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The radical of a reflexive operator algebra 2 whose
lattice of invariant subspaces £ is commutative is related
to the space of lattice homomorphisms of & onto {0,1}. To
each such homomorphism ¢ is associated a closed, two-sided
ideal 23 contained in 2. The intersection of the %, is
contained in the radical; it is conjectured that equality
always holds. The conjecture is proven for a variety of
special cases: countable direct sums of nest algebras; finite
direct sums of algebras which satisfy the conjecture; algebras
whose lattice of invariant subspaces is finite; algebras whose
lattice of invariant subspaces is isomorphic to the lattice
of nonincreasing sequences with values in IV U {oo}.

1. Introduction. This paper studies the radical of a certain
class of non-self-adjoint operator algebras. Given an algebra ¥ and
a lattice € of orthogonal projections acting on a separable Hilbert
space ©, we use the standard notations, Lat and lg L, to denote,
respectively, the lattice of all projections invariant under 2 and the
algebra of all (bounded) operators which leave invariant each projec-
tion of & U and L are said to be reflexive if U = Alg Lat W and
8 = LatAlg 8, respectively. The algebras which we study are re-
flexive algebras which contain a maximal abelian self-adjoint algebra
(m.a.s.a.).

A commutative subspace lattice is a lattice of pairwise com-
muting, orthogonal projections on § which contains 0 and 1 and
which is closed in the strong operator topology. It follows auto-
matically that a commutative subspace lattice is a complete lattice.
If A is an operator algebra containing a m.a.s.a., then 2at¥ is a
commutative subspace lattice. Every commutative subspace lattice,
&, is reflexive ([1], p. 468), and Alg L is a reflexive algebra which
contains a m.a.s.a. Henceforth, all lattices of projections in this
paper will be commutative subspace lattices and all algebras will
be reflexive algebras which contain a m.a.s.a. An incisive study of
these lattices and algebras by Arveson is found in [1].

At least in certain special cases, the radical of a reflexive algebra,
A, containing a m.a.s.a. can be described in terms of the set of
lattice homomorphisms from £ = fat¥ onto {0,1}. To each such
homomorphism ¢ we shall associate a closed two-sided ideal ¥, in 2.
The radical, R, of ¥ is equal to the intersection of these ideals. It
appears reasonable to conjecture that this equality holds for all
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algebras in this class. The conjecture serves as a test problem for
our understanding of the algebraic structure of these algebras.

2. General results. For the following, fix £ as a commutative
subspace lattice and % = Alg(¥). Let 2 denote the trivial lattice
{0, 1} with the usual lattice structure. Let X = X(8) be the set of
lattice homomorphisms from ® onto 2. Observe that X is a subset
of 2° =[], 2, the set of functions defined on & with values in 2. Put
the discrete topology on 2, the product topology on 2%, and the re-
lative topology on X. We claim that X is a closed subset of 2°.
Indeed, if ¢,€ X and ¢,— ¢, where ¢ € 2%, then for each E €, there
is a v, such that v = y, implies ¢(F) = ¢(E). With E and F arbi-
trary in £, choose v sufficiently large that ¢,(E) = ¢(¥) and 4,(F) =
#(F'). Since ¢, is a lattice homomorphism, we obtain ¢(E A F) =
HE) N\ H(F) and ¢(EV F)=¢(E)V ¢(F). Thus ¢ is a lattice ho-
momorphism, and so g€ X. Since 2° is a compact Hausdorff space
and X is closed, we see that X also is a compact Hausdorfl space.

If ¢eX, let ker ¢ = {E|¢(E) = 0} and coker ¢ = {E|4(E) = 1}.
It is immediate that ker ¢ is an ideal and coker ¢ is a co-ideal.

(An ideal is a subset & of & which satisfies the properties:

(a) E.e® E,cG—E \V E,c®,

b) Ec® Ge G E—GeG.

A co-ideal is a subset & which satisfies the dual properties:

(@) FieJ F,eJ—F N F.eJ

b)) FeF, Ge F<G@—-Gel.)

An ideal is prime if its complement is a co-ideal. The prime ideals
of ¥ are precisely the kernels of the lattice homomorphisms onto 2.
(See [2], p. 28.)

DEFINITION. A family, %, of non-zero orthogonal projections in
A is called a basic family provided:

(i) Each Pc$ is of the form P= F — E, where F, Ec® and
E < F!

(ii) & satisfies the finite intersection property,

(iii) % is maximal with respect to properties (i) and (ii).

REMARKS. Condition (i) guarantees that %% is contained in the
(abelian) algebra generated by ¥; hence, condition (ii) simply means
that, if P,--.,P,€%, then P = P,P,,---, P, is a nonzero projection.
Condition (iii) ensures that Pe$.

LEMMA 1. The set X of lattice homomorphisms of £ onto 2 1s
o natural one-to-ome correspondence with the set of basic families
of projections in U. Explicitly, to each ¢ in X associate the basic
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family § ={F — E|E < F, Ecker ¢, and F e coker ¢}. The inverse
18 given by associating to each basic family F the unique lattice

homomorphism ¢ in X whose co-kernel is the prime co-ideal
FNEC.

Proof. Assume ¢c X and let §={F — E|E < F, Ecker ¢, and
Fecoker ¢). It is immediate that ¥ satisfies condition (i). To show
condition (ii) is satisfied, it suffices to show that P, Q< implies
PQePl. If P=F,— E, and Q = F, — E,, with F,, F,ccoker ¢ and
E, E,cker¢, then PQ = F\(1 — E)F(1 — E,) = F\F;(1— E, — E, +
EE)=FF(1—-E\VE)=F NF,—[(E, V E)N(@F,NF,)]. Now,
$(FL N\ Fy) = ¢(F)) \ g(F,) = L and ¢((E, V E) N (FL N F,) S ¢(E,V E,) =
HE) V ¢(E,) =0, hence PQeF. To verify condition (iii), suppose
® is a family of projections in 2 which contains % and satisfies con-
ditions (i) and (ii). Let P be an arbitrary element of ®&. Then P =
F — E, forsome E, Fewith E<F. If (F')=0, thenl — FeFc®
and & does not satisfy (ii); hence ¢(F') = 1. Similarly, if ¢(F) =1,
then E=FE — 0@ and again ® cannot satisy condition (ii); so
&(E)=0. But Eckerg¢ and F ecoker¢ imply that P=F — Ec§.
Thus @ =& and F is a basic family.

Now assume ¥ is a basic family of projections in . If E is
an arbitrary projection in 8, then either F intersects each projection
of § or 1 — E intersects each projection of . For, if there exist
P, Qe with both PAE=0and Q A1 —-E)=0, then P<1 - F
and @ < E, whence PQ = 0, a contradiction. If FE intersects each
projection of &, then § U {E} satisfies (i) and (ii); likewise, if 1 — E
intersects each projection of &, then I U {1 — E'} satisfies (i) and (ii).
Since § is maximal, we may conclude that, for each E e &, either
EcF orl— Ecf.

Now let & = {Fel|FeF =8Nland J={Fcl|l—- FEecF}. It
is straightforward to check that & is a co-ideal and & is an ideal.
The paragraph above shows that & is prime, and this determines
the lattice homomorphism ¢ associated with .

It will be convenient in the sequel to call a projection P of the
form P=F — E, where E, Fe® and E < F, an interval projection
from L. If ¢ is an element of X such that ¢(F) =1 and ¢(&) = 0,
we say P is a test-interval for 4.

In the case in which & is totally ordered (and so 2 is a nest
algebra), it is easy to describe the elements of X. For each F# 1
in &, let ¢; be defined by the formula,

1 if F>FE,

s HF) =
)= it r<x.
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For each E # 0 in &, let ¢7 be defined by the formula,

1 if FzFE,

¢E(F):{o if F<E.

It is immediate that the ¢}, ¢z all lie in X and that, if F is an
immediate predecessor of G, then 47 = ¢5. Further, every lattice
homomorphism ¢ in X arises in this fashion. Indeed, since 8 is
totally ordered, each projection in the co-kermel of ¢ dominates each
projection in the kernel of ¢. Let B = A{F|¢(F)=1} and G =
V{F|¢F)=0}. If E+ G, then G is the immediate predecessor of
E and ¢ = ¢5 = ¢%. If G = E, then ¢ is ¢} or ¢5 according as ¢(E) =
0 or ¢(E) = 1, respectively. We can define a total ordering on X
as follows: if E < G then we say ¢% < ¢7 (except when 4} = ¢3);
we define ¢z- < ¢z+ for all E == 0, 1. This ordering induces a to-
pology on X, which coincides with the topology defined above.

In the particular case in which £ is order isomorphic to the unit
interval, I = [0, 1], we may realize the topological space X in an
amusing way. Let the ecartesian produet I X I be provided with
the lexicographic order: (a, b) < (¢, d) if a <c¢ or if @ =c¢ and b < d.
Let I x I have the order topology induced by this order and let Y
be the subset, {(a, b)|either b =0 and ¢ # 0, or b =1 and a # 1},
provided with the relative topology. It is easy to see that Y is
homeomorphic to X.

We return to the general case in which £ is any commutative
subspace lattice (on separable Hilbert space), ¥ is the reflexive alge-
bra, Alg ({), and X is the space of lattice homomorphisms of £ onto 2.

DEFINITIONS. For each ¢c X and T € A, defined
N (T) = inf {||PTP|| | P is a test interval for ¢}.
For each ¢ e X, define %, = {TcUA|N(T) = 0}.

LEMMA 2. N, is a continuous mapping of A onto R* and it is
a SeMi~norm.

Proof. To prove continuity, suppose T, — T. Let ¢ > 0. Choose
y, such that v =y, implies |7, — T|| <e. Then, if P is any test
interval for ¢, [|PT,P — PTP|| < e. Hence, [|PTP|| — ¢ < ||PT,P|| <
[|PTP|| +e. It then follows that N (T') — e < Ny(T.) < Ny(T') + e.
Thus Ny(T,) — N4«(T).

It is immediate that N,\T) = |[N|Ng(T). To prove the sub-
additivity of N,, suppose S and 7T belong to U and let P, and P,
be test intervals for ¢ such that || P,SP,|| < N,(S) + ¢/2 and || P,TP,|| <



THE RADICAL OF A REFLEXIVE OPERATOR ALGEBRA 379

N(T) + ¢/2, where ¢ > 0. Then P = PP, + 0 is a test interval for ¢
and || P(S + T)P| < [|PSP|| + || PTP| = [| P,SP,|| + [| P.TP,|| = N«(S) +
N,(T) + . Since ¢ is arbitrary, we obtain Ny (S + T) < N(S) +
N,(T). Thus N, is a semi-norm.

LEmMA 3. U, is a closed two-sided ideal in 2.

Proof. U, is closed since N, is continuous and U, is a linear
subspace of U since N, is a semi-norm. Suppose T e, and S is
any element of 29[, If P = F — E is a test interval for ¢ then PSTP =
PSPTP. (This follows from the facts (I — F)S= (I — F)S(I — F)
and TE = ETE.) Hence ||PSTP|| < ||S|| ||PTP||, which implies that
Ny(ST)=10. In the same way it can be shown that N, (TS) = 0;
thus U, is a two-sided ideal.

REMARK. The mapping ¢ — N,(T') is not continuous. It is true
that if ¢, — ¢ in X, then lim sup N, (T) = Ny(T'); but strict inequality
may occur. Indeed, given ¢ >0, let P = F — FE be a test interval
for ¢ such that ||PTP]|| < N«(T) + ¢. Since ¢, — ¢, there exists a v,
such that v = v, implies ¢(F') = ¢(F') = 1 and ¢, (&) = ¢(E) = 0. Hence,
P is a test interval for ¢,, and N, (T) = ||PTP|| = Ny(T) + . As
¢ is arbitrary, lim sup N, (T) = N,(T).

For an example of strict inequality, let $ = L]0, 1] (with
Lebesgue measure) and let E, be the projection corresponding to the
set [0, ¢], for each te[0,1]. Let & = {F,|te]0,1]} and A = Alg L.
Let P be the projection corresponding to the union of all the in-
tervals of the form (277, 27") with » even. For each odd #, let ¢,
be the mid-point of the interval (27", 27"), and let ¢, be either of
the lattice homomorphisms associated with E,. (It is irrelevant
which is chosen.) It is easy to see that ¢,—¢f in X (as m— o
with 7 odd), that N, (P) = 0, for all odd n, and that N,+(P) = 1.

We now consider the relation between the ideals ¥, and the
radical of the reflexive algebra 2. Recall ([3], Chapter 2, §3) that
if R is the radical of A then

R = N{ker z|zr is a continuous topologically irreducible repre-
sentation on a Banach space}
= {T|ST is quasi-nilpotent, for all Se}
= {T|TS is quasi-nilpotent, for all Se%(}.

PROPOSITION 4. ;A S R.

Proof. Let T efyesUs;. Let 7 be any continuous irreducible re-
presentation of 2 acting on a Banach space Y. Since any E in 8
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is idempotent, #(F) is a projection. Since SE = ESE, for all Se¥,
n(S)n(E) = n(E)n(S)z(E), for all SeU, and so the range of n(K)
is left invariant under the representation z. Thus 7(E)=0 or
w(E) = I, for each Ec®. Let ¢ be the restriction of 7 to 8. ¢ is
thus identified with an element of X. Given & > 0, choose a test
interval F — E such that [|[(FF — E)T(F — E)|| <e. Then, since
w(F—E)=n(F)—n(E)=1—-0=1, we have

Ia(D)l| = l|l=(F — E)T(F — E))|| = |lzile .

As ¢ is arbitrary, ||[7(T)|| =0 and T eckerxw. This is true for all
continuous topologically irreducible representations, hence T ¢R.

REMARK. If R is complemented then 2 is a von Neumann alge-
bra, hence R = 0. From this it follows that ),., A, = R. At the
other extreme, if 2 is totally ordered (and so 2 is a nest algebra),
then again NsexA,; = R. This result is due to Ringrose [4]; for the
convenience of the reader a sketch of a somewhat simplified proof
of this theorem will be given later.

Let us agree to say that an algebra 2 satisfies the radical con-
dition if Ny, = R. We conjecture that any reflexive algebra
which contains a m.a.s.a. satisfies the radical condition. We shall
show in this paper that any algebra with a finite (commutative)
subspace lattice satisfies the radical condition; that the radical con-
dition is satisfied by a finite direct sum of algebras, each of which
satisfies the radical condition; and that an arbitrary (countable) direct
sum of nest algebras satisfies the radical condition. We shall also
show that the radical condition is satisfied by any algebra whose
lattice of invariant projections is isomorphic to what may be described
as the tensor product of the lattice N U {oo} with itself.

As a result of Proposition 4, the problem consists of proving
that R = A,;, for each ¢ X(¥). Where difficulties arise, they are
caused primarily by the lack of an explicit description of the ¢ € X.

We begin with a crude classification of the lattice homomorphisms
of X. Fix ¢€ X and denote:

E_ =V {Fel|yF) =0}
E. = NFel|yF)=1}.

Each of the following possibilities may occur:

(1) E_=E..
(2) E_<E..
(3) E, <E.

(4) E_ and E. are not comparable.
(8) ¢(E.) =0 and ¢(E,) = 0.
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(b) ¢(E.) =0 and ¢(E,) = 1.
(c) ¢(E.) =1 and ¢(&,) = 0.
(d) #(E) =1 and ¢(E.) =1.

PRrOPOSITION 5. The only possible combinations from the two
lists are the following: la, 1d, 2b, 3a, 3¢, 3d, and 4b.

Proof. It is immediate that 1 is incompatible with b or ¢, and
that 2c and 3b are impossible. If ¢(E,) = 0 then, by the definition
of E_, we have £, < E_. This eliminates 2a, 4a, and 4c. If ¢(E.) =
1, then E, < E_, eliminating 2d and 4d. Only the specified possibilities
remain.

Examples of homomorphisms of types 1a, 1d, and 2b can be
obtained from nest algebras. Assume £ is totally ordered. If F is
an element of ¥ with no immediate successor, then ¢} is of type la.
If, on the other hand, F has no immediate predecessor, then ¢7 is
of type 1d. Finally, if G is an immediate predecessor to F, then
9% = ¢7 is of type 2b. Examples of types 3a, 3¢, 3d, and 4b will
be given later.

DEFINITION. An interval projection P from ¢ is called an atom
if, for any E €&, either P< E or PE = 0.

REMARK. If P is an atom then it is evident that {F € 8| PE = 0}
is an ideal in 8, while its complement, {Fc&|P < E} is a co-ideal.
Hence P determines an element ¢ of X, where ¢ is defined by ¢(F) =1
if and only if P < E. Since P is an interval projection, P is in the
basic family associated with ¢ and it is clear that P is a sub-projec-
tion of each projection in that basic family. Hence N (T) = ||PTP||,
for all Te. The fact that P is an interval also implies that the
mapping 7(T') = PTP is a representation. This representation is
clearly continuous and, when P is an atom, it is also irreducible.
(Any element of B(P9) can be extended to an operator S on $ such
that S = PSP. Since every projection E in & either contains P or
is orthogonal to P, it follows that S leaves each such projection
invariant. Thus Se and 7(A) = B(PY).) So we see that A; = kerx
and from this it is clear that R < 9,.

PROPOSITION 6. If ¢ is an element of X of type 2b or of type
4b then R = U,.

Proof. From the remarks above, it is sufficient to show that ¢
arises from an atom. In the case that ¢ is type 2b, let P = E, — E_.
Any projection in ker ¢ is a sub-projection of E_ and hence orthogonal
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to P; any projection in coker ¢ contains E, and hence P; thus P is
an atom. It is evident that ¢(#) =1 if and only if P < E, and so
R < U,.

Now suppose ¢ is type 4b. Let P = E, — (E,) A (E_). Since P
is orthogonal to E_, it follows again that P is orthogonal to each
projection in ker ¢, while P < F, again implies P is contained in cach
projection in coker ¢. Here, too, ¢ arises from the atom P and RS,

COROLLORY 7. If 8 is a finite lattice then A = Alg () satisfies
the radical condition.

Proof. Since NyexUA; & R, we need only show R = A, for each
pcX. Since the lattice is finite, ¢(E,) = A {8(F)|s(F) =1} =1 and
HE)=V {¢(E)|¢(E) =0} =0. Hence ¢ is either type 2b or 4b and,
in either case, R = U,.

In the case in which £ is a finite lattice, R is the ideal of all
operators T in U such that PTP = 0 for each of the finitely many
atoms for .

REMARK. We conclude this section with a few general comments
which will prove useful later. If £ is a commutative subspace lattice
acting on © and A = g L, let € = {F|I — Ec . Then €8 is again
a commutative subspace lattice and IS (L) = A*. If ¢ is a lattice
homomorphism of £ onto 2, define ¢*: €8 — 2 by ¢*(F) =1 — ¢(1 — E),
for all Ec @8 The mapping ¢—¢* is a bijection of X(%) onto X(€R).
It is not hard to show that the radical of * is R*, (where R is
the radical of ), and that (A*),. = (A,)*. As a consequence, R = A,
if and only if R* & (U*),.; further, A satisfies the radical condition
if and only if 2* does. It is also easy to see that if k& is any of
1, 2, 3, 4, b, ¢, then ¢ is type k if and only if ¢* is. Finally, ¢ is
type a (resp. d) if and only if ¢* is type d (resp. a).

3. Algebras which satisfy the radical condition. We begin
this section with a technical lemma. This lemma contains a simplified
and generalized version of the essential ingredients in Ringrose’s
proof that any nest algebra satisfies the radical condition.

LEMMA 8. Let T be an operator in U and let (P,),n =1,2, .-,
be a sequence of mutually orthogomal imterval projections in W such
that the following conditions are satisfied.

(i) If m <n, then P,QP, =0, for all Qe

(ii) For any ReB(9), R = P, RP, implies Rec.

(iii) There exists a number \ > 0 such that ||P,TP,|| >\, for
all n.



THE RADICAL OF A REFLEXIVE OPERATOR ALGEBRA 383

Then there exists an element S in W such that ST is not quasi-
nilpotent. In particular, T does not lie in the radical R of 2.

Proof. If the conclusion is true for a nonzero scalar multiple
of T then it is also true for T. Hence, replacing T by a scalar
multiple if necessary, we may assume ) = 1,

For convenience, we henceforth use the same symbol to denote
both an orthogonal projection and its range.

For each n > 0, there exists a unit vector, x,<€ P,, such that
P, Tx,|l >1. Let vy, = P, Tz, and let S, = ||%./"¥. ® %,.. (The
operator ¥, X x,., is defined by (¥, & z,..)() = (, ¥,)%,,, for all
xe.) Observe that |[S,|| = [|4.]17*|1¥all %l = [l9a [T <1, and
that, since S, = P,,,S,P,, each S,e. From the fact that the P,
are mutually orthogonal, it follows that the sum >.>..S, converges
in the strong operator topology to an operator S which lies in A
and has norm equal to sup {||S,||} = 1.

Let Q, = X\».P:, for each n=1,2, ---. Then, if n > m, we
have Q,Q, = Q,. We also have S = S@, and S@Q, = Q.,.,5Q., = Q,..S,
for all n. Since P;TP, = 0 whenever j < n, it follows that @, TP, =
Q,TP,, and hence Q,7Q, = Q,TQ., for each n.

We claim that, for each » there exists a vector z,.,€@,., such
that (ST)"z, = ©,,, + 2.4.. Verification of this claim will prove the
lemma; indeed, since z,., is orthogonal to z,,,, we have ||(ST)"x,|| =
l|#,+:1] = 1, whence ||[(ST)*|| = 1. Thus ST is not quasi-nilpotent.
The claim is proven by an induction argument. First observe that
Tx, = y, + @, where a, L P, (since y, = PTx,). Then Sy, = x, and
Sa, = SQa, = SQ,a, = @:SQ:a,. So if 2z, = Sa, € @, then STx, = x, + z,
Next assume (ST)" 'z, = z, + z,,with 2,€Q,,;. Then Tz, =y, + a,,
where a, L P,. Since Q.TP,=Q,TP,, we obtain Qua, = Q,..a,.
Hence Sa, = SQ.a, = SQ, 1.0, = Q,4.5¢,. Also, STz, = SQ.TQ, ..z, =
SQ...TQ,.7, = Q,.,STz,. Therefore,

STy, = STx, + STz, = Sy, + Sa, + STz,
= x'rH—l + Q’IL+2(SG"IL + STZ%) .
Take z,., = Sa, + STz, = Q..(Sa, + STz,) to complete the proof of
the lemma.

With aid of Lemma 8, we sketch a short proof of Ringrose’s
theorem (cf. [4]).

THEOREM 9 (Ringrose). Ewvery nest algebra satisfies the radical
condition.

Proof. If & is a nest and ¢ X(8), then ¢ = ¢f or ¢ = ¢z, for
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some Eec& The two possibilities are interchanged in the natural
correspondence between X(8) and X(€R8), so it suffices to consider
¢ = ¢7 only. If E has an immediate predecessor, then ¢ is type 2b,
and R < 2,. Assume E has no immediate predecessor and T ¢ 2.
Then there exists a number, » > 0, such that ||(F — F)T(E — F)|| >\,
for all FF < E. Further, K is a strong limit of projections F < K.
Hence, if F, < E, there exists F, such that F, < F,< FE and
(F, — F))T(F, — F\)|| > . Indeed, continuing inductively, we can
find a sequence F, < F, < F; < -+ < K of projections such that the
intervals P, = F,,, — F, satisfy the hypotheses of Lemma 8. Con-
sequently, T¢ R and we have R & %U,. This proves the theorem.

Suppose &, &, &, --- is a finite or countable sequence of com-
mutative subspace lattices. Define the product lattice £ to be the
Cartesian product of the @, with co-ordinatewise lattice operations.
We may realize 8 as a commutative subspace lattice as follows: let
9, be the Hilbert space on which each &, acts. Let @, be orthogonal
projection of & = 3,29, onto ©,. Then {F|E is a projection in B(H)
and each Q,E|9; lies in &} is a commutative subspace lattice which
is lattice isomorphic to &. We take this lattice as the subspace
lattice direct sum of the 8,. If, on the other hand, ¥ is any com-
mutative subspace lattice which is lattice isomorphic to &, let @,
denote the element of ¥ which corresponds under the isomorphism
to the element of ¥ which is I in the 4th co-ordinate and 0 in all
other co-ordinates. Then the compression of & to Q.9 is a com-
mutative subspace lattice ®; which is lattice isomorphic to ¥, and
€ is the subspace lattice direct sum of the ¥

If &, %, --- are commutative subspace lattices, if ¥ is the sub-
space lattice direct sum of the &;, if A = Alg L and A, = Ag L, for
each 7, then it is clear that % = 3 .$U,.

Theorem 10 below proves that if 2 is a finite direct sum of
algebras, each of which satisfies the radical condition, then 2 also
satisfies the radical condition. Actually, a bit more is true. Let
us say that a commutative subspace lattice ¥ satisfies the radical
condition concretely provided that 2lg L satisfies the radical condition
and that ¥ satisfies the radical condition universally provided that
Alg & satisfies the radical condition whenever & is a commutative
subspace lattice which is lattice isomorphic to ¥. Theorem 10 es-
sentially proves that if £, -.-, &, satisfy the radical condition uni-
versally, then the product lattice ¥ also satisfies the radical condition
universally. We remark in passing that the following natural ques-
tion remains open: if ¥ satisfies the radical condition concretely,
does it satisfy the radical condition universally? The question arises
from that fact that if £ and ¥’ are lattice isomorphic but not uni-
tarily equivalent, then lg® and gL need not be algebraically
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isomorphic.

THEOREM 10. Let &, ---, &, be commutative subspace lattices
such that each WAlg(R), i1 =1, -+, n, satisfies the radical condition.
Let & be the subspace lattice direct sum of the &, Then Ulg L satisfies
the radical condition.

Proof. Let ©, be the Hilbert space on which £, acts, for ¢ =
1, -+, n. Then & acts on = D99, and ¥ contains each @,, where
@, is orthogonal projection of § onto 9,. Let ¢ X(¥) and suppose
T¢A,. Since the @, are mutually orthogonal intervals from £ whose
sum is I, one of the Qs is a test interval for 4. Let ¢ be the
unique index such that #(Q,) = 1. Define a lattice homomorphism
& € X(Z) by ¢(E) = ¢(E). (Each projection F in ¥, may be extended
to a projection in ¥ by defining it to be 0 on 3%.9;.) Let T, =
Q.TQ,. It then follows that T, ¢ (U,);,. Consequently, there is an
operator, Sc?,, such that ST, is not quasi-nilpotent. We may
extend S to an operator in U be defining it to be 0 on 3°%., 9;; then
SQ,TQ,; is not quasi-nilpotent in 2 and so Q,7TQ, does not lie in the
radical, R, of Y. Since R is a two-sided ideal, T ¢ R. Thus R A,
for all ¢ e X(¥) and Alg L satisfies the radical condition.

THEOREM 11. Let 8, %, ---, be a sequence of totally ordered
commutative subspace lattices. Let £ be the subspace lattice direct
sum of the &,.. Then g satisfies the radical condition.

Proof. Let ©, denote the Hilbert space on which each &, acts.
£ acts on § = > FA,. Each A, = WAlg (L,) is a nest algebra and N =
Ng & = 3PA,. Let @, denote orthogonal projection of § onto 9.
Note that, for any nonempty subset K & N, >};.x Q; is a projection
in ¥ Denote this projection by Q(K). Each Q(K) is an interval
from 8. Fix a lattice homomorphism ¢ X(8). If one of the @, is
a test interval for ¢, then we may argue exactly as in Theorem 10
to show RS A,. (N is the radical of 2A.) Since there are infinitely
many @Q,, it may be that none of them is a test interval for ¢.

Let ¥ be the family of all nonempty subsets, K, of I, such
that Q(K) is a test interval for ¢. If K, and K, lie in &, then
HRK, N Ky)) = ¢(Q(K) A Q(K;)) =1 A1 =1, hence K, N K;€%F. Also,
if K,e@ and K, 2 K,, then Q(K,) = Q(K,), hence 4(Q(K;)) = 1. So
K,c% also, and we see that I is a filter. Finally, if K, UK,e%
then ¢(Q(K) V Q(K,)) = ¢(Q(K, U K,)) =1, whence one of K, and K,
must b in X, Thus § is an ultrafilter. (It is not difficult, by the
way, to construct at least one lattice homomorphism ¢ for each
ultrafilter § on N.)
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If one of the @, is a test interval for ¢, then § is the family
of all subsets of N which contain ¢. Assume henceforth that no @,
is a test interval for ¢; consequently each set in $ is infinite. Now
suppose T' ¢ A,. Since N, (T) > 0, we may, without loss of generality,
assume Ny (T) > 1. Let A be a number such that Ny (T) > x> 1.
Let K= {i|||Q.TQ;|| > »}. Using the fact that each @, is reducing
for T, we have || QN — K)TQ(N — K)|| = sup;;x || @:;TQ.|| = \. Since
N,(T) >, it follows that QN — K) is not a test interval for 4,
and hence that Q(K) is. Thus K<€ and, in particular, K is infinite.
Suppose there is no upper bound for the set of integers, m, for
which there exist some index 7€ K and some operator S;c,, with
[|S;] £1, such that ||T«(S,T,)"|| = 1. (Here, T, denotes the restric-
tion to 9, of @, T. Clearly, T;e,.) Then for each ¢ c K, choose a
positive integer 7, and an operator S, e, with ||S;}| = 1, so that:

(i) sup{m|icK}=

(i) ||T«AS.T)~|l =1, for all 1€ K.

(If conditions (i) and (ii) cannot be obtained, it means that there
exists a finite subset, K,, of K such that, if K, is deleted from K,
then there is an upper bound on the set of integers, n, with the
required properties. Whenever this is the case, the proof preceeds
as in the following paragraph, with K replace by K — K,. Since
K, is finite, Q(K — K,) is a test interval for ¢.) If ¢¢ K, let S, = 0.
Let S=39S,. Then S is bounded (|| S|| = sup, || S;|| £ 1) and, for
each 1€ K, ||T(ST)"|| = [|T(S,T)"|| =z 1. Hence 1 = |[T|{[(ST)™{],
for each n,. Therefore |[(ST)™|¥™ = (1/||T{|)"'", for each n,. Since
the n, are unbounded, we obtain lim,_., [[(ST)"{[“* = 1. Hence ST is
not quasi-nilpotent and thus T ¢ R.

We shall now assume that T ¢ R and show that this leads to a
contradiction. From what has just been proven, we know that there
exists an integer, n, such that ||T,(S,T,)"|] < 1, for all 1€ K, and for
all S;e?,, with ||S;|| £1. We need the following lemma:

LEMMA 12. Let &, be a complete nest and let A, = WUlg &, be the
associated nest algebra. Assume Ref,, ||R|| = ¢>1, and R belongs to
the radical of W,. Assume further that ||R(SR)"|| < 1, for all Se¥,
with ||S|| £ 1. Then there exist n + 1 disjoint intervals, P,, from
, such that I = >t P, and ||P.RP,|| <1, for each k=1, ---,n + 1.

Proof. We shall assume that the required intervals do not exist
and deduce a contradiction. As a first step, observe that there exist
projections [ = K, > E,> --- > E,,, > 0 in & such that

(1) ”(Ek - Ek+1)R(Ek - Ek+1)“ =1, for k=1,---,n+1

(ii) If F < E,,, then ||(E, — F)R(E, — F)||>1, fork=1,-.-,
n + 1.
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Indeed, set E, = I and assume inductively that E, ---, E, > 0 have
been constructed satisfying these conditions. Let

E...,=inf{FeQ|F < E, and ||(E, — F)R(E, — F)|| <1} .

The set over which the infimum is taken is nonempty (since R belongs
to the radical of 2[), is strongly closed, and contains E,,, as a limit
point. This shows that E,,, satisfies condition (i), while condition
(ii) follows automatically from the definition of E,,,. Further, as
long as k¥ = n + 1, we must have E,,, = 0, for otherwise the projec-
tions P;=E; — E;.,, =1, --+, k, would satisfy the conclusion of
the lemma. Thus we may construct inductively the desired » + 2
projections in 8 satisfying (i) and (ii).

Observe that, since R lies in the radical of ¥, if P is any atom
from &, then PRP = (. Consequently, if Ec¢& and if F is an im-
mediate predecessor of E, then RE = FRE.

Next construct projections F, > F,> --- >F,,, and vectors
Ty Ty * 0 v, X,y Satisfying:

(iii) Fy,< E, for all k=1,---,n + 1, and, if E, has an im-
mediate predecessor, then F, is the immediate predecessor of E,.

@iv) [l|z.l] =1, for all k.

(v) Each z,¢ E, — F,,,. Further, if E, has no immediate pre-
decessor, then z,€ F, — F,,;; if E,,, has an immediate predecessor,
then z, € E, — E,...

(vi) ||Rx,.||>1 and ||(E, — Fi )Rz, ]| > 1, forallk =1, -.-, n.

Indeed, from the construction of K, ---, E,., we know that
|E,.RE, || >1. If E,., has an immediate predecessor, let F,., be
that immediate predecessor and let x,,, be any unit vector in E,.,
such that |E,, Rx,.,|| > 1. If E,,, has no immediate predecessor,
then E,., is a strong limit of projections in ¥ which are strictly
less than E,.,. Hence there exists a projection F,., < E,., in & such
that || F,, RF,,,|| > 1. Let x,., be a unit vector in F,,, such that
[ Fy B,y > 1.

Suppose projections F,, ---, F,., and vectors «,,,, ---, ®,,, have
been constructed satisfying (iii)-(vi). We construct F, and z, as
follows; since Fy, < Ey.,, |[(Ey — Fri)B(E, — Fip)|| > 1. If B, has an
immediate predecessor, we set F), equal to the immediate predecessor
and let z, be any unit vector in E, — F,, such that ||(E, — F. ) Rx,|| >
1. If E, has no immediate predecessor, then there exists a projec-
tion F, < E, in 8 such that ||(F, — F.)R(F, — F,.)|| > 1. Let
2, be a unit vector in F, — F\,, such that |[(F, — F,.)Rx,| >1.
In the event F,., is the immediate predecessor of E,,,, we have
(E,y. — F.)R(E,., — F,..) = 0. Consequently,
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(B, — Fy)Ray, = (B, — Fou)R(E, — Ep.)x, .

Therefore, we may assume, without loss of generality, that x, ¢ E, —
E,.,, whenever E;,, has an immediate predecessor.

Note that, regardless of whether or not E, has an immediate
predecessor, Rz, ¢ F,, k=1,.--,n +1. For each k=1, ---, n, let
¥y, = (I, — Fhy)Rx,.. By (vi), ||¥.|| > 1, for all k. Hence the operator
S, = l|%:]"%: ® %4, has norm less than one. ILet S=37,S,. It
is clear that the {y,} form an orthogonal set of vectors. To see that
the {x,} also form an orthogonal set of vectors, it is in this case
sufficient to show that x, 1 #,,,, for each k=1, .--,n + 1. If E.,
has an immediate predecessor then 2, € E, — E,,, and %,,, € E,,,, hence
they are orthogonal. If E,,, has no immediate predecessor, then
x.€ kb, — F,., and z,,, ¢ F,,,, and again they are orthogonal. As a
consequence of the fact that the families {y;} and {«x,} are orthogonal,
we obtain [|S|| = sup, {{|S.]|} < 1.

Finally, we claim that (SR)"x, = 2,.,. This will prove the lemma,
since ||R(SR)"x,|| = || R2,4.]l > 1 implies [|R(SR)"|| > 1, a contradic-
tion. To prove the claim argue much as in Lemma 8: show induc-
tively that for 2 < k < », (SR)*'x, = x, + by, Where b, e E,,, if E,,
has an immediate predecessor and b, <€ F,, otherwise (and in either
case, Rb.e F,,)), and also that R(SR)* ‘¢, = ¥, + @, where a,€ F,,.
In the final step, Sa, = 0, since SF,., = 0; hence (SR)'x, = %,.,, as
required.

We now return to the proof of theorem. Recall that T is an
operator in N which is not in U, and that » is an integer such that,
for all te K, |T(S.T,)"|| <1, for all S;e?, with |[S;|| £1. From
Lemma 12, it follows that for each 7 ¢ K, there exist » + 1 disjoint
intervals P{®, from &,, such that Q, = 3% P and ||P#T.P®| <1,
for each k=1, ---,n+1. Let P® =3%.P¥, Each P® is an
interval from &, the P® are mutually orthogonal, and Q(K) =
S#iP®,. Since Q(K) is a test interval for ¢, one of the P™ is also
a test interval for ¢. But |[|[P®TP™|| = sup,.¢ ||PPT,P¥| =<1, for
each k. Hence N,(T)=<1, a contradiction. Thus, T ¢, implies
T¢3R and we obtain R = A,. This proves the theorem.

We have yet to provide examples of lattice homomorphisms of
types 3a, 3¢, 3d, and 4b. The class of examples described next yields
homomorphisms of types 3a and 4b. The adjoint algebras yield
homomorphisms of type 3d, while type 3¢ may be obtained by means
of a variant construction. The lattice in the examples which follow
may be considered to be the tensor product of the lattice N U {co}
with itself.

Let Y= N x N be provided with the product order: (n, m) =
(p,q) if and only if # < p and m =< q. Define a subset SS Y to
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be increasing if xS and y =« imply ye€S. For each ¢ Y, let
9. be a separable Hilbert space and let § = 3%, 9,. Identify each
subset S £ Y with the subspace 3%., 9, of § and with the orthogonal
projection of § onto that subspace. A projection associated with a
subset S is said to be increasing whenever S is an increasing set.
The family 2 of increasing projections is a commutative subspace
lattice. Let A = Alg L.

ProprosiTiON 13. U satisfies the radical condition.

Proof. In order to prove the proposition we must show that
R <A, for any lattice homomorphism ¢ in X. We already know
this to be true if ¢ is of type 2b or 4b. (Actually, there are no
lattice homomorphisms of £ of type 2b — but we do not need this
fact.) Of the other possible types, only types Ia and 3a can occur,
and these can be handled with the aid of Lemma 8. The following
notation will be helpful: let

H,={p q9eYlq=n}
V.=1{p 9eY|p=n}
E,={yeYly=zqa}.

Each of these symbols denotes both an increasing set and a projec-
tion in &.

LEMMA 14. Let ¢ X. Then ¢(E.) =0 and, further, if ¢ is
not of type 4b, then E_ is either 0 or H, or V,, for some n = 2.

Proof. There is nothing to prove if E_ = 0, so assume E_ > 0.
Hence there is some nonzero projection F' in € such that ¢(F') = 0.
In particular, by choosing a point = (m, ») in F, we have that
#(E,) = 0. Since H, AV, = E,, at least one of H, and V, lies in
ker . If both do, then G = H, V V,eker . Hence I — G is a test
interval for ¢; since I — G can be written as a finite sum of atoms,
one of these atoms is a test interval for ¢. Therefore ¢ must be
of type b. The atom is just a singleton {(p, ¢)} (and the correspond-
ing projection); it is clear that E, = E,, and E_= H,,,V V,,.
(This shows ¢ is of type 4). Thus ¢(E_) = 0.

Assume henceforth that ¢ is not of type 4b. Then exactly one
of H, and V,, lies in ker¢. To fix the argument, let us say that
#(V,) = 0. The considerations above imply that ¢(H,) =1, for all
g. Therefore F. =0 and types 1d and 3d cannot occur. Now let
¥ = (p, @) be any point of E_. Then y must be in some increasing
set in the kernel of ¢ and, in particular, ¢(#,) = 0. Since ¢(H,) =1,



390 ALAN HOPENWASSER

we have ¢(V,) =0 and V, < E_. Thus E_ is a union of V, and so
E_=V, for some r. Since V, =1 and ¢(I) =1, »r 2 2. The facts
that ¢(H,) = 1 and ¢(H, A V,) = ¢(E ) = 0, for any s, imply that
#E_)=¢(V,) =0. The alternative case, in which ¢(H,) =0 and
#(V,) =1, yields E_ = H, for some » = 2 and 4(F_) =0 in exactly
the same fashion. This proves the le nma.

As a consequence of this lemma we have only limited possibilities
forg. If E_ =0, then ¢(F) =1 if and only if F > 0, and ¢ is type
la. This is the only homomorphism of type la. If ¢ is neither type
4b nor la, then we must have E_ =V, or E_= H, for some n=2. In
either case, £, = 0 and ¢ is type 3a. Further, we know that ¢(F) = 0
if and only if F< E_. We use Lemma 8 to dispose of the type la
homomorphism. For each x = (p,q)eY, let F,={yeY|y £ x}.
Each F, € &, and if p—> o, ¢g— o then F,~— 0 in the strong operator
topology. If # <y then E, — F, A E, is an interval from & cor-
responding to the “rectangle” {z|x <z < y}. Suppose T'¢2,. Then
there exists a number )\ > 0 such that N,(T) > . We construct
inductively a sequence P, satisfying the hypotheses of Lemma 8.
Since each E, is a test interval for ¢, ||E,TE,|| > A, for allz. Fix
x, = (py, q.). Since I — F,~— I strongly as y —(co, =), there exists
y, = (r, s,) such that, if P,=FE, — F, A\ E,, then |[P,TP] >\
Suppose P, ---, P,_, are intervals of the form E, — F, A E, which
satisfy the hypotheses of Lemma 8. Let x, = (p., ¢,) be such that
Dy > 7,y and ¢, > s, .. Choose y, such that P, =E, — F, NE,,
satisfies || P,TP,|| > ». In this fashion we obtain a sequence (P,) of
projections satisfying the hypotheses of Lemma 8; hence T ¢R. Thus
i)

Finally, assume ¢ is type 8a and T¢%,. We know that E_ =
V., or E_=H,, for some n>2. Let F=V,, or F=H,_, ac-
cordingly. Let P=F — E_. Then ||PTP|| = N«T) > 0. The lattice
PR may be viewed as a commutative subspace lattice on P9; it
is clearly a nest. We may identify PP as the nest algebra of
this nest. If «r is the lattice homomorphism g; defined on the nest
Pg, then it follows that PT|P$ does not lie in (P¥P)y. Since PAP
is a nest algebra, PTP does not lie in the radical of the algebra.
In particular, there is an operator Se P¥P such that SPTP is not
quasi-nilpotent. Since S may be viewed as an element of 2 also, it
follows that T ¢ R. This completes the proof of the proposition.

REMARKS. 1. The lattice in the example above is isomorphic to
the lattice of all nonincreasing sequences with values in N U {},
where the lattice operations are given by (a,) A (b,) = (max(a,, b,))
and (a,) V (b,) = (min (a,, b,)).
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2. If % is a reflexive algebra with subspace lattice 8 isomorphic
to the type above, and if ¢ is a lattice homomorphism of type 3a,
then ¢* is a lattice homomorphism of type 8d. (cf. the remark at
the end of §2.)

3. We have now displayed an example of a lattice homomorphism
of every type excepting type 3c. An example of a homomorphism
of type 8¢ may be obtained by using Z X Z in place of N x N in
the construction above. Use the product order to define a lattice
of “increasing sets” and a commutative subspace lattice on

38{0.lveZ x Z}

in exactly the same way; again let V, = {(p, ¢)|p = n} and H, =
{(p, 9)|g = n}, for each integer n. Observe that & = {EcQ|E =V,
for some neZ} is a co-ideal and that § = {Fe Q| FE £ H,, for some
ne€Z} is an ideal. A simple argument from lattice theory guarantees
the existence of a prime ideal containing ¥ whose complement con-
tains ®. Thus there exists an element ¢ € X such that 4(V,) = 1 and
¢(H,) =0, for all n. Hence E, < AV,=0 and E_=V,H,=1
Such a ¢ is of type 3ec.

In the example based on Z X Z it is precisely homomorphisms
of type 3c which stand in the way of a proof that lg 2 satisfies
the radical condition. All other types can be handled in a fashion
similar to the homomorphisms in the N X N example. There are
many homomorphisms of type 3¢; in fact the cardinality of the set
of type 3c homomorphisms in 2%, One large class amenable to
analysis has the property that if T is not in ¥, for some ¢ in this
class, then the compression of T to some one of the §, must be
nonzero. Such T cannot lie in the radieal (cf. the analysis of type
b homomorphisms). Two more examples (or four if the roles of H,
and V, are interchanged) may be obtained by noticing that & is a
prime ideal and that © is a prime co-ideal. For either of these, a
technical and elaborate extension of lemma 8 can be used to show
that RS A,. We omit details since they are complicated and do
not result in a complete verification of the conjecture. The sticking
point is that there exist still other homomorphisms of type 3c than
the ones alluded to above; but we do not have a sufficiently explicit
description of them to prove the relation R < 2,. A theorem similar
to Theorem 11, with the condition “each £, is a nest” replaced by
“each &, is a finite lattice,” would be sufficient to permit proof of
the conjecture for the Z x Z example.
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