AN APPROXIMATION THEOREM FOR MAPS INTO KAN FIBRATIONS

RUDOLF FRITSCH
AN APPROXIMATION THEOREM FOR MAPS INTO KAN FIBRATIONS

RUDOLF FRITSCH

In this note we prove that a semisimplicial map into the base of a Kan fibration having a continuous lifting to the total space also has a semisimplicial lifting, very “close” to a given continuous lifting. As a special case we obtain a new proof of the famous Milnor-Lamotke theorem that a Kan set is a strong deformation retract of the singular set of its geometric realization.

First we state our main

THEOREM. Let

\[\begin{array}{ccc}
X & \xrightarrow{f} & E \\
\downarrow{i} & & \downarrow{p} \\
Y & \xrightarrow{h} & B
\end{array} \]

be a commutative square in the category of semisimplicial sets with \(i \) an inclusion and \(p \) a Kan fibration. Further, suppose given a continuous \(\bar{g} : |Y| \to |E| \) with \(\bar{g} \circ i = |f| \) and \(|p| \circ \bar{g} = |h| \). Then there exists a homotopy \(\bar{g} \equiv g' \) rel. \(|X| \) and over \(|B| \) so that \(g' = |g| \) for some semisimplicial \(g \).

This theorem has an interesting special case. Take \(X = E \) a Kan set, \(Y = S|E| \), \(B \) a point, \(p, h \) the unique constant maps, \(f = \text{id}_E \), \(i \) the natural inclusion and \(\bar{g} \) the natural retraction. What comes out is the famous Milnor-Lamotke theorem saying \(E \) is strong deformation retract of \(S|E| \). Thus we get a new proof of this theorem which in contrast to the original one [4] avoids any reference to J.H.C. Whitehead’s theorems.

On the other hand, if \(B \) is a point, the statement is a trivial consequence of the Milnor-Lamotke theorem. An elementary proof for this case—avoiding the Milnor-Lamotke theorem—has been given by B. J. Sanderson [7] whose techniques are also important for our proceeding.

Proof of theorem. (For the technical details we use the notation explained in §0 of [1].) By an induction over skeletons, it is enough
to prove the theorem in the case \(y \) is an \(n \)-simplex \(\Delta[n] \) with \(n > 0 \) and \(X \) is its boundary \(\partial [n] \). Let \(\iota \) be the generating simplex of \(\Delta[n], y = \iota \in B \) and \(\overline{y} = S\overline{\iota} \in SBE \). We have to prove that \(\overline{y} \) is \(SBE \)-equivalent ([3] p. 123) to a simplex in \(E' \).

Decompose \(y = y^+y^0 \) with \(y^+ \) nondegenerate and \(y^0 \) surjective. We perform a further induction, over a (partial) ordering of the set of the possible \(y^0 \), that is the set \(D_n \) of surjective monotone maps with domain \([n]\). Choose\(^{3}\) an ordering of this set satisfying (i) and (ii):

(i) \(\beta \alpha \leq \alpha \) if \(\alpha, \beta \alpha \in D_m \); and

(ii) each nonconstant \(\alpha \in D_n \) admits an \(\alpha' < \alpha \) so that \(\alpha' \) is the surjective part of \(\alpha \sigma_i \delta_j \) for some suitable pair \(i,j \).

Evidently the constant map is the minimum of \(D_n \) with respect to this ordering.

First, assume \(y^0 \) is constant. Denote by \(F \) the fibre over \(y \) which is Kan. Now comes Sanderson's idea. Since the boundary of \(\overline{y} \) belongs to \(F \) we can choose the zeroth vertex \(*\) of \(\overline{y} \) for base point of \(F \). Then, form the path fibration \(q:W(F) \to F \) ([5] p. 196) and lift \(y \) to a filling \(\bar{u} \) in \(S|W(F)| \) of the horn \((-,-, \bar{y} \sigma_{i_0}, \ldots, \bar{y} \sigma_{i_n} \sigma_0)\) in \(W(F) \subset S|W(F)| \). By induction, \(\bar{u} \delta_0 = S|F| - \) equivalent to an \(u \in W(F) \). That gives a \(\bar{z} \in S|W(F)| \) with boundary \((u, \bar{u} \delta_0, u \sigma_0 \delta_2, \ldots, u \sigma_j \delta_n) \) and \(S|q| \bar{z} = \bar{y} \delta_0 \sigma_0 \in F \) ([5] p. 25). Next we use that every sphere in \(W(F) \) can be filled ([5] p. 196) and also every sphere in \(S|W(F)| \) since \(W(F) \) is contractible. Take a filling \(v \in W(F) \) of the sphere \((u, \bar{y} \sigma_0, \ldots, \bar{y} \sigma_n \sigma_0) \) and finally a filling \(\bar{v} \in S|W(F)| \) of the sphere \((\bar{z}, v, \bar{u}, \bar{z} \sigma_0 \delta_2, \ldots, \bar{z} \sigma_0 \delta_n) \). Then \(S|q| \bar{v} \) is an \(S|B| \)-equivalence between \(\overline{y} \) and \(qv \in F \subset E \).

If \(y^0 \) is not constant, we choose \(i \) and \(j \) such that the surjective part of \(y^0 \sigma_i \delta_j \) is less than \(y^0 \). Set \(\varepsilon = 0 \) if \(j < i \) and \(\varepsilon = 1 \) if \(j > i + 1 \). Lift \(y \) to \(u \in E \) with \(u \delta_k = \bar{y} \delta_k \) if \(k \neq j - \varepsilon \) and lift \(y \sigma_i \) to \(\bar{u} \in S|E| \) with \(\bar{u} \delta_i = \bar{y}, \bar{u} \delta_{i+1} = u, \bar{u} \delta_k = \bar{y} \sigma_i \delta_k \) if \(k \neq i, i + 1, j \). By induction, \(\bar{u} \delta_j \) is \(|B|-\)equivalent to a \(v \in E \) and there is a \(\bar{v} \in S|E| \) with boundary \((v \sigma_i \delta_0, \ldots, v, v \sigma_i \delta_n, \ldots, v \sigma_{i+1} \delta_{n+1}) \) and \(S|p| \bar{v} = y \sigma_i \sigma_{i+1} \delta_{j+1} \). Next, lift \(y \sigma_i \) to \(w \in E \) with \(w \delta_{i+1} = u, w \delta_j = v, w \delta_k = \bar{y} \sigma_i \delta_k \) if \(k \neq i, i + 1, j \) and lift \(y \sigma_i \sigma_{i+1} \) to \(\bar{w} \) with \(\bar{u} \delta_{i+1} = w, \bar{w} \delta_{i+2} = u, \bar{w} \delta_{j+1} = \bar{v}, \bar{w}_k = w \sigma_{i+1} \delta_k \) if \(k \neq i, i + 1, i + 2, j + \varepsilon \). Then \(\bar{w} \delta_i \) is an \(S|B| \)-equivalence between \(\overline{y} \) and \(w \delta_i \in E \).

This finishes the proof. As an application, we'll derive a strenge-

\(^{1}\) Note that \(S|p| \) is also a Kan fibration, by Quillen's result [6].

\(^{2}\) Cf. the proof of Lemma 4 in [2].
thening of this result which is based on the cartesian closedness of
the category of semisimplicial sets. Roughly speaking, it states the
semisimplicial set of semisimplicial diagonals of a square as in the
theorem is a strong deformation retract of the semisimplicial set of
its continuous diagonals.

To make this precise, we define the semisimplicial set \(D(Y, E) \)
of (semisimplicial) diagonals of a square (*) by means of the following
diagram where the squares involved are pullbacks

\[
\begin{array}{ccc}
D(Y, E) \\
& \searrow \swarrow & \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
Y & \xrightarrow{f} & X \\
& \searrow \swarrow & \\
& \downarrow & \\
& \downarrow & \\
& \downarrow & \\
\downarrow & & \downarrow \\
S \uparrow \ & \xrightarrow{E} & S \downarrow \uparrow \ \\
& \swarrow \searrow & \\
S \uparrow & & \downarrow S \downarrow \\
& \searrow \swarrow & \\
E & \xrightarrow{p} & Y \\
& \searrow \swarrow & \\
& \downarrow & \\
& \downarrow & \\
& \downarrow & \\
\downarrow & & \downarrow \\
S & \uparrow \ & \xrightarrow{h} & S \\
\end{array}
\]

Further, the semisimplicial set of continuous diagonals of (*) is defined
to be the semisimplicial set \(D(Y, S|E|) \) of semisimplicial diagonals
of the square

\[
\begin{array}{ccc}
X & \xrightarrow{i_{E\cap f}} & S|E| \\
\downarrow & & \downarrow \\
Y & \xrightarrow{i_{E\cap h}} & S|B| \\
\end{array}
\]

The following lemma gives another description of \(D(Y, S|E|) \).

Lemma. Let

\[
\begin{array}{ccc}
\bar{E} & \longrightarrow & S|E| \\
\downarrow & & \downarrow \\
\bar{B} & \longrightarrow & S|\bar{B}| \\
\end{array}
\]

be a pullback. Then the semisimplicial set \(D(Y, \bar{E}) \) of diagonals of
the induced square
is isomorphic to $D(Y, S|E|)$.

The proof of this lemma is evident. Note the universal property of E: The continuous $g: Y \rightarrow |E|$ so that $|p| \circ g$ is realized correspond bijectively to the semisimplicial maps $Y \rightarrow \tilde{E}$. If B is a point, this is the adjunction between geometric realization and singular functor.

With these definitions we have the

Corollary. Under the assumptions of the theorem on the square (*) $D(Y, E)$ is an strong deformation retract of $D(Y, \tilde{E})$.

Proof. The map $|\tilde{E}| \rightarrow |E|$ corresponding to $\text{id}\tilde{E}$ is a continuous diagonal of the square

$$
\begin{array}{ccc}
E & \xrightarrow{\text{id}E} & E \\
\downarrow & & \downarrow p \\
\tilde{E} & \longrightarrow & B
\end{array}
$$

Thus, the theorem implies E is a strong deformation retract of \tilde{E}. Let $G: \tilde{E} \times \Delta[1]$ be a suitable deformation. Further, let e denote the evalution $Y \times \tilde{E}^\circ \rightarrow \tilde{E}$ and $\text{id}\tilde{E}$. Then, by adjointness $G \circ e$ corresponds to a map $K: \tilde{E}^\circ \times \Delta[1] \rightarrow \tilde{E}^\circ$. Its restriction to $D(Y, \tilde{E}) \times \Delta[1]$ factors through $D(Y, \tilde{E})$ and induces a deformation of the desired kind.

References

Received October 8, 1975 and in revised form March 3, 1976. Research supported by the Universität Konstanz, Forschungsprojekt Nr. 42/74.

FACHBEREICH MATHEMATIK
UNIVERSITÄT KONSTANZ

Postfach 7733
D-7750 Konstanz
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Please do not use built up fractions in the text of your manuscript. You may however, use them in the displayed equations. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. Items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in triplicate, may be sent to any one of the editors. Please classify according to the scheme of Math. Reviews, Index to Vol. 39. All other communications should be addressed to the managing editor, or Elaine Barth, University of California, Los Angeles, California, 90024.

The Pacific Journal of Mathematics expects the author's institution to pay page charges, and reserves the right to delay publication for nonpayment of charges in case of financial emergency.

100 reprints are provided free for each article, only if page charges have been substantially paid. Additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $72.00 a year (6 Vols., 12 issues). Special rate: $36.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsussha (International Academic Printing Co., Ltd.), 8-8, 8-chome, Takadanobaba, Shinjuku-ku, Tokyo 160, Japan.

Copyright © 1975 by Pacific Journal of Mathematics
Manufactured and first issued in Japan
Andrew Adler, *Weak homomorphisms and invariants: an example* 293
Howard Anton and William J. Pervin, *Separation axioms and metric-like functions* ... 299
Ron C. Blei, *Sidon partitions and p-Sidon sets* .. 307
T. J. Cheatham and J. R. Smith, *Regular and semisimple modules* 315
Charles Edward Cleaver, *Packing spheres in Orlicz spaces* 325
Le Baron O. Ferguson and Michael D. Rusk, *Korovkin sets for an operator on a space of continuous functions* .. 337
Rudolf Fritsch, *An approximation theorem for maps into Kan fibrations* 347
David Sexton Gilliam, *Geometry and the Radon-Nikodym theorem in strict Mackey convergence spaces* .. 353
William Hery, *Maximal ideals in algebras of topological algebra valued functions* ... 365
Alan Hopenwasser, *The radical of a reflexive operator algebra* 375
Bruno Kramm, *A characterization of Riemann algebras* 393
Peter K. F. Kuhfittig, *Fixed points of locally contractive and nonexpansive set-valued mappings* .. 399
Stephen Allan McGrath, *On almost everywhere convergence of Abel means of contraction semigroups* ... 405
Edward Peter Merkes and Marion Wetzel, *A geometric characterization of indeterminate moment sequences* ... 409
John C. Morgan, II, *The absolute Baire property* 421
Eli Aaron Passow and John A. Roulier, *Negative theorems on generalized convex approximation* .. 437
Louis Jackson Ratliff, Jr., *A theorem on prime divisors of zero and characterizations of unmixed local domains* 449
Ellen Elizabeth Reed, *A class of T₁-compactifications* 471
Maxwell Alexander Rosenlicht, *On Liouville’s theory of elementary functions* ... 485
Arthur Argyle Sagle, *Power-associative algebras and Riemannian connections* ... 493
Chester Cornelius Seabury, *On extending regular holomorphic maps from Stein manifolds* .. 499
Elias Sai Wan Shiu, *Commutators and numerical ranges of powers of operators* ... 517
Donald Mark Topkis, *The structure of sublattices of the product of n lattices* 525
John Bason Wagoner, *Delooping the continuous K-theory of a valuation ring* ... 533
Ronson Joseph Warne, *Standard regular semigroups* 539
Anthony William Wickstead, *The centraliser of E ⊗₀ F* 563
R. Grant Woods, *Characterizations of some C*-embedded subspaces of βN* 573