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Hamburger and Stieltjes moment sequences are studied
from the standpeint of the geometry of their moment spaces.
Necessary and sufficient conditions are obtained that each of
these sequences be indeterminate. The elements in the as-
sociated Jacobi and Stieltjes type continued fractions are
characterized in terms of ratios of distances in the moment
spaces.

1. Introduction. A sequence of real numbers {c.}i—, is an H
(Hamburger moment) sequence if there exists a bounded nondecreasing
function 7 on (— oo, o) such that

(1) cnzgf t*dv(t) (=012 ---).

The function 7, called a mass function for the sequence {c,}, is nor-
malized to be left continuous and such that ¥(0) = 0. The sequence
{e.}3-, is an S (Stieltjes moment) sequence if it is an H sequence and
there is a mass function 7 for the sequence that is constant on
(—,0). An H sequence or an S sequence is determinate if the
mass function v for the sequence is unique. Otherwise the moment
sequence is indeterminate,

The geometric approach of Carathéodory [2] for the classical
moment problems has been extended and generalized by a number
of authors (see [5]). In particular, Krein [6] initiated a geometric
study of general Tchebycheff systems and Karlin and Shapley [4]
rekindled interest in the geometry of moment sequences by their
definitive memoir on the finite (Hausdorff) moment problem. The
primary purpose of this paper is to provide, in the spirit of the
works of Krein and of Karlin and Shapley, geometric characterizations
for indeterminate H sequences and for indeterminate S sequences.

More specifically, let I,,,, denote the set of vectors ¢ =
(Coy €1y *++, C2) In Euclidean E°"*' space such that there is a mass
function ¥ on (— o, o) for which (1) holds whenn =0,1, 2, ---, 2m,
For real A >0 and for ¢, ¢* in IM,,.., the vectors r¢c and ¢ + ¢*
are also in IM,,.,. Thus M,,,, is a convex cone in E**. For a
given ¢ = (¢y €y * 7, Com) € My, We consider the two dimensional
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410 E. P. MERKES AND MARION WETZEL
section of this cone defined by

D, = {(x’ y): (fL’, Y, C C3y =+ c2m) € E);Rzmﬁ—l} .

In §3 we prove that D, is a closed region bounded by a parabola
(possibly degenerate) and that D, < D,_,. The intersection Ni-, D.,
called the limit parabolic region, is either a closed region containing
(¢,, ¢,) bounded by a proper parabola or a ray {(z, ¥):z=c¢, ¥ = ¢}
where ¢, < ¢, An H sequence is proved to be indeterminate if and
only if the point (¢, ¢,) is an interior point of the limit parabolic
region. For an S sequence there is a convex cone R,,,, corresponding
to M,,... and two dimensional sections FE, of this cone are intro-
duced in the same fashion as the sections D, were defined from
Mymei. An S sequence is proved to be indeterminate if and only if
(¢, ¢) is an interior point of My-, £, in §4. The final section of
this paper provides a geometric interpretation of the coefficients of
the J-fraction or S-fraction corresponding to 3in_, ¢,./2™"* when {c,.}5_,
is an H or an S sequence respectively.

2. Preliminaries. For a real sequence {c¢,};_, let

Cp Cpit " Cpiy

4. =

Cpr1 Cpiz  **° Cpiatr
P . . . (’n’p:O;l}z"")-

Cptn  Cptn+1 *** Cptan

For brevity set 4, = 4,, A classical necessary and sufficient condition
for {c,}i-, to be an H sequence is that either (a) 4, >0 for n = 0,
1,2, +--0or (b) 4,>0 for n=0,1,2, ---,m — 1L and 4, =0 for n =
m, m + 1, --- ([3], [7, p. 5]). An H sequence is called positive definite
or positive semidefinite according as (a) or (b) holds. A positive
semidefinite H sequence is always determinate. A positive definite
H sequence is determinate if and only if at least one of the sequences

( 2 ) {An/dw—l,z} ? {A%,Z/An—l,-i}

has limit zero as » — o ([3] [7, p. 72]). Let

(3) al at al

2t b — 2 tb, — — 2+ by —

be the J-fraction expansion of the formal power series >, c,./z"™.
Ifa;0((=01,2, ---,m), let

(4) Pip) = -2 Qi = AL,

o1 n Qolhy a,
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where B,(z) and A,(2) respectively denote the nth denominator and
nth numerator of the continued fraction (3). Since 4, = aa?--- a24,_,
[8, p. 197], the polynomials P}, QF are defined for n < m if 4, # 0,
n < m. When 4, +#0,n < m, we have furthermore that

01 O 0
1 ¢ ¢ Cum
(5) Fi=SPIOF=—=-0 ¢ ¢ - cul,
j= m | . .
0 cm C'm+1 sz
0 0 ¢ Cout
1 ¢ ¢ --:¢,
(6)  G=3POQGO = -0 & o - ou,
= m | e . . .
0 Cn Cmti **° Com
and
0 0 ¢ Crs
0 C € e Cp
(1) H=FQOF=-lo o a ol
Cm—1 Cn  Cm+1°°* Cop

(See, for example, [9].)

Set 4_,, =1 and assume ¢, > 0. Then a necessary and sufficient
condition for {c,}7., to be an S sequence is that either (¢) 4, >0
and 4,,>0for n=0,1,2,--- or (d) 4, >0 and 4,_,, >0 for n =
0,1,2 ---,m; 4,,=20; and 4,=4,, =0 for n=m +1,m+ 2, ---
[7, p. 6]. The polynomials P}, Q} can be defined for an S sequence
by (4) where the continued fraction (3) is the even part of the S-
fraction

4
z

(8)

4 4 G G e
-1 -z —1 —

4

corresponding to the formal power series >.7,¢;/z** [8, p. 73].

3. H sequences. Let (¢, ¢y, €y -+, Con) € M,,ry. For real x and
9, the vector (z, ¥, ¢, ¢ *++, Com) € M,,.., if and only if
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y 02 ) c“
Yy 6 C; rrtCuny
(9) Duz,y)=|cc ¢ ¢ -+ Cn|=20 (=12, .--,m).
Cfn cn—i—l c'/l.+2 e CZn

Suppose 4, >0 for n <m. Then by (5), (6), and (7) with each ¢;
replaced by ¢;,, we have

(10) D.w, 1) = usafe = S1Q,0) + vP,OF} ,

where P,(z), Q;(z) are the polynomials (4) for the sequence ¢, ¢, -,
Cne Oince 4, > 0 implies 4,_,,> 0 for 0 <n < m, the set D, of
points (x, ¥) such that D,(x, ¥} = 0 is a closed convex region bounded
by a parabola. By (10) D, <D, ,,1 <n < m, and the boundaries
of D, and of D,_, have exactly one point (possibly infinity) in common.

LEMMA 1. Let {c,}i., be a positive definite H sequence. For
each positive integer n, the two dimensional section

(11) D, = {(, y): (@, ¥, & )+, C2a) € W}
is @ closed comvexr region bounded by the parabola
(12) x—wx,=F(y —v.),

where x, = H, — G:/F,, y, = —G,/F, and

13)  F,=3[POF G, = 3 PA0)Q,0), H, = S[QO)F .

Furthermore, D,CD,_,, Ni-. D, # @, and the sequences (.}, (¢.}
converge to finite limits.

Proof. The boundary (12) is obtained from (5), (6), and (7) when
the indices are augmented by 2 by a straight-forward calculation (see
also [9]). The fact that the parabolic regions D, are nested follows
immediately from (9) and (10). One consequence of these observations
is that the sequence {x,} is nondecreasing. Since (¢, ¢,) e D, for all
n, we have 2, < ¢, and, hence, lim,.,z, <¢. To prove {y,} also
converges, first note that {F,} is a nondecreasing sequence of positive
numbers. Hence F', tends to a positive limit or «~ as n— «. From
the nesting of the regions, we have (x,, ¥.) € D, whenever m = n.
By (12) this implies

(xm - x’n)/Fn Z (ym - yn)z .
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It follows that {y,} tends to a finite limit as n — oo,

Let 2° = lim z,, ¥° = lim y,(n — <) under the hypothesis of Lemma
1. If F,— F < o, then 3., D, is a closed region bounded by the
parabola z — «* = F(y — ¥°)°. If F,— «, then the length of the
latus rectum 1/F, of the nth parabola (12) tends to zero as n — oo,
In this case N2 D, is a ray: c = 2% ¥y = ¢

When 4, > 0 for n < m, we have 4,_,, > 0 and we define ¢,, by

Con € 0t Cy

(14) ?1 c.z e ?n+1 _

c'ﬂ. cfn+1 tre Coy

Then ¢, — ¢on = 4,/4, 12 SO € > €o,ny B < m. The projection (¢, ,, ¢,
-+, €y,) is a2 boundary point of M,,,,.

LEMMA 2. Let {¢,}7., be a positive semidefinite H sequence for
which 4, >0 when n <m and 4, =0 when n=m. If 4,_.,>0,
then the mth regiom (11) <s bounded by a proper parabole that
contains the point (¢, ¢,). The m + 1st region (11) degenerates in
this case to @ ray € = ¢, ¥y = ¢,. If 4,_., =0, the mth region (11)
18 a4 1raY £ = Comry Y = Cin

Proof. Suppose 4,,_,,> 0. Then 4,,_,,> 0 and by (9) the length
of the latus rectum 4,_,,/4,... of the mth parabola D,(x, y) = 0 is
not zero. Furthermore D,(c, ¢,) = 4, =0 so (¢, ¢;) is on the mth
parabola. We can define ¢,, by (14) in this case and ¢,, = ¢,. We
show next that the m + 1st parabolic region D,(x, ¥) = 0(n =
1,2, .--,m+1)isarayx=e¢,y = ¢, when 4,,_,, > 0. Since 4, >0,
n <m and 4, = 0, n = m, the moment problem for the sequence {c,}
is determinate. This implies there is a unique representation

(15) €n = 3Nt} (n=0,1,2--"),

where A; >0 =1,2,---,m) and ¢, <t, < --- <t, Since ¢, = ¢,
we have t; #0( = 1,2, ---, m). By replacing each ¢, in 4,, with
its representation (15), we can express the determinant 4,, as a
linear combination of determinants of the form

1 1 ...1
tk1 tkz toe tkm+1

. .
m m m
ky ky * 0T tkm+1
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where the indices k; are between 1 and m. Since each of these last
determinants is of order m + 1, each contains at least two identical
columns, We conclude that 4,,=0 and, therefore, D,.,(x, ¥) is
independent of x. Now D,.,(x, ¥) # 0 since the coefficient of ¥* is
Ay #= 0. To prove this last assertion, assume 4,_,,=0. This
implies there is a representation

(16) Cors = 30 1387 (=012 ),
j=l

where §, <8 < +++ <8, #;>07=1,2, --+, p), p<m —1. Since
t; =0 =12, ---, m) in (15), there are two distinct representations,
(15) and (16), for the semidefinite H sequence {c,};-,. This is contrary
to the fact that this sequence is determinate and, thus, 4,_,, = 0.
Finally D, ..(x, ¥) = 0 has a unique double root at y = ¢, by known
results on symmetric determinants [1, p. 139].

Next assume 4,,_,, = 0. This implies D,(x, ¥) is independent of
x and, as in the previous case, we conclude D, (x, ¥) = — 4, (¥ — ¢.)-
Since D, _.(x, y) = 0 forces z to be not smaller than ¢,,_, When ¥ = ¢,
we have D, = {(x, ¥): ® = ¢on—r, ¥ = ¢,}. This completes the proof of
the Lemma,

Using the representation (15) we can easily prove D, ;(x, ¥) = 0
for all choices of (x, ¥y) when 7 =2 and {c,};- is a positive semi-
definite H sequence with 4,_, > 0, 4, = 0. This means that the
conditions D,(x, ¥) =0(n =1, 2, ---) add no new restrictions on (x, y)
once n > m + 1, that is, once the parabolic regions degenerate to a
ray. It is meaningful, therefore, to speak of this ray as the limit

region My.. D, for a positive semidefinite H sequence.

THEOREM 1. Let {c,}i. be an H sequence. This sequence is
indeterminate if and only if (e, ¢) is an interior point of the limit
parabolic region.

Proof. If {c,} is positive semidefinite, then the limit region is
a ray by Lemma 2. The limit region has no interior points in this
case and the sequence is determinate.

Suppose {c,} is positive definite. By (5) and (12) the length of
the latus rectum of the nth parabola is 1/F, = 4, /44 . If
limd4,_,,/4,., = 0 as m — co, then the limit parabolic region is a ray
and by (2) the sequence is determinate. Suppose therefore 4, ,./4,_,,
has a nonzero limit as n— . By (14) we have (c,,,, ¢;) is on the
nth parabola and ¢, — ¢,, = 4,/4,_,, > 0. Since the parabolas are
nested by Lemma 1, the sequence {¢,, ,} is nondecreasing. Let¢,,—¢,
as n—co. Then ¢, < ¢, and equality holds if and only if 4,/4,_,,—0
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as n— o, The last condition implies {¢,} is determinate by (2).
Furthermore, ¢, =¢, implies (¢, ¢;) is on the boundary of the limit
parabolic region. Now if ¢, < ¢,, then (¢, ¢,) is interior to the limit
parabolic region and by (2) the sequence {¢,} is indeterminate.

4., S sequences. Every S sequence is an H sequence so the
existence of the limit parabolic region is assured by Lemma 1 and
Lemma 2. Furthermore a sequence {¢,}i—, is an indeterminate S
sequence if and only if {p,};-,, where p,, =¢,, Pons: =0 =0,1,2, ---),
is an indeterminate H sequence. Replacing {¢,} by {p.} in (2), we
obtain the following criteria for an indeterminate S sequence.

LEMMA 3. An S sequence is indeterminate +f and only if the
sequences {4,/4,_, .} and {4, ./4,_. s} each have nonzero limits as n— .

The following determinant identity is needed.
LemMA 4. An-—l,ZAn—l - An—2,2An =4 0,0 = 1; (4—1,2 - 1)-

Proof. For a sequence {c;}i*%" set

1t ee-t
[ C e C,

An(t) = .l % . = (*1)ndn~1,1tn 4 oo + An—x,z .
C,,, cn+1 e CZn

Define the linear functional M on the linear space of polynomials
of degree not exceeding 2n + 1 by the condition M[t] = ¢;(j =
0,12, ---,2n +1). Using elementary properties of determinants,
we have
4, if 7=0
M[tid,(£)] =<0 if 0<j=n,
(=D4,, if j=n+1.

Therefore,
M4, .()4,#)] = M{(—1)"7 4, 2" + -+ + 4, 5:}4.(0)]
= A%~2,2An
and

M[4,-@)4,@)] = M4, .GH(—1)" D" + -« -+ 4+ 4, 1,}]
= (ﬂl)ndn—l,lM[tnAn—l(t)] -+ An~1,zM[An~1(t)]
= _43—1,1 =+ A'rb—l,ZA'/L—l .
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The identity follows from these equalities.
Let {¢.)7-c be an S sequence such that 4,, >0 for n = m. We
define ¢,,, by

Cim G2 " Cuyy

(:'2 .Cs "'?’m+z —0.

LR

cm+1 c'm+2 c2m+1

Since 4,,_, ;> 0 in this case, we have ¢, — ¢, = 4y, )/dm—rs 304 €,> C; o
If 4,,.,,=0, define ¢, ,., to be ¢,.

LEMMA 5. Let {c,}i be an S sequence. The sequence {c,,} is
nondecreasing and ¢, = lime, , < ¢,
Proof. Since ¢,,, equals ¢, from some index n onward when {¢,} is
positive semidefinite, we assume 4, >0, 4,, > 0 for n < m. Then
— Am—l,l _ Am,l — Ain—~1,2

Ciom — Cim—1 = - ’

Am—z,a Am—l,s Am—2,3AM—1,3

where the last equality is obtained by the identity of Lemma 4
applied to the sequence {¢,}7.,. It follows that {¢,,} is is nondecreas-
ing and bounded by c,.

Let M,,., denote the subset of I,,., consisting of S sequences.
If {c.}i-, is an S sequence and 4, >0, 4,, > 0 for » < m, then the
vector (2, ¥, Cay ***, o) € Wiy if and only if (v, ) e D, and ¥ = ¢,
Since ¢,..—¢, as m— oo, the limit region corresponding to an S
sequence is either a ray xz = ¢, ¥ = ¢, = ¢, or the intersection of a
proper limit parabolic region and the half plane y = ¢,.

THEOREM 2. Let {c,}i-, be an S sequence. Then {c,} is indeter-
minate 1f and only if (¢, c,) s interior to the limit parabolic region
and ¢, > ¢,.

Proof. 1If {c.})r_, is positive semidefinite, the sequence is deter-
minate and the limit parabolic region has no interior points. Suppose,
therefore, {¢,} is positive definite. If the limit parabolic region is
a ray ¢ = ¢,y = ¢, then ¢, = ¢, and, hence, 4, /4, . ;—0 as n— co.
The sequence {c,} is determinate in this case by Lemma 3. If the
limit parabolic region has interior points, then (¢, ¢,) is on its boundary
if and only if ¢, — ¢, = 4,/4,_.,— 0 a8 n— o, Again by Lemma
3, the sequence {c,} is determinate when the last condition holds.
Finally let (¢, ¢,) be an interior point of the limit parabolic region.
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Then {4,/4,_.,} does not tend to zero as #— . In this case, {c,}
is determinate if and only if ¢, — ¢, = 4../4u_is— 0 a8 n— = by
Lemma 3. The last condition is equivalent to the condition ¢, = ¢,
and the proof is complete.

COROLLARY. Let {c,}3-, be a positive definite S sequence. This
sequence is & determinate S sequence and an indeterminate H se-
quence if and only if (c, ¢,) 18 an interior point of the limit parabolic
region and ¢, = ¢, = lim,_.. ¢, ,.

5. A geometric interpretation of the continued fraction coef-
ficients. For n = 1, let 4f_, denote the minor of the element c,,_,
in the determinant 4,. From the algorithm for expanding a power
series into a J-fraction [8, p. 196] it is easily proved that the coeffi-
cients of (3) are determined by

an e =Yilee = dd LB <0 m),

4., 4,4,
where 4%, =0,4_, = 4_, =1, and {c.};., is an H sequence such that
4,>0 when n < m. To obtain a geometric interpretation of these
coefficients, we introduce the two dimensional sections of the cone
M., .. defined by

E, ={(@, y): (co, €, *+ s Consy @, Y) € WMy, J(n < m) .
Note that E, is a closed region bounded by the parabola

Co Gt *ccChy Cy
¢ C, ceeCy Ca+1
: - =0,

Cus Con cet Copa @

Cn Cogr *** X Yy

Let ¢,, denote the y-coordinate of the point on the parabola for which
X = €. A simple computation proves that the axis of this parabola
is © = ¢f,_;, where 4% _, is obtained by replacing ¢,,_, in 4%, with ¢f,_,
and setting the resulting determinant equal to zero.

THEOREM 3. Let {c,}3. be an H sequence and let 4, > 0 for
n < m. Let e, and ef respectively denote the distance in the vertical
direction from (Csu_,, C:.) to the boundary of E, and the distance in
the horizontal direction from (c,._, ¢,.) to the axis of the parabolic
boundary of E,. Then the coefficients in (3) are
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e eX ex
a%l, = = ’ bn+1 = = — i

(18) €n—1 €1 €n
(ex=0,e.,=1,¢,=¢,0=n=m).

Furthermore e, = €y — Cyy €511 = Conss — Conyy Jor 0 < n < m.

Proof. From the definitions of ¢,, and c¢¥,.,, we have for 0 <
WE My €, = Cp — Con = Ay/du_yy €511 = Conis — Ciny = 434, The re-
sults in (18) are a consequence of these identities and (17).

The two dimensional sections N,,., for an S sequence {c,}3-, cor-
responding to E, are given by

{(xi y): (00, Cyy ** %y Cop—zy T, y) € S'.RZ%+1} .

If 4,>0,4,,>0 for n < m, these sections are the common part of
the parabolic regions E, and the half plane = = ¢,,_,, where ¢,,_, is
obtained from 4, ,, by replacing ¢,,., with ¢,,_,- and setting the
resulting determinant equal to zero. The coefficients in the S-fraction
(8) are determined by

4 4 4,4
19 d I y Qapty = —riml(n = O! 1y 2; tee, M),
@) Sy B = T A )
where 4_,, =4_,,=4_,=1 and {c,};-, is an S sequence for which
4,>0,4,_,,>0 when n < m.

THEOREM 4. Let {c.}2 . be an S sequence such that 4,>0, 4,_,,>0
Sfor w = m. Then the coefficients in the S-fraction (8) corresponding
to this sequence are determined by

e Ept
Qo = =2y Oopyy = 2
6% eﬂ

where €, = Cy, — Cany €4 = Coney — Cau—sy 0 S N = M.

The result is a consequence of (19) and the identities ¢, = Y.V
g, = An—-l,l/An—2s1'
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