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The theory of Gauss sums is developed for integral
quadratic forms over a local field of characteristic 2, and
Gauss sums are used to characterize these forms. For a
character ¥ and an integral lattice L, the Gauss sum X(L) is
either zero, a nonnegative power of two, or the negative of
a positive power of two. Gauss sums alone characterize
the integral equivalence classes for modular lattices. For
arbitrary lattices, other invariants are required.

The classification given in this paper is an alternate to the one
by C.-H. Sah [6]. The notation and terminology of [6] is used
except when stated to the contrary. O. T. O’Meara [4] used Gauss
sums to characterize local integral quadratic forms over a field of
characteristic not 2, and R. Jacobowitz [3] classified hermitian forms
over the integers of a local field of characteristic not 2 by Gauss
sums. When needed, results from these papers are referred to when
the proofs hold for the characteristic 2 case.

After a few preliminaries, we introduce Gauss sums and prove
some results for Gauss sums of lines and planes that will in turn
be used to study more complicated lattices. In Theorem 5.4 we
show that Gauss sums alone are sufficient to characterize modular
lattices, and in Theorem 4.2 we show that for nondefective lattices
only a finite number of Gauss sums need be considered.

1. Preliminaries. Throughout this paper &k denotes a local field
of characteristic 2 with fixed prime element 7, ring of integers o,
and residue class field of order 2. We let 2 denote a complete set
of representatives for the residue class field. We refer the reader
to [6] for a discussion of the Arf invariant 4V for a quadratic
space V and the additive group 2. As in [6] we let {0, \} be a
fixed set of representatives of 2/5°Q2. The letter ¢ always denotes
a unit of k. For a nonnegative integer s, H, and H, denote s-
hyperbolic lattices.

Let L be a lattice. K(L) ={xeL|{x, y> =0 for all yeL}. If
K(L) = 0, then L is nondefective. Otherwise, it is defective. We
assume that if z € K(L) and Q(x) = 0, then 2 = 0.

We now state some lemmas and definitions from [6] in the form
in which they are used in this paper.

271



272 D. A. WILLIAMS

LEMMA 1.1. Let L be a lattice with (gL)o = m*p.

(1) If rank ,q(L) =1, then L = K(L) and ¢(L) = ex"0* with e
a unit.

(2) If ramk ,q(L) = 2, then
v =min{orda|acq(L) and orda = u + 1 mod 2} is a rational inte-
ger with w<wv. If, in addition, L == K(L), v<s+ 1 with sL = x°o.
Moreover, for any unit e with en*c Q(L), q(L) = e(w*0* + n"0%); and
there is at least one such e.

If more that one lattice is under consideration, the invariants u
and » for L are denoted by u, and v, respectively.

As in [6], for a rational integer 4, u(¢) and v(¢) denote the u
and v of Lemma 1.1 for the lattice L(7) Q H,.

LEMMA 1.2. Let L be an t-modular lattice such that rank L =4
and q(L) = e(n*0* + 7°0%) with u <v =1+ 1, 4 +v =1 mod 2, and
en” i;Q(L) (as in Lemma 1.1). Then L = (en‘”ﬂ: P IR )
(o e_lnﬁ_va,) @ H with 8, 5 € {0, \}, H i-hyperbolic or 0, and §' = 0

when v =1 + 1. Moreover, q(L) = Q(L).

For a canonical decomposition L = (3}, L;) B K(L), s(z) always
denotes s(L,).

DerFiNiTION 1.3, Let L = (G, L,)& K(L.) be a canonical de-
composition. Define I = s(0) and T = s(¢) + max {«’, v'}, where
, {uK(L) — u(s(t)) if L is defective
o otherwise

and

, {'Umu — v(s(t)) if rank ,q(K(L)) = 2
0 otherwise ’

and defined R = (¢#(I), r(I + 1), - -+, #(T)) where

rank L; if s(i) — 7 for some ©€{0, ---, ¢}
0 " otherwise )

o) = |
Then L is said to be of type (I, T, R) and length (¢ + 1).

DerFINITION 1.4. For L = K(L), let L = (i, L,)® K(L) be a
canonical decomposition of L. If s(0), ---, s(f) are consecutive
integers, rank L; = 8, and #' = ¢ = 0, then L, is a normal lattice
of type (s(0), s(¢), R) and R = (rank L,, ---, rank ,). Observe that
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the concept of normal is independent of the canonical decompo-
sition.

LEMMA 1.5, Let L = 3\ L, and M = >\'_, M, be canonical de-
composition of the non-defective lattices L and M respectively. If
L and M are of the same type, them t =+, rank L, = rank M,,
and s.(i) = s,(1).

2. Characters. A character of o is a map X from o into the
complex numbers such that X(a + b) = y(a)x(d) for a,beo, and
%(o(r)) =1 for some nonnegative rational integer r. Let m(y)
denote the smallest » = 0 such that y(o(r)) =1. Then o{m(y)) is
called the maximal support of ¥ and m(y) is called the maximal
support ordinal of y. When a single character y is being considered,
we use m for the maximal support ordinal of X without stating that
m = m(y).

Note that if y is a character and ¢ €o, then y(a) = +=1. In fact,
the image of % is {—1, 1} except when m(y) = 0.

The set of all characters of o, denoted by X, together with the
operation of function multiplication is a group. For » = 0 define
X(ry={yeX|yor) =1 ={eX|m(y) <r}. X(r) is a subgroup
of X and will play an important role in the study of Gauss sums.

For each » = 0 there is a one-to-one correspondence between
X(r) and the set of group characters on o/o(»). This permits us to
obtain information about X(r) from the theory of group characters.
(For details see [3].)

3. Gauss sums. A lattice L is said to be integral if Q(L) < o.
If L is integral, then ¢(L) E o, since for =, yeL, (x, y) = Qx) +
QW) + Q(x + y)eon. All lattices will be assumed to be integral.
This causes no loss of generality in studying the classification
problem.

For » = 0, L(r) will denote n"L and a summation over x mod
L(r) will mean that = runs over a complete set of representatives
for the additive group L/L(#). The order of L/L(r) is 2/r2ski),

For a lattice L and a character x € X(r), 1(L; T7) = Dl amoarin L(Q(X))
is called a Gauss sum. Write (L) for X(L; #™). Since L is integral
and L/L(r) is finite, all elements of Q(L) are in the domain of X and
each Gauss sum is a finite sum of ones and negative-ones.

For a plane P = (abc (or a line P = (a)), we will sometimes
write x(abc) (or X(a)) for A(P).

In view of [4, Propositions 1 and 2], it is clear that a great
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deal can be learned about Gauss sums by studying X(L) when L is
a line or plane. Our investigation can be further simplified by
noting:

(3.1) (abc) S (abc) = (abo> ® (cb0>

and
n.m
(3.2) X(d 0) = 27)X(d) .

Let L =ox, + --+ + ox,. It follows from the uniqueness of the
representation of elements with respect to a basis that e, + -+« +
a,%, runs through a complete set of representatives for L/L(m) as
Q, *+++, @, each runs through a complete set of representatives for
o/o{m).

Lewa 3.1, For Xe X and L= ("),

AUL) = 2™ >, ylatem™ %)

amod o(s)

if s=m and X(L) = 2" 3 cmeaom X(Q2Q) tf m <s.

Proof. Keeping in mind the preceding comment, y(L)=

Ses x(@a + apr?) with @ mod o(m) and £ mod o(m). For a fixed a,

fmo 3 > .
by [3, (LO)], = x(@sr) = {3 PAford &S =M Gith 5 mod ofm).

Therefore y(L) = 2/™ 3, y(a’a) with @ mod o(m) and ord @ = m — s.

Since the case s > m is immediate, assume s < m. As 7 runs
through a complete set of representatives for o/o(s), &« = Yz™ * runs
through a complete set of those representatives for o/o(m) such that
orda =m —s. Thus (L) = 2™ 3, x(Vam*™ ).

PrOPOSITION 3.2. For ye€X and H an i-hyperbolic plane,
X(H) — 2fmin(2m,m+’l).

Proof. This follows from Lemma 3.1 and the fact that y(0) = 1.

LEMMA 3.3. Let yeX, L= (aﬂs()), and M = (MJWO> with
0=w=s+w=m. Then (M) = 2"y(L).

Proof. Using Lemma 3.1, x(M) = 2/ 3 > x((@ + Br*Yan* %) =
27 X (e ™) = 27vy(L) with @ mod o(s) and B mod o(w).
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PROPOSITION 3.4. Let L;(Mwﬂ-so> and m = 0. Then the

Sollowing hold:

(1) If m 2w or 2s —w = m, then y(L) = 2/ ™ enmts)

(2) Ifw<m <2s— wwith w and m of opposite parity, then
(L) = 0.

(3) Ifw <m < 2s — wwith w and m of the same parity, then
there exists y, and Y, in X with m(y) = m(y) = m such that
ALY = 0 and y(L) = 0. Furthermore, if m(y) = m and y(L) = 0,
then y(L) = 2fmin@mmts

Proof. (1) If m <w, y(L) = y(H,); otherwise use Lemma 3.1.

(2) Claim. If y has maximal support o(m), r + m = 1mod 2,
and j = (m — r + 1)/2 > 0, then >\, y(a®z") = 0 with a mod o()).

Justification. With G modo((m — » — 1)/2), 7Y modo(l), and
dmodo(j — (m — r + 1)/2), X plaen) = 3 3, Ty 48 + 7 +
TG en) = [ X x(Bren )X A(Ver™ H[2; x(0%en™ )] = 0 since
S x(Mer™ ™) = 3 Am—u(¥) = 0, and the claim holds.

If s<m, take »r =2m — 2s + w and j = s; and if m < s, take
r=w and j = m.

(3) If s<m, then by Lemma 3.8 L may be replaced by

mwﬂm,%nmo). Hence we assume m < s. Suppose y(L) = 0 for all

% with m(y) = m. Let M=(, .7 ..). ForyeX(m), x(M) = 1(L).
By [4, Proposition 3], L{z™ % a™) = M(z™*; z™). Thus zn"'eQ(L)
which is impossible. Hence there exists y, with m(y,) = m and
x:(L) = 0.

Now suppose y(L) is nonzero for all ¥ with m{y) = m. Write

~ Tt - 7’ .
Nz(gwlo)and Nz (0, 0 o) Using [6, LT, b)l, N®
L=N@L. Now ex” + ex™ ' is a unit times 7* and therefore by
the argument just gone through for L, y(N') # 0 for some y with
m()) = m. Thus y(N) = 0; but this contradicts (2). Therefore there
exists ¥, with m(y,) = m and y,(L) = 0.

If y(L) =0, setting H = <O”SO>, LOL=H®L and yL)=
X(H) — 2fmin(2m,m+s)'

It now follows that if y(L) = 0 then y(L) = 2" for some non-
negative integer n.

4. A reduction.

LemMA 4.1, Let Lz((fl) and Mz( with

TC’I‘
aln.zr—zs—zn ann
s+n 8
r=s+mnaond n=0. For any x€X such that x(an 0), )5(072'- c>’
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and X(()irfc 77:”> are all nonzero, sgn (x(L)) = sgn (x(M)), and (L) and
2(M) are both monzero.

I

Proof. Now <aﬁsc> &b <aﬂ.8+ncn2n> <0n30> &b <ans+n0> and

ot i - et bl .
(a c:r“) s> (an”‘23~2n cn2"> = (a 0> SV <O Cnm>. Since the
Gauss sum of the lattice on the right-hand side in each isometry is

positive, the result follows.

THEOREM 4.2. Let L = 3\ L, and M = >}, M, be canonical
decompositions for mon-defective spaces L and M respectively, and
let w = min (u (s(t), uu(s(t)). If L and M are of the same type
(I, T, R), and if y(L) = y(M) for all ye X@CT — u + 1), then y(L) =
¥ (M) for all y e X.

Proof. Fix y e X such that m > 2T —u + 1. Write m = 2T —
%+ 2n + 5 where 7 =0 or 7 =1. In view of Lemma 1.5 rank L =
rank M and s;(7) = s,(7) for 0 <4 <¢t. Fix 4. Adjoining hyperbolic
planes if necessary, decompose L according to Lemma 1.2. Applying
Proposition 3.2 to the hyperbolic part and Lemma 4.1 and Proposi-
tion 3.4 to the rest, we conclude that y(L) = 2Ly ,,(L). Similarly
(M) = 273y oy (M),

5. Classification of modular lattices.

ProrosiTION 5.1. If sL = sM = o(s) and y(L) = y(M) for all
x € X(s), then q(L) = q(M).

Proof. Case 1. s =10. Using the fact that L has an 0-modular
orthogonal summand and Lemma 1.2, ¢(L) = 0* + 70* = q(M).

Case 2. s=1. First assume there exists yeX such that
miy) =s and x(L)=0. Then sgn (y(L))2™™" L = y(L) = y(M) =
sgn (y(M))2 = =¥ Hence rank L. = rank M, and by [4, Proposition
3] L(a; 7°) M{a; 7°) for all aco. It follows that q(L) = q(M).

Now assume y(L) = y(M)=0 for all yeX with m(y) = s.
Assume without loss of generality that rank I < rank M. Let
L'=L®HO®N such that rank L' = rank M, H is an s-hyperbolic
lattice or 0, and N = (z°) or 0. Then ¢(L’) = ¢(L) and y{(L') = 0 for
all e X(s). Hence y(L') = y(M) for all xe X(s). Then [4, Proposi-
tion 3] is applicable and it follows that ¢(L) = ¢(L’) = q(M).

ProrosITION 5.2, Let yeX with m=1, and let L=
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(pem™ grigmesy)- Then q(L) < 0 if 6= and x(L) > 0 if o = 0.

Proof. If e#1 set J=EL@PH,_,., By Lemma 1.2 and the

uniqueness of 4(kJ), J = (ﬁm_lnm—lﬂm_15> @ H,_,. Thus we may reduce

to the case in which e = 1. And since (L) = 2"y, <11x>, we
assume m = 1.

If 6 =0 use Proposition 38.4. Assume ¢ = A. Fix a basis
{p, +++, p;} for 2 over {0,1}. Witha, ---, a; running through {0, 1},
X(L) = 34, -+ Doy @Dy + -+ + a0 0]

[1+ 20!+ api + -+ -+ arpps)] - - [1+ x(0F + apps +- -+ a;07)] .

Since m =1, at least one element in each basis for 2 must be
mapped to —1 by y. Since )¢ .72, it follows from elementary
linear algebra that if {a, ---,a;} 10,1}, {(ap, + -+ + a;ps)
P+ apit+ s+ apppy, v v, DF + @pps + -+ + arpi} contains a basis
for 2. Thus y(L) < 0.

PRrOPOSITION 5.3. Let L be an s-modular lattice with rank L = 4
and q(L) = e(n*0* + n'0?). Write M = (eﬂ:uﬂ 0> and N = (erc” T 0).
For yeX, y(L) =0 iff x(M) =0 or x(N) = 0.

Proof. Write L = (en_f c> &b ((mvn eﬁlnzs_v(y) @D H, with c¢=

e 'n* 7" + e'w’a* as in Lemma 1.2.

Sufficiency is obvious, so assume y(L) = 0. Set M' = (cn*()) and

N’ = <e‘1n23“”6’n30>' By Propositions 3.2 and 3.4 %(N') #= 0. Thus at
least one of (M), x(N), and y(M’) is zero. If y(M') = 0, by Proposi-

tion 3.4 either x(M) =0 or x(N) = 0.

THEOREM 5.4. Let L, and L, be s-modular lattices. L, = L, iff
1(L) = x(L:) for all x e X(2, — max (u,, u;) + 1).

Proof. Necessity is obvious, so we assume y(L,) = x(L,) for
x € X(2s — max w;, ;) + 1). By Proposition 5.1, u;, = u,,. Call the
common value u. By Propositions 8.4 and 5.3, yx(L,) =
sgn (y(L,))2/ m+a zankla’2 when m =23 —u + 1. Thus rank L, = rankL,.
Adjoining the appropriate hyperbolic plane to L, and L, and
applying Lemma 1.2 and Proposition 5.1, QL) = ¢(L,) = q(L,) =
Q(L,) = e(m*0® + ©’0%) and

° t
L g( o SH
en” e \m* Y0, + e lmliq? er’ e 'm0 ’
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with a¢; a unit or zero, w, = v, and w, + v = 0 mod 2. By showing
that ord (zwa? + n*2al) > 2s — u and 0, = §,, it will follow from [6,
T° : _ °
Lemma 41] that <6ﬂ.’u 6—17f2s_u51 + 6_17Cw10,f> = <en“ 6_171'23—“52 + e—lnwza’g)-
If we also show that 4] = 05, we will have L, = L,.
By [6, Theorem 4.6],

* P/
L&L, =
S (en“ e (0, + 62)) D (eﬁ“ 6_17'6"’(12)
n.s
® ( 1, & H,
erm

where 7¥q® = 7*q? + 72} with w = v, w + v =0 mod 2, and ¢ is

. - ol — 7t
a unit or zero. Let K= (eﬂ:“ e, + 52)>, M = (en_u 6—1n.wa/2>9

and N = (W“ . 5;)>. For 7eX with m =2 — u,
WEOMONPH)=yL,HL)>0 and x(KBH)>0.  Thus
sgn () (M)) = sgn (x(N)).

e'n¥ (0] + 5;))

Claim. If ord(e'm*a*) < 2s — u, then there exists y’, ¥ € X with
m(y') = m()") = 2s — u such that ¥'(M) > 0 and y"(M) < 0.

Justification. Since w + v =1 mod 2, ord(e'n“a?) # 28 — u.

2s—u—1 2s—u—1
erte J = <67.L.w~17r e—ln.Zsfu‘lalZ>! J, = (en.W*lﬂ: e*—ln.2s—u+1a2>7 J” =
7.:2341441 111 n23~u—l /] 77 1223
(o e*1n28-wa2>’ and J" = (eﬂw_l o)- TR =J DI
There exists y'€X with wm = 2s — u such that ¥'(J') >0 and

Y@ J") > 0. Hence y'(J)>0. Taking P = (mwﬂm_“_‘o), by an

argument like that given in the proof of Proposition 3.4 (3),
7'(J) £ 0 for some ¥y’ € X with m = 2s — u. Now compare M with
J by Lemma 4.1 to establish the claim.

It is easily seen that y'(N) = ¥”(N). Thus ord (¢e™'w“a?*) > 2s — u
and 0, = o).

By another application of Lemma 4.1, 6, = 0,.

6. Classification when L = K(L). If rank L = 1, then L = (ex®).
Otherwise rank L = 2, in which case rank,q(L) = 2 and L = (ex*) P
(em®).

THEOREM 6.1. Let L = K(L), M = K(L), and rank L < rank M.
max (%z, uy) if rank L = rank M =1
Write w = {max (U, %y, vy) tf rank L = 1 and rank M = 2
max (U, ¥z, Uy, Vy) tf Tank L = rank M = 2
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(1) If y(L) = x(M) for ye X(w + 1), then rank L = rank M.

(2) For L = (ex*t) and M = (¢'zw*x), L =M +f and only if
e r e e'mul? and (L) = y(M) for all y e X(w).

(38) If rank L = rank M = 2, then L = M if and only +f y(L) =
(M) for all e X(w).

Proof. Write M = (¢'n*¥) or M = (e'n*») P (¢'n’¥) and L = (en*t)
or L = (en*) @ (er"r) depending on the case at hand. Assume that
x(L) = (M) for all y € X(w) and that u, < Setting L' = (er*z)
and using (3.2) and Proposition 3.4, u, = uL

(1) Assume rank M = 2. Then v, exists, and comparing L’
and (¢'z°¥) with appropriate lattices of rank 2, we see that y(L') = 0
for some y with m = v, +1 and y(¢'7°») =0 for all ¥ with m =
vy + 1. Hence L’ and L are not isometric, and rank L = 2.

(2) Since u; = uy, this is obvious.

(3) Necessity is obvious. L(a; 7*) = M(a; =) for all aco. By
a straightforward calculation (L) = ¢(M), and by [6, Lemma 1.2]
v, = vy. It now follows that L = M.

7. Classification when L # K(L).

ProrosiTIiON 7.1. Let L = ()i, L,) D K(L) be a saturated de-
composition for the normal lattice L. For any y<€X such that
x(Lo) = 0, x(L¢) = 0.

Proof. Suppose y(L,) = 0 and y(L¢) #= 0 for some y e X. Using
the hypothesis that the given decomposition is saturated and [6,
Definition 5.1], there exists a unit ¢ such that Q(L;) = e(m**¥)0* +
(z=p?) for j =0,1. By Propositions 5.3 and 3.4, u(s(0)) <m
2s(0) — u(s(0)).

We show that m < v(s(1)). Then m < v(s(¢)) and hence x(L;) = 0
for 1 <4 <¢. Since y(K(L)) = 0, we then have y(Ls) > 0.

Assume v(s(1)) < m. Since x(L,) # 0 and wu(s1)) < m 30)23(1) —

w(s(D), 25(0) — v(s(0)) = 25(1) — (D) £ m. S0 A yruwer” o) = O
By [6, Definition 5. 1] one of u{(s(1)) and »(s(1)) equals either u(s(0))

(0)

o ) 2 S (™ ) 1) =5 )9

(1) 5(1)

(enms(onn 0>’ 7(67 (5(0)) T 0) = 0; and by Lemma 3.3, if s(1) < m,
s(1)

H{ ygaoonss™ ) = 0. Thus 7(L,) 7 0 implies s(1) > m. Hence s(1) >

m = 2s(1) — v(s(1)) = s(1) — 1. So v(s(1)) = m.

ProrosITION 7.2. Let L = (Cio, L)) D K(L) = e M,) D K(L)
be canonical decompositions of a mormal lattice L. If u(j)=
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wi—1)+2 and v(j)=v75 —1)+2 for some j with I<j=T,
write = (kL) + 4(kM,)) = B2~ + 0 + Pk with Be l[n™'] and
0€{0,\}., Then B and d are uniquely determined by the two de-
compositions and ord (8w + 9) = u(j) + v(5) — 25 — 1.

Proof. The uniqueness of 8 and ¢ follows from [6, Lemma 1.1].

By [6, Theorems 2.2 and 2.3 and Lemma 1.2], a reduction can
be made to the case in which the two canonical decompositions are
complete and the second is obtained from the first by an elementary
lattice transformation.

Denote u(j — 1), v( — 1), and 7 — I by w, v, and w, respec-
tively. Let T, denote the elementary lattice transformation used
to obtain the second decomposition from the first. Only the cases
for which » = 4 and » = 9 need be considered.

Case 1. r=9. If the two planes effected by 7T, are of the
same modularity, the result holds trivially. If not, a reduction can
be made to the case in which T, acts on L,_, and L,. Then for

j—1

some ¢, deQ(L,-), ¢, ¢'cQLy), and aco, T, sends (7 ;)@

g g g1 J
( c'n d’> to (c n azo’ﬁ d) D (C,ﬂ 4+ i d> and leaves the other
planes fixed.

By a direct computation, 3“3 (4(EL,) + 4(kM))) = atc’dr™*+* +
Pk =B+ 6 + Pk with ord (Bt + ) = u(j) + v(j) — 27 — 1,
where B¢ Q[z7'] and J € {0, \}.

Case 2. r = 4. If the plane altered by the application of T,
has modularity greater that 7 — 1, the result follows. Otherwise
there exists a sequence of complete decompositions from the first
given decomposition to the second, each of which can be obtained
from its predecessor by either an application of T, or an application
of T, to a plane of modularity 7 — 1. Assume 7, is applied to a
plane of modularity j — 1. For some ¢, d¢e QL,_,), ¢ € QK(L)), and

—1 j—1

aco, T, sends <C7r’ d> to (C L a,zc,n- d> and leaves all else fixed.
Now ¢ € Q(L,); so the proof follows exactly as in Case 1.

NOTATION. Let L and M be lattices of the same type (I, T, R),
i be a rational integer such that I < 7 < T, and H = >\, H, with
H, i-hyperbolic of rank8. L @ H and M@ H are normal lattice of
type (I, T, R + R(H)); and if (33i, L.) @ K(L D H) and (3L, M) B
K(M @ H) are canonical decompositions of L ¢ H and M @ H respec-
tively, then t =¢ =T —1I and s(L,))=s(M,) =1+ 1 for 0 ¢ = ¢.
Write
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Ord (L, M, 7) = min {ord (&*x~* + 9) | Bz~ + 0 + Tk
=73 (AL + A(eM)
for some canonical decompositions (7o' L,) P K(L G H) and
CrIM)D KM H) of LD H and M P H respectively}.

LeMMA 7.8. Let L = (aﬂs ¢ and M be an s + l-modular lattice
such that rank M =8 and wqL)ZqM). It a + o' €q(M), then
LOM= (a,’f c) @ M, where M’ is s + 1-modular and g(M’) = q(M).

The proof is a straightforward manipulation of lattices.

LeMMA 7.4. Let s, w, and w' be nonnegative integers such that
either w' =w or w = w + 2; and let ¢ be a unit. For any yeX

with m > s and X(gfcwmo) = 0, X<enw,7z:s+10> = 0.

Proof. If w' =w+ 2, use Lemma 8.3. If w' = w, write
7r8 TC8+1 — 7:8 7.CS+1
(en"’ O> ® <e7z’”' 0) = <0 O) D (en:”" O)‘

THEOREM 7.5. For lattices L and M, L = M +f and only if

(1) L and M are of the same type (I, T, R);

(2) For ISt T,qL()D H,) = q(M(z)D H,). That ts, the
ith norm groups of L and M are the same.

(3) (L) = (M) for all xeX@2T — w(T) + 2);

(4) If for some j with I<j=T, w(@) =u(l—1)+2 and
v(f) = v(§ — 1) + 2, then Ord (L, M, 7) = w(j) + v(4) — 27 — 1;

(5) If K(L) = (d) end K(M) = (d,), then d,<cd,k"

Proof. Necessity. Condition (4) follows from [6, Lemma 5.2]
and Proposition 7.2. The others hold trivially.

Sufficiency. Replacing L and M by LP S, H) and M
(Glr H)) respectively, we may assume L and M are normal lattices.
Proceed by induction on n = length d = length M.

Port I. m=1. Then T =1 Write u(I) = u and v(I) = ».

- Case 1. Rank (K(L)) = 0. Assume K(M)=+ 0. Then % = tgqyy,
by normality; and for any unit ¢ and any y with m = 27 — u + 1,
A(en xur) = 0. Thus y(L) = x(M) = 0 for such y. But (L) =0 by
Propositions 3.4 and 5.8. Therefore K(M) = 0. It now follows from
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Theorem 5.4 that L = M.

Case 2. Rank (K(L)) = 1. By normality, K(L) = (ex*) for some
unit e. Write L = L, K(L) with q(L,) = e(n"0* + n"0%). There ex-
ists yeX with m =2I — v + 3 and y(L)+* 0. Since yx(en’) =0,
rank (K(M)) #2. Using condition (5), K(M) = (er*). Using [6, Lemma

I
45, Theorem 4.6, and LT, d)], L = (6#” e_lnﬂ_va) & H, @ (en*) and
M= <67Ev7r6—]n_23——u31> @ H; D (en*). By an argument already used on
several occasions (see e.g., Theorem 5.4) L = M.

Case 3. Rank (K(L)) = 2. K(L) = (en*) @ (ex”) for some unit e.
By an argument similar to the one given in Case 2, L = H; D
(er”) D (en”) = M.

Port II. Assume % > 1 and that the result holds for normal
lattices of length #» —1. By [6, Lemma 5.3], L and M admit
saturated decompositions (it L,) D K(L) and (o M) @ K(M)
respectively. Our strategy is to show the following:

(7.1) For j =0, 1, there exists s(j)-modular lattices L} and M}
with q(L}) = q(L;) and q(M?) = q(M;) such that L, P L, = Ly @ L,
M OM = M: My, and L = M7.

Then (LF)* and (MF)*- are normal lattices of length #n — 1 which
satisfy conditions (1), (2), (4), and (56). For any y € X2T — w(T) + 2)
such that y(LJ) = 0, x((L*)*) = x(MH)*Y). If ye X@T — w(T) + 2)
and (L) = 0, then using Lemma 7.4 and Proposition 5.3, y((Ly)*) =
0 = y((M¥)"). Thus condition (3) is satisfied. The result follows
easily by induction.

We verify (7.1) by cases. But first write L, = L{& L) @ H,

- 7t poud
where L, = (67[71,([) ey 1 67171'”(1)0,2> @ <e7r””’ 6—171.21—1;(1“)5’) and
_ ! ! . , .
L) = (e?r’”“ O> ) <e7z””’ . O) with 0, 0"€{0, A}, a€po, and ¢ a unit
such that q,;, (L) = e(z**p* + g7 for 5 = 0, 1.

Case A. v(I+ 1) =v(I). By [6, Definition 5.1}, w(l + 1) = w(I)
or u(I) + 2. Applying Lemma 7.8 twice, L, P L, = L P LF with
L= L P H,. My and MF exist with M = Ly @ H;, and these
lattices satisfy (7.1).

Case B. (I + 1)=o(I)+ 1. Then u(l+ 1) =v{I)=u{l) + 1.
If w(l) <1, the result follows as in Case A. Suppose u(l) = I.
I I
Li =L, = (n,” n,a) @ H! and Mr = (nl’f nf&) @ H. and the result
follows.
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Case C. v(I+ 1D =vI)+2 eI+ =I+landu(l+1)=
w(l), Ly = Ly @ Hj.
If v(I+1)=<TI+1 and uw(J+ 1) =u(l)+ 2, write a =a,+ a,
I

- . % o~ /A ’ ’
with a,€ 2 and a, f 0{(1). Inthiscase L = <en’“”’ e‘%”"’af) P LD H;

and My = (Wm” e—w(w) @ L’ ® H. By condition (4) a, = c.
We are left with the situation in which »(/ +1) =71+ 2. If
I
w(I + 1) = w(I), take L = <W(,)” R 3,> DL®H, and M =

I
(o™ grigmmeing ) LY S Hi. 1 w(I+1)=u(I) +2, by the argument
used in the case where v(J +1)=v(I)+2=T-+1 and u(I+1) = u(l)+2,
A I

I
L = \en“‘“ﬂ: e—lnv(I)af> @ <eﬂ-v(l)ﬂ: 6~17521—’u’(1)5’> DL'PH, and M=
I I
<6ﬂu(1)n 6417.67;(1)&%) &b <e7z,'”m7t 6—17zzl—v(1)61> D Ly @ H, with a, €. We
need only show that ¢’ = d,. The difficulty here is in checking that
there exists yeX with m =7+ 1 and y(L)+# 0. Let r be the
largest integer such that 0 <+ <% — 1 and «w{l + r) < I+ 1. Since
w(l) <I+1, » exists. w(l+ r) + (I + 1)=0mod2. So there exists

¥ with m = I+ 1 and %(e | ﬂws(,n”“”()) %0, Tt follows that y(L,) = 0
s(r)
and by induection on 7, ¥(Cir-, L;) # 0. Thus x(L) == 0.
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