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In this note we prove that a semisimplicial map into the
base of a Kan fibration having a continuous lifting to the
total space also has a semisimplicial lifiting, very ‘‘close”
to a given continuous lifting. As a special case we obtain
a new proof of the famous Milnor-Lamotke theorem that a
Kan set is a strong deformation retract of the singular set
of its geometric realization.

First we state our main

THEOREM. Let

(*) "l lp

be a commutative square in the category of semisimplicial sets with
1 an inclusion and p o Kan fibration. Further, suppose given o
continuous g7:|Y|— |E| with go|i|=|f| and |ploeg =|h|. Then
there exists a homotopy g = ¢’ rel. |X| and over |B| so that g’ = |g|
for some semisimplicial g.

This theorem has an interesting special case. Take X = E a Kan
set, Y = S|E|, B a point, p, h the unique constant maps, f = ¢dE, ¢
the natural inclusion and g the natural retraction. What comes out
is the famous Milnor-Lamotke theorem saying K is strong deformation
retract of S|E|. Thus we get a new proof of this theorem which
in contrast to the original one [4] avoids any reference to J.H.C.
Whitehead’s theorems.

On the other hand, if B is a point, the statement is a trivial
consequence of the Milnor-Lamotke theorem. An elementary proof
for this case—avoiding the Milnor-Lamotke theorem—has been given
by B. J. Sanderson [7] whose techniques are also important for
our proceeding.

Proof of theorem. (For the technical details we use the notation
explained in §0 of [1].) By an induction over skeletons, it is enough
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to prove the theorem in the case ¥ is an n-simplex 4[n] with » >0
and X is its boundary 4[n]. Let ¢ be the generating simplex of
dAn],y =hte B and 7 = Sg(c)e S|E|. We have to prove that 7 is
S|Bl|-equivalent ([3] p. 123) to a simplex in E".

Decompose y = y™y° with y* nondegenerate and ¥° surjective.
We perfom a further induction, over a (partial) ordering of the
set of the possible ¥° that is the set D, of surjective monotone
maps with domain [#]. Choose®* an ordering of this set satisfying (i)
and (ii):

(i) Bagaif a, BacD,; and

(ii) each nonconstant a € D, admits an & < « so that &' is the
surjective part of ag,0; for some suitable pair 4, j.

Evidently the constant map is the minimum of D, with respect to
this ordering.

First, assume ¢° is constant. Denote by F the fibre over ¥y
which is Kan. Now comes Sanderson’s idea. Since the boundary of
7 belongs to F' we can choose the zeroth vertex * of % for base point
of F. Then, form the path fibration ¢:W(F)— F ([5] p. 196) and
lift ¥ to a filling % in S|W(F)| of the horn (—, ¥d,0,, ---, ¥0,0,) in
W(F)c S|W(F)|. By induction, #d, is S|F'| — equivalent to an u €
W(F). That gives a Z € S|W(F')| with boundary (u, #d,, 4,0y, ¢+ +, U0,0,)
and S|q|zZ = yéo, e F ([5] p. 25). Next we use that every sphere in
W(F) can be filled ([5] p. 196) and also every sphere in S|W(F')|
since W(F') is contractible. Take a filling ve W(F') of the sphere
(u, ¥0,04, +++, 90,0, and finally a filling e S|W(F)| of the sphere
Z, v, &, 2005y + -+, 20,0,+,). Then S|q|7 is an S|Bl-equivalence between
y and qve FC K.

If 4° is not constant, we choose 7 and j such that the surjective
part of ¥°c,0; is less than %°. Set ¢ =0 if j <7 and e=1if j >
1+ 1. Lift y to we E with uo, = %09, if k== j — ¢ and lift yo, to
#neS|E| with %o, = ¥, #0,,, = u, 40, = yo,0, if k+1,1+1,5. By
induction, %d; is |Bl|-equivalent to a v € F and there is a veS|E|
with boundary (vo; .0, « -, v, &by, » -, V0,1.0,1,) a0d S| 0| T=40,0,1.0; ..
Next, lift yo, to we E with wo,., = u, wé; = v, wo, = Jo,0, if k #
i, 1+ 1, 5 and lift yo,0,,, to @ with %0, = W, W, = &, Wo;,, =
b, W, = wo,4,0, if k#14,71+ 1,41+ 2,7 +¢e Then wo, is an S|B}-
equivalence between ¥ and wd, € E.

This finishes the proof. As an application, we’ll derive a streng-

! Note that S|p| is also a Kan fibration, by Quillen’s result [6].
2 Cf. the proof of Lemma 4 in [2].
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thening of this result which is based on the cartesian closedness of
the category of semisimplicial sets. Roughly speaking, it states the
semisimplicial set of semisimplicial diagonals of a square as in the
theorem is a strong deformation retract of the semisimplicial set of
its continuous diagonals.

To make this precise, we define the semisimplicial set D(Y, E)
of (semisimplicial) diagonals of a square (*) by means of the following
diagram where the sqares involved are pullbacks

D(Y, E)
L4 .
410] EY 4[0]
BX BY

Further, the semisimplicial set of continuous diagonals of (*) is defined
to be the semisimplicial set D(Y, S|E|) of semisimplicial diagonals
of the square

x-=L g m
i |sio1
Y—ZB;}—?/—‘-) S|B|

The following lemma gives another description of D(Y, S|E|).

LEMMA. Let

E— S|E|

51 lSlpl

B— S|B|
(2:]

be a pullback. Then the semisimplicial set D(Y, E) of diagonals of
the induced square
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f

X

| b

Y=~ B

18 1somorphic to D(Y, S|E

)

The proof of this lemma is evident. Note the universal property
of E: The continuous g:|Y | — | E| so that |p|o F is realized correspond
bijectively to the semisimplicial maps Y —E. If B is a point, this
is the adjunction between geometric realization and singular functor.

With these definitions we have the

COROLLARY. Under the assumptions of the theorem on the
square (*) D(Y, E) is an strong deformation retract of D(Y, E).

Proof. The map |E|— |E| corresponding to idE is a continuous
diagonal of the square

EidE B

L b

E—B

Thus, the theorem implies E is a strong deformation retract of E.
Let G: E x 4[1] be a suitable deformation. Further, let ¢ denote
the evalution Y x E¥ — E and idE. Then, by adjointness Goe cor-
responds to a map K: EY x 4[1]— E¥. Its restriction to D(Y, E) X
4[1] factors through D(Y, E) and induces a deformation of the desired
kind.
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