be a PM space, and let ¢ be a
profile function. If t is continuous and if (4, §) = ¢, then the
closure structure induced by C; is pseudo-metrizable. If Cy{p} = {p}
for every pe S, then it is metrizable.

Proof. For each natural number = let V, ={(p,q)eS x S|
F(x + Mn)) + Mn) = ¢(x), for z€[0, 1/\(n))}, where A(n) is defined
as follows: M(1) = 1. If \(») has been defined, then by Theorem 2.8
there is a d, > 0 such that for every p< S and all 6 <d, q€N,(g,d)
implies that N (g, ) © N(#, Mn)). Define Mn + 1) = Min (9, 27"*").
It then follows that V, = V' and V, o V,.,.CV,.

This theorem generalizes Theorem 2 of B. Schweizer, A. Sklar,
and E. Thorp [11] (where ¢ = &), Theorem 3.14 of E. Thorp [13],
and Theorem 3.2 of R. Fritsche [6] (where ¢ = ke, 0 < k < 1).

THEOREM 2.15. Let (S, 5 ,7) be a PM space, and let ¢ be a
profile function. If T is continuous, and if 47,4 ts T, then A5
is T,

Proof. Let p,qe S, and suppose p+q. Since 47, is T), there
is an ¢ > 0 such that ¢ ¢ N, (c(g, ¢), ). By Theorem 2.8 there is a
0 > 0 such that

(2.9) 7€ Ny(g, 0) implies N.(g, ) C Ny(z(3, ¢), €)

Suppose 7€ N4, 6) N N(¢, ). Since F,, = F,, 7€ N,¢,0) implies
g€ N, 9). Thus by (2.9), g€ N,(z(¢, ¢), €). This is a contradiction.
Thus N,(g, 0) N Ng, 0) = [] and 5 is T..

Theorem 2.15 merits comparison with Theorem 7.2 of [10],
Theorem 3.7 of [13], and Theorem 2.2 of [6].

APPENDIX A. Different Topologies for 47,
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In addition to the modified Lévy metric & defined in (1.8), two
other metrics for 4* are of interest. The first is the usual Lévy
metric which is given by

L(F,G)=inf{h | Flx + k) + h = G(x) = F(x — h) — h, for
every X € R}.

The second is the usual sup norm which is given by

2(F,G)=inf{h | F(x) + h = G(z) = F(x) — h for
every z€ R} .

Each of these metrics could have been used to define a neighborhood
structure for a semi-PM space; namely, by setting

Ni(p,e) ={geS|F,{x + h) + h = ¢(x) for every x}
and
Ny(g,¢) ={qge S| F,{x) + h = ¢(x) for every x}.

It is clear that N;(g, ) € N1(g, ¢) © N, (s, €) for every ¢ > 0, and that
each inclusion can be strict. Both of these neighborhood structures
will satisfy (nbd 1), (nbd 2), and (nbd 3) and hence induce a closure
space structure on the underlying space. The reason for choosing
the metric & is that (4%, &) is compact, whereas neither (47, L)
nor (4%, %) is [7]. Thus, in these spaces, continuity of the triangle
funection is not enough to guarantee uniform continuity. Note that
uniform continuity of the triangle function is used in the proof of
Lemma 2.4 and that this lemma plays a crucial role in much of the
subsequent development.

ApPENDIX B. Comparison with the Work of E. Thorp and R.
F'ritsche.

The neighborhood structure for a semi-PM space given in
Definition 2.1 is different from that given by E. Thorp in [13] and
that given by R. Fritsche in [6]. Since R. Fritsche has shown that
his neighborhood structure is essentially that of E. Thorp, and since
his definition more closely resembles Definition 2.1, we shall only
consider the neighborhood structure given by him. R. Fritsche
defines a (g; €, A)-neighborhood of a point p to be the set

Ny(g; e, 0) = {ge S[Fule) > ¢e) — N .

The resultant neighborhood structure satisfies (nbd 1) and (nbd 2),
but in general fails to satisfy (nbd 8). A necessary condition for
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(nbd 3), given in Theorem 2.2 of [6], is that F,, — ¢ be nondecreas-
ing for every pair p, g€ S. In this case we have:

TEEOREM B. Let (S, &) be a semi-PM space, and let ¢ be a
profile function. If F,, — ¢ is nondecreasing for every pair of
points v, ¢ €S, then for every pe S, the neighborhood system _15(p)
1s equivalent to the (¢; €, N)-netghborhood system at P.

REMARK. When ¢ = ¢, the (¢; ¢, \)-neighborhood system is the
(¢, M)-neighborhood system studied by B. Schweizer and A. Sklar
[9]. Since F,, — ¢, is always a nondecreasing function, it follows
from Theorem B that the (e, A)-neighborhood system is equivalent
to the (g, ¢)-neighborhood system.

3. Products of semi-PM spaces.

DEFINITION 3.1. Let (S, ;) and (S, .¥,) be semi-PM spaces,
and let ¢ be a triangle function. The o-product of (S, #,) and
(S, #,) is the pair (S, X S,, F#, X ,.%,). Here S, x S, is the Carte-
sian product of S, and S,, and &, X ., is the mapping from
(S, x S, X (8, x §,) into 4™ given by:

ﬁl‘ X 0%(@7 a) = F‘:;;[ = O(F:qul? FPz?g) ’

where P = (p, p,) and ¢ = (¢, ¢,) belong to S, X S,. (When there
is no ambiguity, we shall denote F/. by Fy,.)

If ¢ = I, (viz. (1.5)), then the o-product of two semi-PM spaces
is the T-product as defined by R.J. Egbert in [3].

DeriniTION 3.2, If (S, .#.) and (S, %#,) are semi-PM spaces,
then (S, &) is 1tsometric to (S, 5,) if there is a bijection
M: S — S, such that F,;, = Fyyue for every p, g€ S,. The mapping
M is called an isometry.

The fact that the ¢ in Definition 3.1 is a triangle function
ensures that the o-product of two semi-PM spaces has several
natural properties. We enumerate these in:

THEOREM 8.3. Let (S, ;) and (S, .&,) be semi-PM spaces.
Then

(1) (S, x S, &, X,.7;) is a semt-PM space;

(2) (S, X S, F; X 7;) ts isometric to (S, X S, F; X +7#,)
under the natural map M(p, p.) = (0, D.).

(3) For every q,€8,, the natural map M,:S,— S, x S, given
by M,(p) = (p, ¢.) maps (S, F,) isometrically onto the range of
M,,.
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The associativity of ¢ is not needed in the proof of Theorem
3.3. We require ¢ to be associative so that we can unambiguously
extend Definition 3.1 to o-products of a finite number of semi-PM
spaces.

We next direct our attention to finding necessary conditions for
the o-product of two PM spaces to be a PM space. We begin with:

DEFINITION 3.4. Let o and 7 be triangle functions. Then:

(i) o is stronger than t (written ¢ = 7), if o(F, G) = ©(F, G)
for all (F, G)e 4™ x 4+,

(ii) o dominates v (written ¢ > 7), if o(z(F, G), ©(Fy G.)) =
w(o(F,, Fy), 0(G, G,)), for all F,, F, G, and G, in 47,

Letting G, = F, = ¢, in (ii) shows that if ¢ > 7, then 6 = 7. The
converse is false.

THEOREM 3.5. Let (S, &, 7) and (S, %, ) be PM spaces under
the same triangle function ©, and let o be o triangle function
which dominates . Then the o-product of (S, F#1) and (S, F;) is
a PM space under <.

Proof. In view of Theorem 3.3, we need only establish the
triangle inequality. To this end, let p = (p, ), ¢ = (¢, ¢.), and
r=(r,r,) bein S, x S,. Since ¢ > ¢ and since both (S,, &, 7) and
(S, .#,, 7) are PM spaces we have,

Fp'f = O.(Fpl"'l? FPz"‘z) Z U(T(FP1‘11’ Fql"'l)’ T(Fquz’ F(Ig’l'g))
= T(O'(Fplql’ szqz): O'(Fqlrl, F¢12r2)) = T(quy qu) .

(If (X, d) and (X,, d,) are metric spaces, then in order to define
a well-behaved metric on the Cartesian product of X, and X, a two
place function f mapping R* X R* — R* is required which satisfles
the following properties:

(1) fla, 0) =a,

(2) Aa,b) = f, a),

(3) fle, b) = f(c, b), whenever a = ¢,

(4) fla, f(b, 0)) = f(fa, b), ¢),

(5) fla, + b, a, + b)) = fla, a) + f(b, by).

Note that condition (5) states that f dominates addition. In
particular if f(a, b) = (a® + b*)?, p =1, then (5) is the familiar
Minkowski Inequality.)

COROLLARY 3.6. Let (S, .5, 7) and (S, 7, t) be PM spaces.
If 6 = myiy, tf 0 =7, or if T =7, and o = w, (for some t-norm T),
then the o-product of (S, F.) and (S, Z,) is a PM space under <.



246 ROBERT M. TARDIFF

Proof. For any triangle function 7, 7y, > 7z and 7> 7; and
for any t-norm T, @, » z,. (This last result is due to R.J. Egbert
[3, Theorem 2].)

It can also be shown that the result of Theorem 3.5 is best-
possible in the sense that if ¢ and 7 are triangle functions and o
does not dominate 7z, then there exist PM spaces (S, .#, 7) and
(S, ., ) whose o-product is not a PM space under <.

We close this section with several results-stated without proof-
concerning the relationship between the neighborhood systems
AT and A57 X A572, where F, X F, denotes F, X ,.F,.

THEOREM 3.7. Let (S, .&,) and (S, &) be semi-PM spaces and
let ¢ and + be profile functions. Then:

(1) For any triangle function o A37%72 43 finer than
AT X NG

(2) If o 1is continuous them A7 X 4372 1is finer than
A5

(3) If in addition o(g, ¢) = ¢, then A571X 4572 is equivalent
to 157,

4. The probabilistic diameter and the probabilistic Hausdorff
metric.

DEFINITION 4.1. Let (F;; A€ 4) be a family of functions in 4%,
The functions sup,., #; and inf,., F, are defined by:

(1) (supses Fi)(x) = supses Fi(x), for each z€ R;

(2) (inf,., F;))(x) = lim,,— inf,. ; F,(t), for each xz € R.
It is easily shown that sup,., F, is in 4*; and inf,., F', is in 4% by
definition.

DEFINITION 4.2. Let (S, %) be a semi-PM space, and let A be
a nonempty subset of S. The probabilistic diameter D, of A is
given by D, = inf, ;. , F'p,.

THEOREM 4.3. Let (S, &%) be a semi-PM space, and let A and
B be nonempty subsets of S.

(1) If AcCB, then D, = Dj.

(2) D,=c¢, if and only if A = {p}, for some peS.

(3) If there is a triangle function © such that (S, & ,7) is a
PM space and 1f AN B[], then D, 5 = t(D4, Dy).

Proof. The proof is similar to the proofs of Theorems 8, 9,
and 10 of [3].
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THEOREM 4.4. Let (S, F ) be a semi-PM space, let ¢ be a profile
Sunction, and let A be a nonempty subset of S. Then (1) D,=Dg(A).
(2) If there is a continuous triangle function T such that (S, &, 7)
s o PM space, then

-DC¢(A) g T(T(¢’ DA), ¢) = T(T(¢’ ¢)7 DA) ¢

Proof. Since AcC,(4), (1) follows immediately from Theorem
4.3, '

Next, suppose 7 is a continuous triangle function such that
(S, #,7) is a PM space, and let 0 < ¢ < 1. Since 7 is continuous,
Lemma 2.4 implies there is a 6 > 0 such that for all F, G, He 4+

o(z(F, @), H; 2) = t(z(F°, G), H’; x — ¢) — ¢, for xe[O, 1_ s) .
. & .

Let p, g€ Cs(A). Then N,(¢,0) N A = []and Ny(¢, 0)NA = []; whence
it follows from Lemma 2.5 that there exist » and s in 4 such that

Fi.z¢ and Fl,=g¢.

From the triangle inequality and the relations F.,>= D, and
F,=F,, it follows that for x€]0, 1/e — ¢)

Fo() = 7(2(Fyr, Fio)y Fog; )
Z T(T(an FN), Fsﬁq; r — 8) — €&,
= 7(7(g, Da), $52 — &) — .

Letting ¢ — 0 and using the left-continuity of z(z(¢, D,), ¢) yields
F,, = t(c(¢, D,), ¢) for any p, g Cy(4) .
Consequently,
D;(A) = ©(z(¢, D), ¢) = 7(z(4, ¢), D) -

Letting ¢ = ¢,, we obtain the following result, which is due to
R.J. Egbert [3].

COROLLARY 4.5. Let (S, & ,7) be a PM space. If t is conti-
nuous, then D, = DCEO(A).

DEFINITION 4.6. Let (S,.# ) be a semi-PM space, let A and B
be nonempty subsets of S, and let o be a triangle function. The
probabilistic Hausdorff distance (mod o) between A and B, denoted
by Fi; is the distribution function given by

(4.1) F3, = 0(AB, BA), where
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4.2) AB(x) = (inf sup F,o)(v) .
ped geB

When there is no ambiguity, we shall suppress the reference to o
and denote F'{y by Fs.

If ¢ = 7y, then F'¢y is the distance defined by R.J. Egbert [3].
The following are immediate:

THEOREM 4.7. Let (S, ) be a semi-PM space, and let A and
B be nonempty subsets of S. Then F,, = ¢, and F,; = Fy,.

LEMMA 4.8. Let (S, ) be a semi-PM space, let ¢ be a profile
Sfunction, and let A and B be nonempty subsets of S. If AB=
(sup,cx 8(t))e, = (sub g)e,, then A Cy(B).

THEOREM 4.9. Let (S, ) be a semi-PM space, let ¢ be a profile
function, and let A and B be nonempty subsets of S. If F,p =
(sup ¢)e,, then

ACCyB) and BC Cy(4).

The next result is a restatement of Theorem 16 of [3].

COROLLARY 4.10. Let (S, &, 7) be a PM space, and let A and
B be nonempty subsets of S. If 7 is a continuous triangle func-
tion, then

F.s=¢ if and only if C.(4) = C.(B).

DEFINITION 4.11. Let (S, .%# ) be a semi-PM space, let A and B
be nonempty subsets of S, and let ¢ be a profile function. Then
A is ¢-equivalent to B, if

Fo¢(.4)c¢(3) =&

If follows immediately from Theorem 4.7 that g-equivalence is
a reflexive and symmetric relation. The next theorem will yield
sufficient conditions for this relation to be an equivalence relation.
We begin with:

DEFINITION 4.12. The triangle function = is sup-continuous if,
for every family of functions (F; n€4) in 4% and for every He 4%,

t(sup I, H) = sup o(F7, H) .
ea e
It follows immediately from the left-continuity of T that =,

and 7, are sup-continuous. On the other hand, convolution is not
sup-continuous.
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LeEmMMA 4.138. Let (S, #,7) be a PM space, and let A, B, and
C be nonempty subsets of S. If T is sup-continuous, then AB =
7(AC, CB).

Proof. For any peA,qeB, and reC
(4.3) Fo =z ©(Fy, Fro) .
The sup-continuity of ¢ and (4.3) yield
4.4) ?Ielp e = T(F ey sup F.), for peAd, reC,

Since sup,.; F,, = inf,.; sup,. F,, = CB, (4.4) implies
(4.5) sup Fp, = ©(F,,, CB), for pecAd, reC.
geB

Again, since 7 is sup-continuous, (4.5) implies

(4.6) sup F,, = z-(sup F,,CB), for pcA.
geB

And hence, (4.6) implies
AB = inf sup F,,= 1nf f(sup F,,, CB) = z(inf sup F,,, CB)

PEA q€B peEA reclC

= 7(AC, CB).

TBEOREM 4.14. Let (S, &# ,7) be a PM space, and let A, B,
and C be nonempty subsets of S. If o>t and if T is sup-continu-
ous, then

Fip = t(Fi, Fés) .

Proof. Using Lemma 4.13, the commutativity of z and the
fact that ¢ > 7, we have:

Fi; = 0(AB, BA) = o(7(AC, CB), ©(BC, CA))
= d(z(AC, CB), ©(CA, BC)) = t(¢(AC, CA), o(CB, B(C))
= t(F i, Fép).

COROLLARY 4.15. Let (S, & ,7) be a PM space, and let ¢ be a
profile function. If ¢ >t and if T 18 sup-continuous, then ¢-equi-
valence 1s an equivalence relation.

THEOREM 4.16. Let (S, & ,7) be a PM space, let ¢ be a profile
function, and let S, = {C4(B)| BC S, B+ []}. Suppose that o >
and that T is both sup-continuous and continuous. Then (S; F °, 7)
s ¢ PM space.
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Proof. For A, B and C in S;, by Theorems 4.1 and 4.14, we
have: (a) Fiz = ¢, if A= B; (b) Fg.= Fig (¢) Fiy=t(Fi, Fép).
Hence, all that remains to be shown is that if F,, = ¢, then
A = B. By Corollary 4.10, F,; = ¢, implies

4.7) C.,(4) =C.(B).

Since A, BeS,, there exist A, B’CS such that A = C,(4’) and
B = Cy(B’). Consequently C,C4(A") = C,,C«B’). By Theorem 2.9 and
Definition 1.4

Cy(A') CC.,.CHA") T Cepe s (A) = Cy(A);
Cs(B") C C.,CoB") T C.iys(B") = Cy(B') .

Whence, by (4.8),
A=CyA)=C. CyA)C.CyB') = Cy(B')=B.

(4.8)

In the special case when ¢=¢, o =1, and 7 = 7,, this is
Theorem 18 of [3].

We conclude with the observation that under the hypothesis of
Corollary 4.15 the relation

p ~4q — Ci{p} = Cy{q}

defines an equivalence relation on the points of S. In [8] B. Schweizer
defines a tolerance relation called “indistinguishable mod ¢” by

pNQ(mOdQS)‘:'FMg?ﬁ'

It is clear that p ~, ¢ implies p ~ ¢(mod ¢). However, the con-
verse is false. Example 2.13 shows that if p = 0 and ¢ = 1/4, then
» ~ g(mod ¢), but C,{p} + Cs{g} whence p ~,q is false.
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