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A module is regular if all its submodules are (Cohn)
pure. The family of all regular modules is closed under
products if and only if RjJ{R) is a von Neumann regular
ring. If each regular ϋJ-module is semisimple then R is a
Γ-ring. An extra condition is needed for the converse*
Character modules and extensions of regular and semisimple
modules are investigated.

1* Introduction* Rings will be associative with identity and
modules will be (left) unitary. R will denote a ring which is not
assumed commutative unless specifically stated and J{R) will denote
the Jacobson radical of R. Fieldhouse [5] calls a module B regular
if each submodule A of B is pure in B, i.e., the inclusion 0—• A—>B
remains exact upon tensor ing by any (right) iϋ-module. Regular
modules have been studied under different definitions by Ware [12],
Zelmanowitz [14], and Ramamurthi and Rangaswamy [9]. A module
is semisimple if it is a sum of simple modules. For a subset A of
a module J5, (0: A) will denote the left ideal {r eR\rx — 0 for all
x e A}.

2* Products. The class of all semisimple modules is closed
under products if and only if R/J(R) is a semisimple (Artinian) ring.
This follows from the canonical embedding R/J(R) <=-+ ΠR/M, where
the product is taken over the set of maximal left ideals M of R.

LEMMA 1. If I is a two-sided ideal of R, then Rjl is a regular
ring if and only if R/I is a regular left (or right) R-module.

Proof. For any left i?//-module B and any right iϋ-module C
we have canonical group isomorphisms:

C ®R B ~ (C/CI) ®RB^ (C/CI) ®B/I B .

•If follows that an Iϋ/1-module is regular as an R/I-module if and
and only if it is regular as an .R-module. This proves the lemma.

COROLLARY. If R is a commutative ring, an R-module B is
regular if and only if R/(Q: x) is a regular ring for each 0 Φ x e B.

THEOREM 1. The following statements are equivalent for a
ring R.
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(1) The family of all regular left R-modules is closed under
products.

(2) The product of any family of semisimple left R-modules
is regular.

(3) R/J(R) is a regular ring.
(4) A left R-module B is regular if and only if J(R)-B = 0.

Proof. (1) —•> (2). A semisimple module is regular.
(2)~>(3). Use Lemma 1 and the embedding R/J{R)^ΠR/M

where the product is taken over the set of all maximal left ideals
M of R.

(3) -> (4). From Fieldhouse, [6, Theorem 2.3, pg. 194], J(R)-B = 0
for all regular left ϋJ-modules B. If B is an iϋ-module such that
J(R) B = 0, then B is an i2/J(J?)-module. From (3), B is a regular
jβ/J(.β)-module hence a regular iϋ-module by the proof of Lemma 1.

(4)->(l). If {Bt\iel} is a family of left i2-modules such that
J{R)-Bi = 0 for each ίel, then J{R)-(ΠBt) = 0.
Thus if each Bt is regular so is ΠB^

We note that in the commutative case each of (l)-(4) of Theorem
1 is equivalent to:

(5) An ideal K of R is an intersection of maximal ideals of R
if and only if R/K is a regular ring.

In regard to (4) of Theorem 1 the following seems worth noting.

PROPOSITION 1. Let R be a commutative ring. Each nonzero
regular R-module B has a maximal submodule. Moreover, J(B) = 0,
where J(B) is the radical of B.

Proof. Let 0 Φ x e B. By Zorn's lemma there is a submodule
Y of B maximal in the collection of submodules X of B such that
x$X. We show Y is a maximal submodule of B. The submodule
D = n { i £ B | 7 5 A } of B contains x so D/Y Φ 0. D/Y is simple.
Thus D/Y is a direct summand of B/Y. (This will be shown in §3,
Corollary 5.) There is a submodule C of B such that Y Q C, C Π
D=Y, and B/Y - D/YφC/Y. Since x ί Y, x $ C so Y - C. Thus
B/Y = D/Y is simple. Also, x$J(B) since x$Y. Hence J(B) = 0.

This can be viewed as a generalization of the well-known fact:
Over a commutative regular ring each module has a maximal sub-
module.

3* Character modules* Throughout this section R will denote
a commutative ring. By the character module of an .R-module E
we mean the JS-module E+ = Homz (E, Q/Z) where Q denotes the
field of rational numbers and Z denotes the ring of integers. The
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notion of a character module has been exploited by several authors;
for example, Lambek [8], Enochs [4], Wϋrfel [13].

THEOREM 2. Let R be a commutative ring.
(1) For an R-module E, if E+ is regular so is E.
( 2) The converse holds if and only if R/J(R) is a regular ring.

Proof of (1). Let 0—+C-+ E—>D—* 0 be an exact sequence of
iϋ-modules. Then 0 —> D+ —* E+ —> C+ —> 0 is a pure exact sequence.
Since D+ is pure-injective [11, Prop. 9.2] and pure in E+ (by our
assumption), 0 —* D+ —• E+ —> C+ —> 0 is split exact. It follows that
0—>c~^E->D->0 is pure [11, Prop. 9.1]. Thus E is regular.

Proof of (2). Assume R/J(R) is a regular ring. We first note
that (0: E) = (0: E+) for any ^-module E. For a regular J?-module
E, J(R)-E = 0 (by Proposition 1) so J(R)Έ+ = 0. By Theorem 1 E+

is a regular i?-module. Now assume the character module of each
regular module is regular. Then (ΣS)+ ~ ΠS+ is regular (where
the sum is taken over one copy of each simple module S). Since
(0: S) = (0: S+), S+ contains an isomorphic copy of S. Hence, we
have an embedding ΠS<^ΠS+. But R/J(R)^ΠS so R/J(R) is a
regular .R-module and a regular ring by Lemma 1.

THEOREM 3. Let R be a commutative ring. For an R-module
E, E+ is semisimple if and only if R/(0: E) is a semisimple (Artinian)
ring.

Proof. Assume R/(0: E) is a semisimple ring. Since (0: E) =
(0: E+), E+ is a module over R/(Q: E). Hence E+ is semisimple.

Conversely, assume E+ is a semisimple module. We show E is
semisimple and (0: E) is an intersection of a finite number of maximal
ideals (hence R/(0: E) is a semisimple ring). By Theorem 2 E is
regular. Let 0 Φ x e E, and Rx ~ R/I for some ideal / of R. R/I
is a regular ring, and the exact sequence of i2-modules 0—>R/I—*E
gives an exact sequence E+ —> (R/I)+ —> 0. Hence (R/I)+ is semisimple.
We must show R/I is semisimple. Thus we may reduce to the case
where R is a regular ring and R+ is a semisimple j?-module. We
show R is semisimple.

Let {ek\keK} be any set of orthogonal idempotents in R. For
each k e K choose a maximal ideal Mk of R such that Mk = Nk@
jβ(l — ek) where Nk is a maximal ideal of Refc. There is an R-
epimorphism Refc —• R/Mk so an embedding (R/Mk)

+ ^ (Refc)
+. Also,

Σ Refc £ R so there is an ϋί-epimorphism R+ —• Π (Rek)
+. Hence

Π (Rek)
+ is semisimple. We have Π (R/Mk)

+ <=+ Π (Rek)
+ so Π (R/Mk)

+
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is semisimple. Now pick y = (yk) e Π(R/Mk)
+ such that yk Φ 0 for

all k. Then (0: yk) = Mk for each k e K. But Ry is semisimple so
(0: y) = £Γi Π Π -Hm where each Hi is a maximal ideal of R. Since
(0: y) Q (0: #*), ΠΓ=i Ht Q Mk for each k e K. It follows that K is
finite. So JS has only a finite number of orthogonal idempotents.
Thus R is semisimple as desired. We have shown: If E+ is a semi-
simple i2-module so is E. Since E is semisimple (0: E) is an in-
tersection of maximal ideals of R. Clearly, R/(0: E) is a semisimple
ring if and only if (0: E) is an intersection of a finite number of
maximal ideals (equivalently, only a finite number of simples are
represented in E). Let {Sk\keK} be a complete set of nonisomorphic
simple submodules of E. The exact sequence 0-^ΣSk—>E yeilds
an exact sequence E+ —> 77SΪ —• 0 and hence ΠSi is a semisimple
module. Now pick y = (T/J.) G i7SJ as above and proceed to show K
is finite.

COROLLARY 1. Let Mlf -—,Mt be distince maximal ideals of a
commutative ring R and for each i — 1, 2, , t let Vt be an RjMi-
vector space. Then (Σ*=i VrY is semisimple.

COROLLARY 2. If S is a simple module over a commutative ring
R, S+ is semisimple and consists of copies of S.

COROLLARY 3 (Kaplansky). Over a commutative ring R a simple
module S is flat if and only if it is injective.

Proof. Assume S is simple and flat. By Lambeck's result [8]
S+ is injective. From Corollary 2 S is injective. Assume now S is
simple and injective. From Corollary 2 we have S+ is absolutely
pure. Since S+ is pure-injective it is injective. Lambek's result
shows S is flat.

COROLLARY 4. Over a commutative ring R a simple module is
pure-injective.

COROLLARY 5. Over a commutative ring R a simple submodule
of a regular module is a direct summand.

An example of Faith [7], pg. 130 shows that Corollary 5 may
not hold for a noncommutative ring.

4* Regular implies semisimple* Over any ring R a semisimple
module is regular. It is known (see Cheatham [2] or Fieldhouse
[6]) that over a (not necessarily commutative) local ring each regular
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module is semisimple. Cheatham [2] proves that over a Noetherian
ring each regular module is semisimple. This latter result can be
weakened slightly to

PROPOSITION 2. If R is a ring such that all maximal left ideals
of R are finitely generated, then each regular left R-module is
semisimple.

Proof. Let 0 Φ E be a regular left ϋϊ-module, and 0 Φ x e E.
We show Rx is semisimple. If Rx has a nonzero proper submodule
it has a maximal such submodule L. There is a maximal ideal M
of R such that Rx/L ~ R/M. We have a commutative diagram:

M<=—+ R

L c—> Rx

where the vertical maps are given by r H+ rx. Since L is pure in
Rx and M is finitely generated there exists a homomorphism /: R —»
L making the top triangle (in the resulting diagram) commutative.
Let /(I) = yeL. It can be shown that R(y - x) ~ R/M and R{y-x) 0
L — Rx. Thus each maximal submodule of Rx is a direct summand
of Rx. It follows that Rx (hence E) is semisimple.

There is much work to be done in determining which noncom-
mutative rings have all their regular modules semisimple. Before
giving our results in the commutative case we require some definitions.

A module is called torsion if each nonzero factor module has a
simple submodule. A module E is called S-primary for a simple
module S if each nonzero factor module of E has a simple submodule
isomorphic to S. Dickson [3] calls a ring R a T-ring if each torsion
module decomposes into a direct sum of its primary components.
Shores [10] calls a ring R a special ring if R is a non-Noetherian
semiprime ring whose socle is a maximal ideal.

LEMMA 3. Let R be a commutative ring, and S a simple R-
module. The S-primary component Es of a regular module E is
semisimple and is a direct summand of E.

Proof. Let M be an ideal in R such that S ~ R/M. The socle
of Es, Soc (Es), is a pure-injective i?/M-module hence a pure-injective
i2-module [1, pg. 29]. Thus E = Soc (Es) 0 T for some submodule
T of E. But Soc (Es) is large in Es so Es = Soc (Es) and the lemma
is proved.
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COROLLARY. An S-primary regular module is semisimple.

Examples of regular torsion modules which are not semisimple
abound. Such an example exists over any ring which is not a T-
ring as shown by the following lemma:

LEMMA 4. A commutative ring R is a T-ring if and only if
each regular torsion module is semisimple.

Proof. A torsion module over a Γ-ring decomposes into a sum
of its primary components. By the last corollary each primary
component of a regular torsion module is semisimple.

Conversely, if R is not a Γ-ring, R has a special factor ring
R/I (Shores [10]). R/I is a regular ring so a regular i2-module by
Lemma 1. R/I is also a torsion i2-module but is not semisimple.

THEOREM 4. Let R denote a commutative ring. The following
statements are equivalent.

(1) Each regular R-module is semisimple.
(2) An R-module E is semisimple if and only if EM is a

semisimple RM-module for each maximal ideal M of R.
(3) (a) R is a T-ring.

(b) Each regular R-module is torsion.

Proof. The equivalence of (1) and (2) was noted in [2]. It is
a consequence of the fact that "regular implies semisimple" over a
local ring and that (2) holds with "semisimple" replaced by "regular".
(1) —> (3a). A regular factor ring of R must be semisimple by (1).
Thus there is no special factor ring of R and R is a T-ring.

(1)—>(3b). A semisimple module is torsion.
(3)—>(1). This is an immediate consequence of Lemma 4.

Neither (3a) nor (3b) is sufficient by itself to imply (1). Tom
Shorem has shown (unpublished) that the product of an infinite
number of fields (or an infinite number of copies of a single field)
is a T-ring. Thus (3a) does not imply (1). The subring R of ΠΓ=iί\
(where for each i, Ft = F, a field) generated by 0Γ=i Ft and the unit
e of ΠΓ=i ϊ\ is not a T-ring (cf. Dickson [3]). In fact R is a special
ring. In this regard we note

PROPOSITION 3. If R is a commutative ring whose socle Soc R
is a maximal ideal of R, then each regular R-module is torsion.

Proof. It is sufficient to show that a cyclic regular module has
a simple submodule. Let I be an ideal in R such that 0 Φ R/I is
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a regular module. If there is a minimal ideal S of R such that
S ΰ£ I then (S + I)/I is a simple submodule of R/I. Otherwise,
Soc R Q I so Soc R = I and #// is simple.

The ring of integers would serve as a counter-example to the
converse of Proposition 3.

5* Extensions* Let 0 —> A —»5—> C —> 0 be an exact sequence
of i?-modules, In this section we give necessary and sufficient con-
ditions for B to be regular (semisimple) whenever A and C are
regular (semisimple).

THEOREM 5. The following statements are equivalent for a com-
mutative ring R.

(1) Each torsion R-module is semisimple.
( 2 ) R is a T-ring and M2 = M for all maximal ideals M of R.
(3) 1/ 0 —> A —* J3 —»C —>0 is exact with A and C semisimple

then B is semisimple.

Proof. (1) —• (2). Semisimple modules obviously decompose into
primary components so R is a Γ-ring. We have an exact sequence
of J?-modules:

( * ) 0 > M/M2 > R/M2 > R/M > 0 .

M/M2 and R/M are torsion (in fact, semisimple) so R/M2 is torsion
and hence semisimple. Thus (*) splits and R/M2 is an i?/ikf-module.
Therefore M/M2 = 0, i.e. M = M2.

(2)-*(3). Let 0 - * A - > J B - * C - + 0 be an exact sequence of JB-

modules with A and C semisimple. Then B is torsion and, as R is
a Γ-ring, B decomposes into its primary components Bs. For each
maximal ideal M of R we have an exact sequence of primary com-
ponents 0 —> As —> Bs —> Cs —> 0 where S a R/M. Since As and Cs are
jB/ikf-modules, Bs is an jβ/ilfMnodule. But M = M2 so Bs is semi-
simple. Thus B is semisimple.

(3) —• (1) Let E be a torsion module and consider the exact
sequence

0 > Soc (E) > L,(E) > Soc (E/Soc (E)) > 0

where L,(E) £ E. By (3) LX{E) is semisimple so Soc (E) = L^E).
Consequently, Soc (E/Soc (E)) = 0. But E is torsion so E/Soc (E) = 0
and E = Soc (E) as desired.

THEOREM 6. The following statements are equivalent for a
commutative ring R.

(1) Each torsion R-module is regular.
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( 2 ) M — M2 for all maximal ideals M of R.
( 3 ) 1/ 0 —• A —> B—>C—>Q is exact with A and C regular, then

B is regular.
( 4 ) If I and K are ideals of R such that R/I and R/K are

regular R-modules then R/IK is a regular R-module.

Proof. (1) —> (2). For a maximal ideal M of R, R/M2 is a torsion
jβ-module. By (1) R/M2 is a regular iZ-module. We show M/M2 = 0.
Let 0 Φ a e M, by the purity of M/M2 in R/M2 we have a(M/M2) =
a(R/M2) Π (M/M2). But aeM, so α(M/M2) - 0. So a + M 2 e α(B/ΛP n
(M/M2) = 0, i.e., aeM2.

(2)—>(3). Each localization RM of R at a maximal ideal M of
iϋ satisfies (2). Clearly RM is a Γ-ring. An RM-moάale is regular
if and only if it is semisimple. Thus by Theorem 5 an extension
of a regular JS^-module by a regular i2¥-module is regular. Consider
an exact sequence 0—>A—> B-+C —>0 of JS-modules with A and C
regular. Localizing at a maximal ideal M we obtain an exact
sequence of jβ^-modules 0 —> AM —> BM —• CM —> 0 with AM and CM re-
gular jB^-modules. Thus BM is a regular JS^-module for all maximal
ideals M of R. This proves B is a regular ϋί-module.

(3) -> (4). Let / and i ί be ideals of R such that I2/J and R/K
are regular iϋ-modules. K/IK is a (regular) i2/I-module so a regular
iϋ-module. We have an exact sequence of i2-modules: 0—+K/IK—>
R/IK~-*R/K~->0. From (3) we get jβ/2X is regular.

(4) —> (1). Let 0 Φ E be a torsion .β-module. We show that E
is locally a regular module. It will follow that E is a regular i?-
module. We assume E is cyclic. From (4), for each maximal ideal
M of R, we have R/M2 is regular so M — M2 as in the proof of
(1) —* (2). The local ring RM enjoys the same property. Thus each
torsion ί^-module is semisimple (Theorem 5). The localization EM

of E at a maximal ideal M is a torsion i?j¥-module. Therefore EM

is a regular E^-module as required.
The authors wish to express deep appreciation to Professor Edgar

Enochs for his many helpful suggestions and to the University of
Kentucky for the use of its facilities.

REFERENCES

1. D. D. Berry, S-purity, Ph. D. Dissertation, Uuiversity of Kentucky, (1975)
2. F. D. Cheatham, F-absolutely pure modules, Ph. D. Dissertation, University of
Kentucky (1972)

3. S. E. Dickson, Decompositions of modules II, Math. Zeit., 104 (1968), 349-357.
4. E. E. Enochs, A note on semihereditary rings, Canad Math. Bull., 16 (1973)
439-440.
5. D. J. Fieldhouse, Purity and flatness, Ph. D. Thesis, McGill University (1967).



REGULAR AND SEMISIMPLE MODULES 323

6. D. J. Fieldhouse, Regular modules over semi-local rings, Colloq. Math. Soc. Janos
Bolyoi (1971).
7. C. Faith, Lectures on injective modules and quotient rings, Springer-Verlag, Berlin
(1967).
8. J. Lambek, A module is flat if and only if its character module is injective,
Canad. Math. Bull., 7 (1964), 237-243.
9. V. S. Ramamurthi and K. M. Rangaswamy, On finitely injective modules, J.
Austral. Math. Soc, 16 (1973), 239-248.
10. T. S. Shores, Decompositions of finitely generated modules, Proc. Amer. Math.
Soc, 30 (1971), 445-450.
11. B. T. Stenstrδm, Pure submodules, Arch. Math., Band 7 nr 10, (1967), 158-171.
12. R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc,
155 (1971), 233-256.
13. T. Wϋrfel, Uber absolut reine ringe, J. Reine Angew. Math., 262-263 (1973),
381-391.
14. J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc, 163 (1972), 341-355.

Received March 18, 1974. The first named author was supported by Samford Uni-
versity Research Fund grant #51.

SAMFORD UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

E D I T O R S

RICHARD A R E N S (Managing Editor) J. DUGUNDJI

University of California Department of Mathematics
Los Angeles, California 90024 University of Southern California

Los Angeles, California 90007

R. A. BEAUMONT D. GILBARG AND J. MILGRAM

University of Washington Stanford University
Seattle, Washington 98105 Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON
UNIVERSITY OF OREGON * * *
OSAKA UNIVERSITY AMERICAN MATHEMATICAL SOCIETY

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please
do not use built up fractions in the text of your manuscript. You may however, use them in the
displayed equations. Underline Greek letters in red, German in green, and script in blue. The
first paragraph or two must be capable of being used separately as a synopsis of the entire paper.
Items of the bibliography should not be cited there unless absolutely necessary, in which case
they must be identified by author and Journal, rather than by item number. Manuscripts, in
triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math.
Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor,
or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges,
and reserves the right to delay publication for nonpayment of charges in case of financial
emergency.

100 reprints are provided free for each article, only if page charges have been substantially
paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular sub-
scription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual
members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.),

8-8, 3-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan



Pacific Journal of Mathematics
Vol. 65, No. 2 October, 1976

Andrew Adler, Weak homomorphisms and invariants: an example . . . . . . . . . . . . . 293
Howard Anton and William J. Pervin, Separation axioms and metric-like

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Ron C. Blei, Sidon partitions and p-Sidon sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
T. J. Cheatham and J. R. Smith, Regular and semisimple modules . . . . . . . . . . . . . . 315
Charles Edward Cleaver, Packing spheres in Orlicz spaces . . . . . . . . . . . . . . . . . . . . 325
Le Baron O. Ferguson and Michael D. Rusk, Korovkin sets for an operator on a

space of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Rudolf Fritsch, An approximation theorem for maps into Kan fibrations . . . . . . . . 347
David Sexton Gilliam, Geometry and the Radon-Nikodym theorem in strict

Mackey convergence spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
William Hery, Maximal ideals in algebras of topological algebra valued

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Alan Hopenwasser, The radical of a reflexive operator algebra . . . . . . . . . . . . . . . . 375
Bruno Kramm, A characterization of Riemann algebras . . . . . . . . . . . . . . . . . . . . . . . 393
Peter K. F. Kuhfittig, Fixed points of locally contractive and nonexpansive

set-valued mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Stephen Allan McGrath, On almost everywhere convergence of Abel means of

contraction semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Edward Peter Merkes and Marion Wetzel, A geometric characterization of

indeterminate moment sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
John C. Morgan, II, The absolute Baire property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421
Eli Aaron Passow and John A. Roulier, Negative theorems on generalized convex

approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Louis Jackson Ratliff, Jr., A theorem on prime divisors of zero and

characterizations of unmixed local domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Ellen Elizabeth Reed, A class of T1-compactifications . . . . . . . . . . . . . . . . . . . . . . . . . 471
Maxwell Alexander Rosenlicht, On Liouville’s theory of elementary

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Arthur Argyle Sagle, Power-associative algebras and Riemannian

connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Chester Cornelius Seabury, On extending regular holomorphic maps from Stein

manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Elias Sai Wan Shiu, Commutators and numerical ranges of powers of

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Donald Mark Topkis, The structure of sublattices of the product of n lattices . . . . 525
John Bason Wagoner, Delooping the continuous K -theory of a valuation

ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533
Ronson Joseph Warne, Standard regular semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Anthony William Wickstead, The centraliser of E ⊗λ F . . . . . . . . . . . . . . . . . . . . . . 563
R. Grant Woods, Characterizations of some C∗-embedded subspaces of βN

¯
. . . . . 573

Pacific
JournalofM

athem
atics

1976
Vol.65,N

o.2

http://dx.doi.org/10.2140/pjm.1976.65.293
http://dx.doi.org/10.2140/pjm.1976.65.299
http://dx.doi.org/10.2140/pjm.1976.65.299
http://dx.doi.org/10.2140/pjm.1976.65.307
http://dx.doi.org/10.2140/pjm.1976.65.325
http://dx.doi.org/10.2140/pjm.1976.65.337
http://dx.doi.org/10.2140/pjm.1976.65.337
http://dx.doi.org/10.2140/pjm.1976.65.347
http://dx.doi.org/10.2140/pjm.1976.65.353
http://dx.doi.org/10.2140/pjm.1976.65.353
http://dx.doi.org/10.2140/pjm.1976.65.365
http://dx.doi.org/10.2140/pjm.1976.65.365
http://dx.doi.org/10.2140/pjm.1976.65.375
http://dx.doi.org/10.2140/pjm.1976.65.393
http://dx.doi.org/10.2140/pjm.1976.65.399
http://dx.doi.org/10.2140/pjm.1976.65.399
http://dx.doi.org/10.2140/pjm.1976.65.405
http://dx.doi.org/10.2140/pjm.1976.65.405
http://dx.doi.org/10.2140/pjm.1976.65.409
http://dx.doi.org/10.2140/pjm.1976.65.409
http://dx.doi.org/10.2140/pjm.1976.65.421
http://dx.doi.org/10.2140/pjm.1976.65.437
http://dx.doi.org/10.2140/pjm.1976.65.437
http://dx.doi.org/10.2140/pjm.1976.65.449
http://dx.doi.org/10.2140/pjm.1976.65.449
http://dx.doi.org/10.2140/pjm.1976.65.471
http://dx.doi.org/10.2140/pjm.1976.65.485
http://dx.doi.org/10.2140/pjm.1976.65.485
http://dx.doi.org/10.2140/pjm.1976.65.493
http://dx.doi.org/10.2140/pjm.1976.65.493
http://dx.doi.org/10.2140/pjm.1976.65.499
http://dx.doi.org/10.2140/pjm.1976.65.499
http://dx.doi.org/10.2140/pjm.1976.65.517
http://dx.doi.org/10.2140/pjm.1976.65.517
http://dx.doi.org/10.2140/pjm.1976.65.525
http://dx.doi.org/10.2140/pjm.1976.65.533
http://dx.doi.org/10.2140/pjm.1976.65.533
http://dx.doi.org/10.2140/pjm.1976.65.539
http://dx.doi.org/10.2140/pjm.1976.65.563
http://dx.doi.org/10.2140/pjm.1976.65.573

	
	
	

