ON THE CONSTRUCTION OF ONE-PARAMETER SEMIGROUPS IN TOPOLOGICAL SEMIGROUPS

JOHN YUAN
ON THE CONSTRUCTION OF ONE-PARAMETER SEMIGROUPS IN TOPOLOGICAL SEMIGROUPS

JOHN YUAN

Let S be a topological Hausdorff semigroup and $s \in S$ be a strongly root compact element. Then there are an algebraic morphism $f : \mathbb{Q}_+ \cup \{0\} \to S$ with $f(0) = e$, $f(1) = s$, and a one-parameter semigroup $\phi : H \to S$ which satisfy the following properties: If $K = \cap \{f(]0, \varepsilon[_\mathbb{Q}) : 0 < \varepsilon < 1\}$, then K is a compact connected abelian subgroup of $\mathbb{H}(e)$, $\phi(0) = e$, $\phi(H)$ is in the centralizer $Z = \{x \in eSe : xk = kx \text{ for all } k \in K\}$ of K in eSe, and $\phi(t) \in f(t)K$ for each $t \in \mathbb{Q}_+$. Furthermore, if \mathbb{H} is any neighborhood of s in S, then ϕ may be chosen so that $\phi(1) \in \mathbb{H}$; and, in fact, if K is arcwise connected, then ϕ may be chosen so that $\phi(1) = s$. The above statements also hold for strongly pth root compact elements almost everywhere.

1. Introduction. We are concerned with the question of when a divisible element in a topological semigroup can be embedded in a one-parameter semigroup which has many applications in Probability theory (cf. [4], [8]).

The first result about the existence of one-parameter semigroups in a compact semigroup which we call the One-Parameter Semigroup Theorem is due to Mostert and Shields [7], 1957. In 1960, an independent proof based on the local nature of the compact semigroup was given by Hoffmann (cf. [5], [6]). In 1970, a global proof was presented by Carruth and Lawson [1]. The first result of a generalized one-parameter semigroup theorem dealing with the embedding problems which we will call the Embedding and Density Theorem is indicated by Hofmann in [4] and later proved by Siebert [8]. Siebert’s proof is based on the notion of a local semigroup called ducleus (cf. [6]). We will present in this paper a global proof of this theorem by applying the One-Parameter Semigroup Theorem.

Throughout this paper, we maintain that \mathbb{R}_+, \mathbb{Q}_+ and \mathbb{Z}_+ are the totalities of strictly positive real numbers, rational numbers and integers, respectively, $H = \mathbb{R}_+ \cup \{0\}$ and $Q_p^n = \{n/p^m : n \in \mathbb{Z}_+, m \in \mathbb{Z}_+ \cup \{0\}\}$ for a prime p. For convenience, we will use $]a, b[_\mathbb{Q}$ (resp. $]a, b[_\mathbb{Q}_+$, etc.) and $]a, b[Q_p$ (resp. $]a, b[Q_p^n$ (resp. $]a, b[Q_p^n \cap \mathbb{Q}_+$, etc.) and $]a, b[\cap Q_p^n$ (resp. $]a, b[\cap Q_p^n$) respectively. We also maintain that S is a topological (Hausdorff) semigroup and $\mathbb{H}(e)$ is the maximal group of units in the closed subsemigroup eSe for an idempotent $e \in S$.

285
2. On the existence of a one-parameter semigroup in \(f(A) \) where \(f: A \to S \) is an algebraic morphism with \(A = Q_+, Q_\varepsilon^* \). Throughout this section, we will always assume that \(f: Q_+ (\text{resp. } Q_\varepsilon^*) \to S \) is an algebraic morphism so that \(f([0, d]_Q) (\text{resp. } f([0, d]_Q^)) \) is compact for some \(d > 0 \) unless mentioned otherwise. As the discussions for \(Q_+ \) and for \(Q_\varepsilon^* \) would be almost the same, we will concentrate on \(Q_+ \) only.

Definition. For each \(s \in S \) and each \(n \geq 1 \), let \(W_n(s) = \{ t \in S: t^n = s \}, \ W(n; s) = \{ t^n: 1 \leq m \leq n, t^n = s \} \). \(s \) is said to be divisible (resp. \(p \)-divisible) if \(W_n(s) \neq \emptyset \) (resp. \(W_p^n(s) \neq \emptyset \)) for all \(n \geq 1 \); root compact (resp. \(p \)th root compact) if \(W_n(s) \) (resp. \(W_p^n(s) \)) is in addition compact for each \(n \geq 1 \); strongly root compact (resp. strongly \(p \)th root compact) if \(W_\infty(s) = \bigcup \{ W(n; s): n \geq 1 \} \) (resp. \(W_p^\infty(s) = \bigcup \{ W(p^n; s): n \geq 1 \} \)) in addition relatively compact.

Proposition 2.1. Let \(s \) be a root compact (resp. \(p \)th root compact) element in \(S \). Then there is an algebraic morphism \(f: Q_+ (\text{resp. } Q_\varepsilon^*) \to S \) so that \(f(1) = s \). If \(s \) is strongly root compact (resp. strongly \(p \)th root compact), then \(f \) may be chosen so that \(f([0, 1]_Q) \) (resp. \(f([0, 1]_Q^) \)) is compact.

Proof. For each \(n \geq 1 \) and \(i \geq 0 \), pick an \(s_{n+i} \in W_{(n+i)}(s) \) (resp. \(s_{n+i} \in W_{p(n+i)}(s) \)) and let

\[
\alpha_n = (s_n^1, s_n^{1/2}, \ldots, s_{n}, s_{n+1}, \ldots)
\]

(resp. \(\alpha_n = (s_p^n, s_p^{n-1}, \ldots, s_n, s_{n+1}, \ldots) \)).

Then \(\{ \alpha_n \} \) is a sequence in the compact set \(\prod_{n \geq 1} W_n(s) \) (resp. \(\prod_{n \geq 1} W_p^n(s) \)). Hence there is a convergent subnet \(\{ \alpha_{n(k)} \} \) converging to \(\alpha = (t_1, t_2, \cdots) \in \prod_{n \geq 1} W_n(s) \) (resp. \(\prod_{n \geq 1} W_p^n(s) \)).

Then

\[
t_{q+1}^\frac{1}{q+1} = \lim s_{n(k)}^\frac{1}{q+1} = t_q
\]

(resp. \(t_{q+1}^p = \lim s_p^{n(k)} - q = t_q \))

for all \(q \geq 1 \), and \(t_1 = s \). If \(n/m! = b/a! \) (resp. \(n/p^m = b/p^n \)), then

\[
t_m^a = (t_m^a)^b = t_b^a
\]

(resp. \(t_m^a = (t_m^{p-m-a})^b = t_b^b \)).

Hence \(f: Q_+ (\text{resp. } Q_\varepsilon^*) \to S \) given by \(f(n/m!) = t_m^n \) (resp. \(f(n/p^m) = t_m^n \))
is well-defined. If \(n/m!, \ b/a! \in \mathbb{Q}_+ \) (resp. \(n/p^m, \ b/p^a \in \mathbb{Q}_+ \)), assuming \(a \geq m \), then

\[
\begin{align*}
 f(n/m! + b/a!) &= f\left(\frac{n(a!/m!)}{a!} + b\right) \\
 &= t^{n(a!/m!)}_a t^b_a = t^{n/a}_m t^b_a
\end{align*}
\]

resp.

\[
\begin{align*}
 f(n/p^m + b/p^a) &= f\left(\frac{np^{a-m}}{p^a} + b\right) \\
 &= t^{n/p^{a-m}}_a t^b_a = t^{n/a}_m t^b_a
\end{align*}
\]

whence \(f \) is an algebraic morphism so that \(f(1) = s \). The rest is simple.

Lemma 2.2. for each \(x > 0 \), let \(S(x) = f(x) \). Then

1. \(S(x + y) = S(x)S(y) \) for all \(x, y > 0 \). In particular, \(S(x) \)
 is compact for each \(x > 0 \)

2. \(f(\mathbb{Q}_+) \) has the identity \(e \) so that \(K = \cap \{ S(x) \mid x \in \mathbb{Q}_+ \} \) is a
 divisible compact abelian subgroup of \(H(e) \). In particular, we may
 extend \(f \) to \(Q_+ \cup \{0\} \) so that \(f(0) = e \)

3. \(Kf([x, y]) = F([x, y]) \) for all \(x < y \in \mathbb{Q}_+ \).

Proof. Straightforward (cf. § 3, Chapter B, [6]).

Lemma 2.3. The following statements are equivalent:

1. \(K = \{ f(0) \} \)

2. \(f \) is continuous at 0

3. \(f \) is continuous.

Proof. (cf. 3.9, p. 102, [6].)

Lemma 2.4. If \(f \) is continuous, then there is a unique one-
parameter semigroup \(\phi \) so that \(\phi | (Q_+ \cup \{0\}) = f \).

Proof. Given a \(d > 0 \), there is a net \(\{ x_\alpha \} \) in \(]0, d + 1[_Q \) with
\(\lim x_\alpha = d \). Since \(\{ f(x_\alpha) \} \) is a net in \(S(d + 1) \), there is a convergent
subnet \(\{ f(x_\beta) \} \). Define \(F(d) = \lim f(x_\beta) \). It is straightforward to
check that \(F: H \to S \) is a well defined morphism so that \(\cup \{ F([0, x]) : x > 0 \} = \{ f(0) \} \), whence \(F \) is continuous (cf. 3.9, p. 102, [6]).

Lemma 2.5. Let \(\phi: H \to S \) be a nontrivial one-parameter semi-
group. Then there is a \(d \in [0, 1] \) so that \(\phi | [0, d] \) is injective.
Moreover, if \(c > 0 \), one may reparameterize \(\phi \) so that \(\phi | [0, c] \) is
injective (cf. 3.9, p. 102, [6]).
Since K acts on $\overline{f(Q_+)}$ and $\overline{f([x, y[Q_+])}$, one has the orbit spaces $\overline{f(Q_+)/K}$ and $\overline{f([v, y[Q_+)/K}$. We will use the same letter π to denote the orbit maps.

Lemma 2.6. $\overline{f(Q_+)/K}$ is a topological monoid under the multiplication $xK \cdot yK = xyK$.

Lemma 2.7. If $f(Q_+) \not\subset K$, then $\pi \circ f: Q_+ \cup \{0\} \to \overline{f(Q_+)/K}$ is non-trivial continuous morphism so that $\pi(\overline{f([x, y[Q_+])} = \overline{f([x, y[Q_+)/K}$ for all $x < y \in Q_+ \cup \{0\}$.

Proof. The continuity of $\pi \circ f$ follows from 2.3. The rest follows from the closedness of π.

In the remainder of this section, we maintain that $f(1) \not\subset K$ and so $\pi \circ f$ extends to a unique one-parameter semigroup $g: H \to \overline{f(Q_+)/K}$ that $g|[0, 2]$ is injective by a suitable reparameterization of g or f, i.e. the following diagram commutes:

$$
\begin{array}{ccc}
0, 2[0 & \xrightarrow{f} & S(2) \\
\downarrow & & \downarrow \pi \\
[0, 2] & \xrightarrow{g} & S(2)/K.
\end{array}
$$

Let $\rho = g^{-1} \circ \pi: S(2) \to [0, 2]$. Then ρ is a continuous map such that

$$
\rho(f(r)) = (g^{-1} \circ \pi)(f(r)) = r \quad \text{for all} \quad r \in [0, 2],
$$

and that the following condition is satisfies:

$$
\rho(xy) = \rho(x) + \rho(y) \quad \text{for all} \quad x, y \in S(1).
$$

Lemma 2.8. The following statements hold:

1. $x \in Kf(r)$ if and only if $x \in \pi^{-1}(g(r))$ for each $r \in Q_+ \cup \{0\}$
2. $x \in S(2)$ if and only if there is a unique $t \in [0, 2]$ so that $x \in \pi^{-1}(g(t))$
3. $\pi^{-1}(g([x, y[)] = Kf([x, y[Q_+]) = \overline{f([x, y[Q_+])}$ for all $x, y \in Q_+ \cup \{0\}$
4. $S(1) \setminus Kf(1) \subset Kf([1, 2[Q_+]$
5. $S(1) \setminus Kf(1) = S(2) \setminus Kf([1, 2[Q_+)$.

Proof. Straightforward.

Define a multiplication on the space X obtained from $S(1)$ by collapsing $Kf(1)$ to a point as follows:

$$
m_x(x, y) = \begin{cases}
xy & \text{if} \quad x, y, xy \in S(1) \setminus Kf(1) \\
Kf(1) & \text{otherwise}.
\end{cases}
$$
Let $\pi': S(2) \to X$ be defined via

$$\pi' \mid S(1) \setminus Kf(1) = \pi \mid S(2) \setminus K\overline{f([1, 2[Q])} \quad \text{and} \quad \pi'(K\overline{f([1, 2[Q)) = \{Kf(1)\};$$

then

$$
\begin{array}{ccc}
S(1) \times S(1) & \xrightarrow{m} & S(2) \\
\pi' \times \pi' & \downarrow & \pi' \\
X \times X & \xrightarrow{m_B} & X
\end{array}
$$

commutes, hence m_B is a global multiplication on X.

Lemma 2.9. X is a compact abelian monoid in the quotient topology.

Proof. Since π' is a closed map, m_B is continuous.

Let $[0, 1]_*$ denote the space $[0, 1]$ equipped with the multiplication $x + y = \min \{1, x + y\}$. Then $[0, 1]_*$ is a compact monoid in the usual topology. In particular, we have the following factorization:

$$
\begin{array}{ccc}
S(2) & \xrightarrow{\nu} & [0, 2] \\
\pi' & \downarrow & \tau \\
X & \xrightarrow{\rho_b} & [0, 1]_* = H/[1, \infty],
\end{array}
$$

where $\tau: H \to [0, 1]_*$ is the canonical map and $\rho_b: X \to [0, 1]_*$ is the unique continuous morphism making the diagram commute.

Lemma 2.10. The following statements hold:

1. X has exactly two idempotents e and $0 = Kf(1)$
2. K is the maximal group of units in X
3. K is not open in X
4. $X\setminus\{0\}$ is isomorphic to $S(1) \setminus Kf(1)$.

Proof. (1) and (4) are clear. (2): We have $X\setminus K = \rho_b^{-1}(]0, 1])$ which is an ideal. Thus K is maximal. (3): If K were open, then $X\setminus K$ would be closed, hence compact, and thus $\rho_b(X\setminus K) =]0, 1]$ would be compact which is not the case.

Proposition 2.11. There is a continuous morphism $\phi_*: [0, 1]_* \to X$ so that $\phi_*(0) = e$ and $\phi_*([0]) = \{1\}$.
Proof. By 2.10 we can apply the One-Parameter Semigroup Theorem (Thm. 1, p. 510, [7]; [1]) to obtain ϕ_*.

PROPOSITION 2.12. $\rho_{\mathbb{R}} \circ \phi_*$ is the identity map on $[0, 1]_*$.

Proof. We observe first that $\rho_{\mathbb{R}} \circ \phi_*$ is an endomorphism α of $[0, 1]_*$ with $\alpha^{-1}(\{1\}) = \{1\}$ and is therefore the identity.

PROPOSITION 2.13. There is a one-parameter semigroup $\phi: H \to S$ such that $\phi(r) \in Kf(r)$ for all $r \in Q_+$.

Proof. For all $r \in [0, 1]_\mathbb{Q}$, $r = \rho_{\mathbb{R}} \circ \phi_*(r) = \rho \circ \phi_*(r)$ and so $\phi_*(r) \in \rho^{-1}(r) = Kf(r)$. Let ϕ be the unique lifting of ϕ_* to H. Then $\phi(r) \in Kf(r)$ for all $r \in Q_+$.

3. On the Embedding and Density Theorem.

PROPOSITION 3.1. Let G be a locally compact abelian group and $LG = \text{Hom}(R, G)$ the totality of one-parameter subgroups in G. If $\exp: LG \to G$ denotes the map $\exp(f) = f(1)$, then

(1) $\exp(GL) = G_o$, where G_o is the identity component of G
(2) $\exp(LG) = G_o$ iff G_o is arcwise connected.

Proof. (1) (25.20, p. 410, [3]). (2) (Thm. 1, p. 40, [2]).

EMBEDDING AND DENSITY THEOREM 3.2. Let s be strongly root compact in S. Then there are an algebraic morphism $f: Q_+ \cup \{0\} \to S$ with $f(0) = e$, $f(1) = s$, and a one-parameter semigroup $\phi: H \to S$ which satisfy the following properties: If $K = \cap \{f([0, \varepsilon]): 0 < \varepsilon < 1\}$, then K is a compact connected abelian subgroup of $\mathcal{H}(e)$, $\phi(0) = e$, $\phi(H)$ is in the centralizer $Z = \{x \in eSe: xk = kx \text{ for all } k \in K\}$ of K in eSe, and $\phi(t) \in Kf(t)$ for each $t \in Q_+$.

Furthermore, if \mathcal{U} is any neighborhood of s in S, then ϕ may be chosen so that $\phi(1) \in \mathcal{U}$; and, in fact, if K is arcwise connected, then ϕ may be chosen so that $\phi(1) = s$.

Proof. By 2.1, there is an algebraic morphism $f: Q_+ \cup \{0\} \to S$ such that $f(0) = e$, $f(1) = s$, $f([0, 1]_\mathbb{Q})$ is compact, $K \subset \mathcal{H}(e)$ is a compact connected abelian subgroup and $f(Q_+) \subset eSe$.

If $s \in K$, then by 3.1 the assertion is true. If $s \not\in K$, then by 2.13 there is a one-parameter semigroup $\phi: H \to S$ so that $\phi(H) \subset f(Q_+) \subset eSe$ and $\phi(r) \in Kf(r)$ for all $r \in Q_+ \cup \{0\}$. In particular, $\phi(H)$ is in the centralizer of K in eSe. Let \mathcal{U} be a neighborhood of s in S; then there is a neighborhood U of e in K so that $sU \subset \mathcal{U}$. Pick
a \ k \in \ K \text{ so that } \phi(1) = sk, \text{ by the fact that } \exp(\mathbf{L}K) = K, \text{ there is an } \psi \in \mathbf{L}K \text{ so that } \psi(1) \in \mathbf{U}k^{-1}. \text{ Let } \phi_i: \mathbf{H} \to S \text{ be defined via } \phi_i(r) = \phi(r)\psi(r). \text{ As } \phi(H) \text{ is in the centralizer of } K \text{ in } \mathbf{e}S, \text{ then } \phi_i \text{ is a well-defined one-parameter semigroup so that }
\phi_i(1) = \phi(1)\psi(1) \in sk\mathbf{U}k^{-1} = s\mathbf{U}.

It is easy to check that \phi_i \text{ also satisfies the same properties as stated above. If } K \text{ is arcwise connected, by 3.1 } \psi \text{ may be chosen so that } \psi(1) = k^{-1} \text{ and so } \phi_i(1) = s.

Corollary 3.3. If \(K \) is a Lie group, then there is a one-parameter semigroup \(\phi \) so that \(\phi(1) = s \) (cf. Thm. 7, p. 141, [9]).

Theorem 3.4. Let \(s \) be a strongly pth root compact element in \(S \). Then there are an algebraic morphism \(f: Q_+^p \cup \{0\} \to S \) with \(f(0) = e, f(1) = s \), and a one-parameter semigroup \(\phi: \mathbf{H} \to S \) which satisfy the following properties: If \(K_p = \cap \{ f([0, \varepsilon[\mathbf{Q}_p]): 0 < \varepsilon < 1 \} \), then \(K_p \) is a \(p \)-divisible compact abelian subgroup of \(\mathbb{R}^e(e), \phi(0) = e, \phi(H) \) is in the centralizer \(Z \) of \(K_p \) in \(eS \), and \(\phi(r) \in K_pf(r) \) for all \(r \in Q_+^p \).

Remark. \(K_p \) is in general not divisible (cf. p. 265, [5]; p. 117, [6]).

Proposition 3.5. Let \(s \) be a strongly root compact (resp. strongly pth root compact) element in \(S \) and \(f \) and \(\phi \) be as stated in 3.2 (resp. 3.4). Then there is an algebraic morphic morphism \(h: Q_+ \to K \) (resp. \(h: Q_+^p \to K_p \)) so that \(\phi(r) = f(r)h(r) \) for all \(r \in Q_+ \) (resp. \(Q_+^p \)).

Proof. For each \(n \geq 1 \), let \(A_n = \{ x \in K: f(1/n!)x = \phi(1/n!) \} \) (resp. \(B(p; n) = \{ x \in K_p: f(1/p^n)x = \phi(1/p^n) \} \)). Clearly, \(A_n \) (resp. \(B(p; n) \)) is a nonempty compact subset for each \(n \geq 1 \). The construction of \(h \) then follows as in 2.1.

The following example shows that there are elements which are not strongly root compact but which are nevertheless embeddable in one-parameter semigroups:

Example 3.5. Let \(S = SL(2; R) \) and \(s = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \); then \(s \) is divisible and \(W(s) \supset \{ \begin{pmatrix} 0 & y \\ z & 0 \end{pmatrix}: yz = -1 \} \) is not compact, whence \(s \) is not even 2th root compact. But the map \(f: R \to S \) defined via
\[
\begin{pmatrix} \cos \pi t & \sin \pi t \\ -\sin \pi t & \cos \pi t \end{pmatrix}
\]
is a one-parameter subgroup so that \(f(1) = s \).

ACKNOWLEDGMENTS. The author wishes to thank Drs. Karl H. Hofmann, Michael W. Mislove and John R. Liukkonen for many helpful suggestions.

REFERENCES

Received November 13, 1975 and in revised form February 9, 1976.

NATIONAL TSING HUA UNIVERSITY, TAIWAN 300
Pacific Journal of Mathematics
Vol. 65, No. 1 September, 1976

David Lee Armacost, *Compactly cogenerated LCA groups* 1
Sun Man Chang, *On continuous image averaging of probability measures* 13
J. Chidambaramswamy, *Generalized Dedekind ψ-functions with respect to a polynomial. II* ... 19
Freddy Delbaen, *The Dunford-Pettis property for certain uniform algebras* 29
Robert Benjamin Feinberg, *Faithful distributive modules over incidence algebras* ... 35
Paul Froeschl, *Chained rings* .. 47
John Brady Garnett and Anthony G. O'Farrell, *Sobolev approximation by a sum of subalgebras on the circle* ... 55
Hugh M. Hilden, José M. Montesinos and Thomas Lusk Thickstun, *Closed oriented 3-manifolds as 3-fold branched coverings of S³ of special type* 65
Atsushi Inoue, *On a class of unbounded operator algebras* 77
Peter Kleinschmidt, *On facets with non-arbitrary shapes* 97
Narendrakumar Ramanlal Ladhawala, *Absolute summability of Walsh-Fourier series* ... 103
Howard Wilson Lambert, *Links which are unknottable by maps* 109
Kyung Bai Lee, *On certain g-first countable spaces* .. 113
Richard Ira Loebl, *A Hahn decomposition for linear maps* 119
Moshe Marcus and Victor Julius Mizel, *A characterization of non-linear functionals on W¹₁ possessing autonomous kernels. I* 135
James Miller, *Subordinating factor sequences and convex functions of several variables* ... 159
Keith Pierce, *Amalgamated sums of abelian l-groups* .. 167
Jonathan Rosenberg, *The C*-algebras of some real and p-adic solvable groups* ... 175
Hugo Rossi and Michele Vergne, *Group representations on Hilbert spaces defined in terms of ∂₀-cohomology on the Silov boundary of a Siegel domain* 193
Mary Elizabeth Schaps, *Nonsingular deformations of a determinantal scheme* 209
Peggy Strait, *Level crossing probabilities for a multi-parameter Brownian process* ... 223
Robert M. Tardiff, *Topologies for probabilistic metric spaces* 233
Benjamin Baxter Wells, Jr., *Rearrangements of functions on the ring of integers of a p-series field* ... 253
Robert Francis Wheeler, *Well-behaved and totally bounded approximate identities for C₀(X)* ... 261
Delores Arletta Williams, *Gauss sums and integral quadratic forms over local fields of characteristic 2* ... 271
John Yuan, *On the construction of one-parameter semigroups in topological semigroups* ... 285