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For a completely regular space T, topological algeghra A
and algebra X, both commutative and having identity, let
C(T, A)={f: T — A: f is continous}, CX(T, A) ={fe C(T, A): AT)
is relatively compact} and -Z(X) be the set of all maximal
ideals of codimension one in X endowed with the Gelfand
topology (i.e., the weak topology generated by {i:x¢ X},
where Z(m) =12 + m). When A is the real numbers, the
spaces Z(C(T, A)) (=vT) and A~Z(CXT, A)) (=BT) are well
known. If A is any topological algebra, t € T and m € .Z(A),
then M, , = {fcC(T, A): f(t) e m}c #Z(C(T, A)), and (¢, m)—
M, , is an injection of T X . #(A) into #Z(C(T, A)). It is
shown that if T is realcompact, A is a Q algebra with con-
tinuous inversion and either -#Z(A) is locally equicontinuous
or T is discrete, then this injection is a homeomorphism.
It is further shown that if the assumption about 7 is reduced
to complete regularity, then - Z(C*(T, A)) is homeomorphic
to (BT) X -#(A), and if A is also realcompact, then - Z(C(T, A))
is homeomorphic to (W T) X - #(A). These results are obtained
for topological algebras over the reals, the complexes and
certain ultraregular topological fields (including all non-
archimedean valued fields) with no assumptions of local
convexity.

1. We assume that the reader is familiar with the properties
of C(T, A) and C*(T, A) for T completely regular and A the real
or complex numbers, as presented in Gillman and Jerison [4]. For
a development of analogous results when A is an ultraregular topo-
logical field (an ultraregular space is one whose topology has a base
of sets which are both open and closed), the reader is referred to
Bachman, Beckenstein, Narici and Warner [1]. In this case, T is
also assumed to be ultraregular, the Banaschewski compactification
(B,T) is analogous to the Stone-Cech compactification (87T), F-replete
is analogous to realcompact and the F-repletion (v,T) is analogous
to the realcompactification (vT'). Except where noted, all pairs (7, 4)
used below are assumed to satisfy either of two sets of conditions: T
is completely regular and A is a commutative topological algebra with
identity e over the real or complex numbers, or T is ultraregular,
A is a commutative topological algebra with identity ¢ over a com-
plete ultraregular topological field F, and disjoint F-zero sets in T
(i.e., inverse images of {0} under continuous functions from 7' into
F) have disjoint closures in B,T (which will hold if the field is met-
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rizable). In either case, F' denotes the underlying field, and wherever,
analogous proofs are applicable they are only written out for the
completely regular case. By a @ algebra (Q ring), we mean inver-
sion is continuous on the open set of units.

Results similar in spirit to . Z(C(T, A)) = T x _#(A) have been
obtained by wvarious authors. For a topological algebra X, let
HOM (X) = {Me . #Z(X): M is closed}; if X is a @ algebra, HOM (X) =
A#(X). For this paragraph assume that C(T, 4) has the compact
open topology. Yood showed that if A is a B* algebra and T is
compact, then HOM (C(T, A)) = T x HOM (A4) (cf. [12, Theorem 3.1});
Hausner [5] weakened the condition on A to being a commutative
Banach algebra. Using tensor products, Mallios weakened the con-
dition further to 4 is a locally multipicatively convex (Ime) algebra
whose completion is a @ algebra [8, Theorem 5.1]; and (again using
tensor products) Dietrich showed that HOM (C(T, A)) = T x HOM (4)
if T is a completely regular k-space and A is a complete locally
convex algebra with HOM (A) locally equicontinuous [3, Theorem 4].
This author showed that . Z(C(T, A)) = T x .#(A4) if T is realcom-
pact and A = C(S, F') (with the compact open topology) for a locally
compact realcompact space S [6, Corollary 2]. In the first three
cases, HOM and .~ identical, but in the last two HOM (C(T(4)) can
be a proper subset of _Z(C(T, A)). Our goal is to generalize the
results of Yood, Hausner and Mallios about .# to spaces T which
are not compact. No topological structure is imposed on C(T, A),
nor are convexity assumptions made about A.

2. Fixed ideals. Let N(f) = {te T: f(t) is not invertible}. An
ideal I in C(T, A) or C*(T, A) is called free if MN{N(f):fel}=©
(this is easily seen to be equivalent to Kaplansky’s definition of free:
for each te T there is an fe¢I such that f(¢) =e¢ [7, p. 172]). An
ideal is fixed if it is not free. The proofs of the following lemmas
are direct.

LEMMA 1. Let m be any ideal in A and te€T. Then

(a) M,,.={feC(T, A): f(t)em} and M},={fcC*T, A): f(t)em}
are ideals in C(T, A) and C*(T, A) respectively,

(b) CT, A)/M,. and C*(T, A)/ M}, are algebraically isomorphic
to Ajm,

(¢) M,, and M}, are both maximal (of codimension 1) if and
only if m is o maximal ideal (resp. of codimension 1), and

(d) M is a fived maximal ideal in C(T, A) (CHT, A)) if and
only if M = M,,, (resp. M = M},) for some teT and m a meximal
ideal in A.
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LEMMA 2. Let Y be any commutative F-algebra with identity,
X a subalgebra of Y containing the identity and me #Z(Y). Then
m N Xe Z(X).

Lemma 1 suggests a natural way of identifying points of
Tx _#(A) with ideals in .#Z(C(T, A)) and _#Z(C*(T, A)) via the maps
h(t, m)= M, and h*(t, m)= M{,.. The complete regularity of T in-
sures the injectiveness of & and h*, allowing us to consider T x _#Z(A)
as a subset of both _Z(C(T, A)) and _#Z(C*(T, A)). The set T X
#(A) then has three topologies under consideration: the product
topology, the relative topology from .#(C(T, A)) (generated by the
family {/:feC(T, A)}) and the relative topology from .2 (C*(T, A))
(generated by the family {/:feC*(T, A)}). The continuity of each
f with respect to the product topology clearly implies the continuity
of & and h*. With this in mind, we say that .#(4) is locally equi-
continuous if . Z(A4) = HOM (A4) and each m ¢ HOM (A) has an equi-
continuous neighborhood in HOM (4) (identifying m ¢ HOM (4) with
the unique continuous multiplicative linear functional of which it is
the kernel and HOM (A) as a subspace of the topological dual of A).

LemMA 3 (Dietrich [3, p. 208]). Let #Z(A) be locally equicon-
tinuous. Then for each feC(T, A), f is continuous with respect to
the product topology; thus h and h* are continuous.

Dietrich also gives an interesting example to show that & need
not be continuous if HOM (A) is not locally equicontinuous. The next
lemma shows that we can insure the continuity of & and &* by im-
posing a restriction on 7T instead of A.

LEMMA 4; Let T be a discrete topological space. Then for each
feC(T, A), f is continuous with respect to the product topology;
thus h and h* are continuous.

Proof. By the definition of the topology on _#(A4), f is con-
tinuous on each slice {z,} X A (4). Since these slices form an open
partition of T x .Z(A), f is continuous on T x .#Z(4).

THEOREM 1. Let T be completely regular and A be a commuta-
tive topological algebra with identity over the real or complex num-
bers, or T be ultraregular and A be a commutative topological al-
gebra over a complete ultraregular topological field. Then h: (t, m)—
M, ., and h*:(t, m)— M¢,. are relatively open maps. Therefore if
A (A) 1s locally equicontinuous or T is discrete, h and h* are
homeomorphisms of T X .#(A) onto subspaces of _#Z(C(T, 4)) and
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A (C*(T, A)) respectively.

Proof. The product topology is generated by the projections p,
and p, onto T and .#Z(A) respectively. By the complete regularity
(ultraregularity in the ultraregular case) of T, the topology on T is
generated by C*(T, F); by definition the topology on .#Z(4) is gen-
erated by {G:ae A}. The product topology is then generated by
{gop: 9 € CX(T, F)} U {Gep,: ac A}; we claim that each of these is
actually of the form f for some f ¢ C*(T, A). Consider any g e C*T, F)
and let f(t) = g(t)e; then

F(t, m) = g(t)e + m = g(t) = (gop)(t, m) .
Next consider any a € A and let f(tf) = a; then
ft, m) = a + m = &(m) = (@op,)t, m) .

Thus each function generating the product topology is a function
generating both relative topologies, and » and i* are relatively open.

3. The compact case. In the studies of C(T, F') by Gillman
and Jerison [4] and Bachman, Beckenstein Narici and Warner [1],
the fact that the F-zero sets are closed plays a central role. In
rings of algebra valued functions, the role of the F-zero sets is
played by the inverse images of the maximal ideals in A and the set
N of all non-invertible elements. It is therefore not surprising to
find the assumption that A is a @ algebra appearing in the remain-
ing theorems. That assumption, however, is not necessary: results
obtained by this author which were cited above apply when A4 =
C(S, F) (with the compact open topology) for any realcompact and
locally compact space S. But if S is not compact and F=C, A
will not be a @ algebra. For then the functions of compact support
are a proper free ideal which must be contained in a maximal ideal;
since S is realcompact, a free maximal ideal in C(S, F') cannot be of
codimension 1, and therefore is not closed (cf. [9, Prop. 2.9¢, p. 13]).

We now show that h (=h* in this case) is onto if T is compact
and A is a Q algebra; this will then be used in to obtain more gen-
eral results. We state and prove the theorem only for the real and
complex cases. The ultraregular case follows from the following
theorem of Kaplansky [7, theorem 24]: if T is a compact ultraregular
space and 4 is a @ ring, then every ideal in C(T, A) is fixed; i.e.,
h: (¢, m) — M, ,, is onto.

THEOREM 2. Let T be compact and A be a Q algebra over the real
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or complex numbers. Then every proper ideal in C(T, A) is fixed.
Thus, h:(t, m)— M, is onto.

Proof. Suppose I is a free ideal. Then for each teT there
exists an f,eI such that f,(t) =e. Let V denote the open set of
units in A4, and U, = f;(V). Since T is compact, a finite collection
{U;;} covers T. Let {h;} be a partition of unity subordinate to {U,},
and define g,(t) = h.(t)f;(£)™" for te U, and g¢,(t) =0 for t¢ U,
Then ¢,€C(T, A) and 3. f,9.€l Direct computation shows that
> fi(t)g(t) = e for all teT; therefore I is not a proper ideal.

COROLLARY 1. If T is compact (compact and ultraregular), 4
18 ¢ Q algebra over the real or complex numbers (resp. over a com-
plete ultraregular topological field) and either _#Z(A) is locally equi-
continuous or T is discrete, then _#Z(C(T, A)) =T x Z(4).

COROLLARY 2(a). If T is completely regular and A is a Q alge-
bra over the real or complex numbers, then the maximal ideals of
codimension 1 in C*(T, A) are the ideals M}, = {feC*(T, A):
Bf(p) e m}, where pe BT and me #(A). If #(A) is also locally
equicontinuous, then _#(C*(T, A)) = (BT) X #(A).

(b) If T is ultraregular and A is a Q algebra over a complete
ultraregular topological field, then the maximal ideals of codimen-
ston 1 in C*(T, A) are the ideals My, = {feC*T, A): B,f(p) e m},
where pe BT and me _#Z(A). If #Z(A) is also locally equicontin-
wous, then 2 (C*(T, A)) = (B,T) x .Z(A).

Proof. f— Bf and f— B,f are isomorphisms from C*(T, A) onto
C(BT, A) and C(B,T, A) respectively.

Corollary 1 generalizes the theorems of Yood and Hausner. More
generally, if A is a locally convex @ algebra, .Z(A) is equicontin-
uous (cf. Warner [11, Theorem 6]), and the preceding results, as well
as those which follow, apply. They also apply when A is a locally
bounded algebra (cf. Zelasko [13, Chapter 1]). These algebras are
not necessarily locally convex.

Theorem 2 shows that if 4 is a Q algebra and T is compact,
then all ideals in C(T, A) are fixed; if A is not a @ algebra in the
sense that the set of regular elements of A is not open, it is always
possible to find a compact space T such that C(T, A) has free proper
ideals. Let {a,: @ e 4} be a net of noninvertible elements of A con-
verging to ¢ and T = 4 U {eo} the one point compactification of the
discrete space 4. Define f (@) = ¢ and f,(t) =0 for ¢ # @ and @ e T;
fo(e2) = eand f..(a) = a, for ¢ e 4. {f,: ®c T} then generates a proper
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free ideal in C(T, A). This ideal is contained in a free maximal ideal,
but that ideal may not be of codimension 1 (e.g., if A = C(S, F)
with S locally compact, realcompact but not compact).

When A = F and T is realcompact (F-replete in the ultraregular
case), T can be recovered from the space of maximal ideals in C(T, A)
of codimension 1 (up to a homeomorphism); this is not generally pos-
sible for topological algebras A, even if T is compact and A is a
Banach algebra. Let S be an infinite product of copies of [0, 1] with
the product topology, T, =1[0,1], T, = {0} and A the B* algebra
C(S, C). By Corollary 1, #(C(T,, A))= T, x S= Sand .Z(C(T,, A)) =
T,xS=3S, but T, and T, are clearly not homeomorphic. Further-
more, T cannot be recovered from C(T, A) in any other manner:
from a theorem of Yood [12, Theorem 3.1], both C(T,, A) and C(T,, A)
are isomorphic to C(S, ¥).

4, The general case. We next examine . #(C(T, A)) when T
is not compact. As in the case of C(T, &#Z), the realcompactness of
T is used to show that all maximal ideals of codimension 1 are fixed
and the realcompactification of T is used to “fix” the free maximal
ideals of codimension 1. Two preliminary results are needed first
(the real and ultraregular cases requiring different proofs): they es-
sentially say that every proper ideal in C(T, A) is “fixed” in BT.

THEOREM 3. Let A be a Q algebra over the real or complex
numbers and I a proper ideal in C(T, A). Then () {clsyy N(f): fel}
1s not void.

Proof. Suppose that the intersection is empty. Since BT is
compact, there is a finite set {f;} in I such that M {cls;x N(f)} = @.
The complements (in BT) of these sets form a finite open cover of
BT; choose a partition of unity subordinate to that open cover. The
restriction to T of these functions is then a partition of unity on T
subordinate to the open cover {T\N(f;,)}. Denote that partition of
unity by {k;} and define g,(¢t) = h,(t)f:(¢)"* for t in T\N(f,) and g,(t) = 0
elsewhere. Then Y. ¢.f;cI and > g.f., = ¢, showing that I is not
a proper ideal.

THEOREM 4. Let A be a Q ring, T ultraregular and I a proper
vdeal in C(T, A). Then N {cl;N(f): fe I} is not void.

Proof. Proceeding as in the previous proof, we obtain a finite
set {f;} in I such that B,T\N{f,) is an open cover of B,7. Since B,T
is ultraregular and compact, this open cover can be refined by a
finite clopen partition (a clopen set is one which is both open and
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closed). The characteristic functions of these sets form a partition
of unity, and the remainder of the proof is the same as that of
Theorem 3.

THEOREM 5(a). Let T be realcompact and A a @ algebra over the
real or complex numbers. Then every maximal ideal of codimension
1 s fixed. If _#(A) is locally equicontinuous or T s discrete,
then .7 (C(T, A)) = T x Z(A).

(b) Let A be o Q algebra over a complete ultraregular topolo-
gical field and T an ultraragular F-replete space in which disjoint
F-zero sets have disjoint closures im B,T. Then every maximal
ideal of codimension 1 is fixed. If _#(A) is locally equicontinuous
or T s discrete, then .7 (C(T, A)) = T x .7 (A).

Proof. Let M be a maximal ideal of codimension 1 in C(T, A4).
By Theorem 3, there is a pc BT such that pec ) {cluN(f): fe M}
MnCHT, A) is a maximal ideal of codimension 1 in C*(T, A4)
(Lemma 2); therefore M N C*(T, A) = M7, with ¢ € 8T and m € .7 (4)
(Corollary 2). Then

p € N el N(f): fe M} C N {el (o N(f): fe M N CXT, A)}
CN{NBS): fe M N CXT, A)}
={q};

thus p=¢q and MNCHT,F)=MnNCHT, A)nNCT, F) =m} =
{feC*(T, F): Bf(p) = 0}. MnC(T, F)e.Z(C(T, F)) (Lemma 2), and
therefore, by the realcompactness of 7T, MNOCT, F)=m, =
{feC(T, F). f(t) =0}, where teT. Using this, we see that
M N CH(T, F) is also equal to m; thus ¢ = p. Then M7, C M, whence
M=M,, and h:(t, m)— M,, is onto. Bicontinuity follows from
Theorem 1. The proof of part b uses Theorem 4 in lieu of Theorem
3 and is otherwise the same except for notation.

COROLLARY 3(a). Let T be completely regular an A a Q algebra
over the real or complex mumbers which is realcompact. Then the
maximal tdeals of codimension 1 in C(T, A) are the ideals of the
form M, , = {feC(T, A): vf(p)em}, with pecvT and me _~Z(A). If
A (A) 1s locally equicontinuous or T 1is discrete, then 7 (C(T, A)) =
WT) x .#Z(4).

(b) Let A be a Q algebra over a complete ultraregular topolo-
gical field F, T an wltraregular space in which disjoint F-zero sets
have disjoint closures in B,T and A F-replete. Then the maximal
ideals of codimension 1 in C(T, A) are the ideals of the form M, =
{fed(T, A):v.f(p)em}, with pev,T and me.Z(A). If Z(4A) is
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locally equicontinuous or T 1s discrete, then _#Z(C(T, A)) = (vT) X
A (A).

Proof. f—uf and f—uyf are isomorphisms of C(T, A) onto
C(T, A) and C(v,T, A) respectively.

COROLLARY 4. If T is a realcompact k-space, A is a locally
convexr Q algebra over the real or complex numbers and C(T, A) is
given the compact open topology, then every maximal ideal of codi-
mension 1 in C(T, A) is closed.

Proof. Use Theorem 5 and Dietrich’s theorem [3, Theorem 4].

Note that if T is a k-space which is not realcompact, there exist
maximal ideals of codimension 1 which are not «closed; i.e.,
HOM (C(T, A)) = .#(C(T, A)). Brooks has examined the relationship
between HOM (X) and .#(X) with the hull-kernel topologies for
complete Ime algebras in [2]. He defines the X-realcompactification
of X, vx(HOM(X)), in a natural way and proves that v,(HOM (X)) =
A (X) [2, Theorem 1.9]. Call X regular if {Z#:x ¢ X} is a regular
family of functions on .#(X) (note that this differs from Brooks
terminology in that he only requires it to be a regular family on
HOM (X)). The proof of Proposition I page 222 in Naimark [10] can
be used here to show that the hull kernel topologies on .Z(X) and
HOM (X) are the same as the Gelfand topologies used elsewhere in
this paper if and only if X is regular. Furthermore, if X = C(T, A),
the imbedding of C(T, &) into C(T, A) via g(t) — g(t)e and the com-
plete regularity of T imply the regularity of C(T, A); thus the hull-
kernel and Gelfand topologies on .#Z(C(T, A)) coincide. We now
have a final corollary to Theorem 5.

COROLLARY 5. Let T be realcompact and A be a complete lme
Q algebra over the complex mumbers, and give C(T, A) any com-
patible topology which makes it a complete lme algebra (such as the
compact open topology). Then Vsq, o (HOM(C(T, A)) = T x #(4).
If T is only assumed to be completely regular, but A is assumed
to be realcompact, then Vo, ., (HOM (C(T, A))) = (vT) x _#Z(4).
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