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Let X denote a locally compact Hausdorff space, CQ(X)
the Banach algebra of continuous complex-valued functions
on X which vanish at infinity. An approximate identity for
CQ(X) is a net (fχ)λ&Λ such that (1) HΛIlglVΛ; and (2) if
heCQ(X), then limχ\\hfχ—h\\=O. Here the norm is the sup
norm, and multiplication is the usual pointwise product.

This paper contains an analysis of approximate identities
for C0{X) of two special types: totally bounded in the strict
topology, and well-behaved in the sense of Taylor. In each
case, existence of an approximate identity of the stated type
is shown to be equivalent to paracompactness of X. A con-
structive, somewhat lengthy proof of the first equivalence
has been given by Collins and Fontenot; here a short non-
constructive proof is presented. That well-behaved implies
paracompact is shown using a set-theoretic lemma of Hajnal.
In the course of the argument certain spaces X which can
be embedded in Stone-Cech compactifications of discrete spaces
are considered. Using a result of Rosenthal on relatively
disjoint families of measures, it is shown that the strict
topology on C*(X) is the Maekey topology for some of these
X, not all of wMch are paracompact. This indicates that σ
compact spaces can be pasted together in fairly complicated
ways while still retaining the Maekey property.

The strict topology β on C*(X) was introduced by Buck [1].
Collins and Dorroh [3, Th. 4.2] noted that if X is paracompact, then
C0(X) admits an approximate identity which is ^-totally bounded.
Collins and Fontenot [4] proved the converse, and gave a systematic
classification of approximate identities according to their topological
and set-theoretic properties. The notion of a well-behaved approxi-
mate identity (WAI) is due to Taylor [12].

An approximate identity (fλ)λeΛ for C0(X) is a WAI if (3) fλ ^ OVλ;
(4) χ1<χ2=*fλifλ2=fλί; and (5) if λ0 e A and (λΛ) is a strictly in-
creasing sequence in Λ, then there is a positive integer n0 such that
fχQfλn = fλQfλm for m, n ^ n0. Condition (4) implies that each fx must
have compact support. Moreover, given x, there is a λ such that
fλ(x) = 1. It is known that X paracompact =* C0(X) has a WAI=>
(C*(X), β) is a Maekey space.

!• /3-totally bounded approximate identities for CQ(X).

THEOREM 1.1. If CQ(X) contains an equicontinuous subset H such
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that, for some a > 0, sup{|/(α;)|:/ eH} > aVxeX, then X is para-
compact.

Proof; If D is an equicontinuous subset of C*(X) and ε is a
positive number, let U(D, ε) = {(x, y)eXxX: sup {| f(x) - f(y)\: feD}
<: ε}. Then {U(D, ε): D equicontinuous, ε > 0} is a base for a uni-
formity which is compatible with the topology of X. Fix xQeX,
and choose fQeH with |/0(O I > <*. Then, since {y e X: \fo(y) | ^ a/2}
is compact, so is U(H, a/2)[x0] = {xeX: \f(x) - f(xQ)\ ^ α/2V/eif}.
Thus X is uniformly locally compact, hence paracompact [9, p. 215].

COROLLARY 1.2. If C0(X) has a β-totally bounded approximate
identity, then X is paracompact.

Proof. A subset of C*(X) is /3-totally bounded if and only if
it is uniformly bounded and equicontinuous [2, Lemma 3.1]. Thus
the conditions of 1.1 are satisfied.

2> Well-behaved approximate identities for CQ(X).

In this section we prove the following result.

THEOREM 2.1. // C0(X) has a well-behaved approximate identity,
then X is paracompact.

The proof relies on a sequence of lemmas. A space X is zero-
dimensional if the topology has a base of clopen sets. A map ψ:
Y—>X is perfect if it is a continuous closed surjection such that
the inverse image of each point of X is compact.

LEMMA 2.2. If Y is a zero-dimensional locally compact Hausdorff
space, and C0(Y) has a WAI (fλ)λeΛ, then there is a corresponding
family (Kλ)λeΛ of compact-open subsets of Y such that (1') \JλeΛKλ — Y\
(2') λi < λ2 —> Kλι c Kh; and (3') if XQeΛ and (λ J is a strictly in-
creasing sequence in Λ, then there is a positive integer nQ such that
Kh n Kλm = Kh ΓΊ Kλn for m,n^ n0.

Proof. For each λ, Aλ = {x e X: fλ(x) = 1} is a compact subset of
the open set Bλ = {xeX:fλ(x) > 1/2}. Choose a compact-open set Kλ

with AλczKλc:Bλ. Then (Γ) holds, and, since BhaAh for λ t < λ 2 ,
so does (2'). If n0 satisfies (5), it is not difficult to verify that n0 + 1
will satisfy (3').

LEMMA 2.3. If X and Y are locally compact Hausdorff spaces,
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C0(X) has a WAI, and there is a perfect map of Y onto X, then
C0(Γ) has a WAI.

Proof. The inverse of a compact set under a perfect map is
compact. Thus if {fλ)λeΛ is a WAI for C0(X), and φ: F — X is perfect,
it can be shown that (fλ°φ)λeΛ is a WAI for C0(Y).

In order to motivate the final (and central) lemma, we begin the

Proof of Theorem 2.1. Suppose CQ(X) has a WAI (fx)XeA- Let
D denote the underlying set of X, endowed with the discrete topology.
Then the identity map i: D —> X has a unique continuous extension
ψiβD^βX. Let Y = ψ-\X)9 and let φ = ψ\Y. Then we have:
(1) Y is locally compact Hausdorff, since Y is open in βD; (2) D c
YczβD; thus F is extremally disconnected [8, 6M], and therefore
zero-dimensional; and (3) φ is a perfect map of Y onto X, since ψ
is perfect and φ is its restriction to a complete inverse image. From
2.2 and 2.3 we obtain a family (Kλ)λeΛ of compact-open subsets of
F satisfying (Γ), (2') and (3') of 2.2. For each λ, let Hλ = Kλ Π D;
then cl^flj = i^. Let §ίf = (ίZ"^ey4. Then ^ is a well-behaved
cover of D in the sense of the following definition.

DEFINITION 2.4. Let ΰ be a set, A a directed set, and ̂  =
(Ua)aeA & family of subsets of D. Then ^ is a well-behaved cover
of D if (1") U ^ t 4 - D; (2") a, < a2^UaiczUa2; and (3") if aoeA
and (an) is a strictly increasing sequence in A, then there is a posi-
tive integer n0 such that ί7αo Π Uam = UaQ Π Ϊ7βn for m, n ^ n0.

There is a simple way of producing well-behaved covers of a
set D. Indeed let (Vβ)βeB be any decomposition of D into pairwise
disjoint nonempty subsets. Let A be the collection of all finite
subsets of Bf directed by inclusion. For each a = (β19 , βn) e A,
define Ua - \JUVβ.. Then (1"), (2") and (3") are easily seen to hold
for ^ = (Ua)aeA. Let us call a well-behaved cover produced in this
special way a decomposable cover of D.

DEFINITION 2.5. Two covers ^ and *W of a set D are equiva-
lent if (1) given 1 7 e ^ , 3TFeS^ such that £7cTF; and (2) given
WzΎS~, 3*7e^ such that TFcί7.

The motivation for these two definitions is as follows. Suppose
we can show that our well-behaved cover Sίf of D is equivalent to
some decomposable cover W arising from a decomposition (Vβ)βeB

of D. Then F - U ^ Kλ - U , β , c\βDHλ = \JaeAc\βDUa - [JβeB c\βDVβ

(the third equality will hold because 3^ and ̂  are equivalent, the
last because each Ua is a finite union of sets Vβ). But the sets
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(dβDVβ)βeB- a r e pai r wise disjoint compacts-open s u b s e t s of βD, and
this implies that Y is paracompact. Since ψ: Y-+X is perfect, X
will then be paracompact also [7, p. 165].

Thus the proof of 2.1 reduces to a purely set-theoretic question:
given a well-behaved cover S$f = (Hλ)λeΛ of a set D, is there a de-
composable cover ^ = (Ua)aeA of D which is equivalent to Sift
Professor Andras Hajnal has kindly furnished the author with a
proof that this is indeed the case. The author expresses his deep
appreciation to Professor Hajnal for his permission to record the
argument in the following lemma, which may be of independent
interest.

LEMMA 2.6 (Hajnal). A well-behaved cover of a set D is always
equivalent to some decomposable cover of D.

Proof. Let ^ be a family of nonempty subsets of a set S which
covers S. We shall say that ^ is a good cover of S if there is a
function / which assigns to each finite collection {Au , An) of
distinct members of ^ a member f(Au , An) of ^ in such a way
that (a) \JUA, c f(Alf , An); (b) f(A19 -A^) c f(Au -An_lf An);
and (c) if B e %S and ^ ' c ^ , there is a finite subcollection {A19 , An)
of W such that B n ( | J { ^ We <&'}) c f(Alf -*-,An). In this case
/ is said to be a good function for ^Λ

Claim 1. A well-behaved cover ^ = (Hλ)λeΛ of a set D is a good
cover of D. Define a function g from the collection of finite subsets
of Λ to A so that for any {λi, , λ j a A, λ* < g(Xu •• λn)Vi and
^(λi, , λ%_i) < ^(λi, , λft). This is easily done by induction on
n, the number of elements in the finite subset. We would like to
define f(Hh, , Hλn) to be Hgiλv...yλn)y but there is a difficulty in that
Hλ = Hμ for X Φ μ might occur, leading to an ambiguity in the
definition. Proceed as follows: well-order A as (λ(α))α<αo (this well-
ordering of course has nothing to do with the partial order which
A already possesses). If Pl9 -—,Pn are distinct members of £ίf\
choose, for each i, the least α̂  such that HUoCi) = P .̂ Then define
f(P19 , Pn) to be Hμ where μ = g(λ(^0, • , λ(αj). It follows easily
that (a) and (b) hold. Suppose (c) fails for some Po e 3(f and Sίf'tzSίf.
By induction we can find a sequence (Pn) in Sίff such that Po Π Pn <£
f(P19 ---tP^Vn (P, is an arbitrary member of Sίf'). Let Pn =
iίi(βft) as above. Then property (3") of a well-behaved cover is
violated for the indices \(a0) and g(X(od)) < giM^), λ(α2)) < <
flr(λ(αi), •••, λ(αΛ)) <••••, a contradiction. Thus (c) holds, and so /
is a good function for Sίf\
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Claim 2. If ^ is a good cover of D, T is a non-empty subset
of D, and ^Tτ = {A Π T: i e f , AΓ\T Φ 0}, then ^ τ is a good cover
of T. Indeed *%f can be well-ordered in some way as (Aa)a<ao. If
B e % let a(B) be the least a such that Aa{B) f] T = B. If Blf ,
5 , e %fτ, define fcφi, , £ J = /(Aβ(Bl), , Aa{BJ n Γ. It can be
verified that ft is a good function for <2ST if / is a good function
for ^ .

Claim 3. A ^ood cover o/ α se£ is equivalent to a decomposable
cover of that set. We induct on the cardinality of a good cover ^ .
If card U^ fc$0> the claim is easily established. Now suppose the
result holds for good covers ^/ of arbitrary sets, where card ^ < K
and K > ^ 0 . Let card ^ = K, where ^ is a good cover of a set
D, and let aκ be the least ordinal of cardinal tc. Let / be a fixed
good function for <&.

If <gf c<g/ we shall say that <gf is closed if Alf •• , ^ e ^ 7 = >
f(Al9 - •-, An)e^. We construct a transfinite sequence (^a)a<ak of
closed subfamilies of ^ such that (1) α: </5=> ̂ α c ^ ; (2) ^ α =
U <̂« ̂  for limit ordinals a; (3) Ua<«, ̂ « = ^ Ί and (4) card ^ α ^
card α + ^0V^.

Now ^ can be indexed as (Aa) where a runs over the set of
nonlimit ordinals less than aκ. If J^ c ^ , there is a smallest closed
subfamily ^{^) of ^ which contains ^ and it is not difficult
to show that card <£T(JH ̂  Ho + card J^\ Let ^ = <Sf ({Λ}).
Suppose ^ α has been chosen for all a < a0 so that Aα e %fa for
nonlimit ordinals a and (1), (2), (4) hold for a < a0. If aQ is a limit
ordinal, let ^ 0 - (Jα<«0 ̂ 4 If α0 = αx + 1, let ^ x = ^ ( ^ α o U {Aαo}).
In this way the desired transfinite sequence is obtained.

Now let Sa = U {U: Ue ^4}, Za - Sa+1\Sa for α < α:Λ (let ^ 0 = 0).
Note that no member of ^/a meets Zα. Let "Wa = {Bf] Za: B e ^a+1\^a}.
As in Claim 2, one can show that W"a is a good cover of Za for
each nonempty Za. Since card ^^ α ^ card ^a+l < ft, we have by
induction that *Wa is equivalent to a decomposable cover 3^ of ^ a .
Since D is the disjoint union of the sets Za, the family T of finite
unions of all members of the collections Ta is a decomposable cover
of 2λ

Finally we show that ^ and 5^ are equivalent. If VeT, then
V=\Ji=ιVa. where Fα . e ^ς.. Then each Va.czUai for suitable
Ua.e^ai+1\^a.f and V<z f(Ua]} •••, ϋ 7 α J e ^ . Conversely, we show
by induction that if We^, and α is the least ordinal such that
TFe^ α , then F Γ c F for some Vejr. For α: = 1 this is clear, since
^ Ί and T̂ are equivalent covers of Zlm Suppose the result holds
for all a < a0. If a0 is a limit ordinal, then ^ 0 = \Ja<a0 ^ and
the result holds. Suppose aQ = ax + 1. Applying property (c) of a
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good cover to ^ , with B = W, <ZT9 = ^ β l , there exist Alf , An e ^
such that Wf]\J{V:Ve^ai}=Wf]Saici f(Alf , A J. Since ^
is a closed family, /(At, •• , A J e ^ 1 . Thus, by induction, WΠ
S α i c F i for some ^ € 5 ^ . Since We^ai+ι\^ai9 we have T7Π
(Sai+1\Sai) = Wf)Zaίe W~ai. Since 3 ^ and Taχ are equivalent covers
of Zaι, there is a member V2 of 3^ with TF Π (Sai+1\Sa) c F2. Then
ί/cT^l) V2, which is in 3^ because a decomposable cover is closed
under finite unions. This completes the proof.

3* An application to the Mackey problem for the strict tt>
pology* A well-known result of Conway [6] states that if X is
paracompact locally compact, then (C*(X), β) is a Mackey space.
Considerable effort has been expended in attempting to find a larger
class of spaces for which this is true. The condition that X be
measure-compact is sufficient [11], but no example of a nonpara-
compact measure-compact locally compact space is known. An iso-
lated example of a locally compact non-paracompact space with the
Mackey property is presented in [13], under the assumption of the
continuum hypothesis. Theorem 2.1 shows that the concept of a
well-behaved approximate identity does not enlarge the class of
paracompact spaces. However, the proof of 2.1 does suggest con-
sideration of spaces X such that XaβD, where D is discrete. Some
of these possess the Mackey property without being paracompact
as we now show.

The following lemma is probably well-known; we include a proof,
for completeness. If β0 is an ordinal, and (ccβ)β<βo is a set of ordinals
such that A < β2 < βo=>aβL < aβs, we shall refer to (ocβ)β<βo as an
increasing transfinite sequence with order type β0.

LEMMA 3.1. Let a0 be a limit ordinal, and let B = {β0: there is
an increasing transfinite sequence {(%β)β<βd of ordinals with sup^^α^ =
a0}. Then B has a smallest member βf', and, βr is the smallest ordinal
whose cardinal is card β'.

Proof. B is a nonempty set of ordinals, since a0 e B, and there-
fore has a smallest member β\ Let (ocβ)β<β, be a fixed increasing
transfinite sequence with sup^< .̂ aβ = a.Q. Let β" be the initial ordinal
of cardinal card β'. Let φ: {β: β < β"}-+{otβ}β<β' be a 1 — 1 corre-
spondence (not assumed to preserve order). For each β <β"9 let
λ̂  = sup {0(7): 7 ^ β}. Then (Xβ)β<β» is a non-decreasing transfinite
sequence of ordinals satisfying λ̂  < 0̂V/5 and sxϊpβ<β>> \β = ot0. We
can construct from (Xβ)β<β» a strictly increasing transfinite sequence
whose supremum is cxQ. The order type of this sequence cannot
exceed β" and has cardinal card β\ hence must be β".
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THEOREM 3.2. Let D be a discrete space of cardinal 7, represented
as {a: a < a0} where aQ is the least ordinal of cardinal 7. Suppose X
is an open subset of βD such that (1) if xeX, la < a0 such that
x e c\βD {β: β <̂  a}; and (2) if a < aOf then Xf] c\βD {β: β < a) is para-
compact. Then (C*(X), β) is a Mackey space.

Proof. If 7 is the supremum of an increasing sequence of smaller
cardinals 7n, let an be the least ordinal of cardinal Ύn. Then, using
(1), X = Un=i (X Π c\βD{a: a <; an}) is the union of an increasing se-
quence of open and closed paracompact subspaces. It follows that
X is paracompact, so Conway's theorem applies.

Now assume that 7 is not the supremum of any sequence of
smaller cardinals. For each a < a0, let Da = {β: β <; a) and Ua =
X Π clβDDa. Then the collection (Ua)a<ao is an increasing cover of X
by open and closed paracompact subspaces. Let M(X) denote the
space of bounded regular Borel measures on X (the dual space of
(C*(X), β)). If μ e M(X), the support of μ is contained in the union
of countably many Ua; hence spt μaUβ for some β < a0.

Let H be a weak*-compact (hence uniformly bounded) subset
of M(X). If la < a0 such that spt μ c UaVμ e H, then (2) implies
that H is uniformly tight. If this fails apply 3.1. Let (aβ)β<β, be
a fixed increasing transfinite sequence of smallest order type with
aβ < aQVβ and sup aβ = a0. Choose <?/ with at < δ/ < aQ. Then
choose ^ e i ί and δι such that δ/ < δ, < α:0 and \μL\(Uδl\Uδι>) > 0.
Suppose /90 is an ordinal less than β', and ( ^ ) , (δ^), and (<?/) have
been chosen for all β < β0. Then su pβ<βo δβ < α0. Choose δ'βo with
sup{^ 0 , sup^<^oδj8}<δjo<α:o. Then choose μβoeH and ^ o such that
δβo < δβo < a0 and |^J( ϊ7 ί i 3 \ ϊ7^ ) > 0. By transfinite induction we
obtain (δβ)β<β, with sup^<^ δβ = α0. For each /? < /3'? use regularity
of μβ and the fact that X is zero-dimensional to obtain a compact-
open subset Kβ of Uδβ\Uδβ with \μβ\(Kβ)>0. Let Bn = {β<β': \μβ\(Kβ)>
1/n}. Some B%0 is cofinal in {β: β < βf), for if sup Bn = βn< β'Vn,
then a0 — sup ^ w , contradicting our assumption that 7 = card a0 is
not the supremum of a sequence of smaller cardinals. Then BnQ

must have order type β; because of the minimal property of βr.
Thus there exist a uniformly bounded family (μβ)βeBno> each

member of which can be regarded as a regular Borel measure on
βD, and family (Kβ)βeB of disjoint clopen subsets of βD such that
\μβ\{Kβ) > l/n0Vβ. Since βD is Stonian, we can apply Lemma l.l(a)
of [10] to deduce the existence of a subset C of Bn,ύ with card C =
card B%Q = card β' such that | μβ |((J {Kr: 7 6 C, 7 Φ β})~ < l/2n0Vβ e C.
Note that C must be cofinal in {β: β < β'}: If sup C = λ < β', then
λ is an ordinal with cardinal card β', a contradiction. Consequently,

? ^ = a0.
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We now show that the net (μβ)βec, directed by the well-ordering
of C, has no weak*-cluster point in M(X). Let μoeM(X), and find
a < <x0 such that spt μ0 c Ua.

Let β0 be a fixed member of C such that δ'βo > a. For each
βeC such that β ^ βQ, let Hβ = Kβ Π D. Then Hβa{7 eD: δ'β <7 ^
δβ}, and Kβ = c\βDHβ is the Stone-Cech compactification of Hβ. Since

> l/nOf there is a function hβeC*{Kβ) with | | / ^ ] | ^ 1 and

^ > I K . Define fo:D-+R by /0(α0 = hβ(x) iίxeHβ for /3 e C,

/3 ̂  /50, and /o(&) = 0 otherwise. Now extend f0 continuously to βD,
and let / be the restriction to X. Note that f\Ua = 0, | | / | | ^ 1,
and f\Kβ — hβ for all βeC such that /3 ̂  βQ.

We certainly have μo(/) = 0; however, | μβ(f) \ > l/2n0 for each
βeC such that β ^ βQ. To see this, fix such a /3, and write D as
the disjoint union of the sets Hβ, \J{Hr: 7 e C, 7 ^ β}, and JP (what
is left). Then X is the disjoint union of the sets Kβ, c\x(\J{Kr:Ύ e C,
7 Φ β}), and cl xF. The integrals of / with respect to μβ over these
three sets are, in absolute value, greater than l/n0, less than l/2n0,
and 0. The conclusion follows. Hence (μβ)βec has no weak*-cluster
point, and we have contradicted weak*-compactness of H. This
completes the proof.

For the special case where card D = ^lf some of the technical
difficulties in this argument can be avoided, and the result can be
stated in modified form.

COROLLARY 3.3. Let D be a discrete space of cardinal #lf and
let X be an open subset of βD such that (1) if x e X, there is a
countable subset F of D such that x e c\βDF; and (2) if F is a countable
subset of ΰ , then X Π c\βDF is σ-compact. Then (C*(X), β) is a Mackey
space.

EXAMPLE 3.4. Let D be any uncountable discrete space such
that card D is not the supremum of a sequence of smaller cardinals.
Let D = {a: a <aQ} as in 3.2, and let X = U«<«O

CW^ : & = a)- T h e n

X is extremally disconnected locally compact and sham-compact (every
^-compact subset is relatively compact), hence countably compact
and pseudocompact. But X is not compact, since {oλβD{β: β 5* <̂}} is
an open cover with no finite subcover; thus X cannot be paracom-
pact. However, according to 3.2, (C*(X), β) is Mackey.

REMARK 3.5. (C*(X), β) is said to be a strong Mackey space if
the following is true: whenever H is a subset of M(X) such that
every sequence in H has a weak*-cluster point in M(X), then H is
uniformly tight. Conway's proof shows that if X is paracompact,
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then the strong Mackey property holds; the same is true for the
space considered in [13]. However this cannot be true for any of
the spaces X described in 3.4. Indeed if H consists of all point
masses corresponding to points of X, then H is weak*-countably
compact in M(X), but not uniformly tight.

EXAMPLE 3.6. It is easy to show that if (C*(X), β) is Mackey
and T is a closed subspace of X, then (C*(T), β) is Mackey. Assume
the continuum hypothesis, and let p be a P-point of βN\N. As the
author pointed out in [14], (C*(βN\{p})> β) is not a Mackey space.
However, if X is the space of 3.4, with card D = #lf then, by a
result of Comfort and Negrepontis [5], βN\N\{p} is homeomorphic
to the closed subspace X\D of X. Thus (C*(βN\N\{p})9 β) is a Mackey
space. This gives some indication of the apparent subtlety of the
Mackey problem for the strict topology.
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