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In this paper we show that there exist functions f ¢ C[—1,
-+1] with all (» + 1)-st order divided differences uniformly
bounded away from zero for 7 fixed (f[xo, %1, + 5 T4 ] =6 >0
for fixed J and all sets z, < -+ < #,+, in [—1, +1]), for which
infinitely many of the polynomials of best approximation to
f do not have nonnnegative (r-+1)-st derivatives on [—1,-+1].

1. Introduction. In [6]-[10] there appear many examples of
functions f in C[a, b] with nonnegative (» + 1)-st divided differences
there for which infinitely many of the polynomials of best approxi-
mation to f fail to have nonnegative (r + 1)st derivatives. None
of these examples has the (r + 1)st divided differences uniformly
bounded away from zero. In [11] Roulier shows that if fe C**[—1,
+1} and if f"*"(x) =06 > 0 on [—1, 1] then for » sufficiently large
the polynomial of best approximation of degree less than or equal
to % has a positive (» + 1)st derivative on [—1, +1].

On the other hand for the case r = 0 Roulier in [12] shows that
first divided differences of f uniformly bounded away from zero is
not sufficient to insure that for n sufficiently large the polynomial
of best approximation to f is increasing on [—1, 1].

In this paper we extend the results of [12] to the case when
= 0. The proofs are similar to those in [12] but make use of
higher order divided differences and their properties.

2. Notation and preliminary concepts. For n =0,1,2, ---
define H, to be the set of all algebraic polynomials of degree less
than or equal to n. For feCfa, b], let

1 f]l =sup{|f(@):a =2 =0b}.

We define the degree of approximation to f to be
E.(f)y=if{|f —pl:peH,)},

n=20,1,2,---. It is well-known that there is a unique p, € H, for
which || f — p,|| = E.(f). This p, is called the polynomial of best
approximation to f on [a,b] from H,. Unless specifically stated
otherwise we will restrict ourselves to the interval [—1, +1].
Define C* to be the class of continuous 2m-periodic functions
and H) the trigonometric polynomials of degree n or less. Then
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E *(f) is defined for feC* as the degree of approximation to f by
trigonometric polynomials from HJY. That is,

EX(f)=imf{]|f — T|*: TeHs}
where
|F1]* = sup{| f(x)]: —7T =% =7},

If I=[-1,1] or I =[—=m, %] and feC[—1, +1] or feC* we
define the r-th modulus of smoothness @,(f, h) = sup {{ 4 f(x)|: [t| = h
and rh <|I|}, where 4if(2x) = f(z + t) — f(x) and 4;f(x) = 4(477 f(x)),
and || is the length of I.

If » =1 then w.(f, k) is called the modulus of continuity of f
and is written w(f, h).

Estimates for FE,(f) are intimately related to w,(f,h) by the
theorems of D. Jackson. These theorems are well-known and will
not be given here. See [5].

As in [3] let f[x, ---, x,] denote the rth order divided difference
of f. It is well-known that if feC'x, ] and z, <2z, <.+« <z,
then there is £ in (2, z,) for which

f(r)(g) = /r!f[wov ) xr] .

It is also well-known that if all (r + 1)st order divided differences

of f are nonnegative in [—1, +1] then feC"(—1, +1). See [2].
In the following sections, p, will always denote the polynomial

from H, of best approximation to f on the appropriate interval.

3. The main theorems. The following theorems treat the
situations where all (r + 1)st order divided differences of f are
bounded away from zero on [—1, +1] and feC"[-1, +1] or
feCl—1, +1]. The first two theorems and their corollaries show
that for all functions with nonnegative (r + 1)st order divided
differences for which E,(f) does not get small too fast there are
infinitely many » for which we do not have p{*(z) = 0 on [—1, +1].
The last two theorems show that this will also occur for some
functions with (» + 1)st order divided differences bounded away from
zero even if K, (f) does get small faster than allowed in the first
two theorems.

THEOREM 3.1. Let feC[—1, 1] have bounded rth order divided
differences (if feC[—1,1], then this happens) and nonnegative
(r + st order divided differences on [—1, +1]. Assume that there
is no C > 0 for which

EN=Cln+ 1" for n=20,1,---.
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Then there are infinitely many n for which we do mot have
pyH(x) = 0 om [—1, +1].

COROLLARY 3.1(a). Let feC'[—1, +1] and assume that f has
nonnegative (r + 1)st order divided differences on [—1, +1]. Define
g(t) = f(cost). Assume that

(1) lim sup k”lw,ﬂ(g, %)/log k=4 co.

k—co

Then there are infinitely many n for which we do mot have
2 ,(x) =0 on [—1, +1].

COROLLARY 3.1(b). If f has nonnegative (r + 1)st order divided
differences on (—1—€,1 + €) for some €>0 and if there is no
C > 0 for which

E.(f) = Cl(n + )+ for n=0,1,---
then there are infinitely many n for which we do not have
) =0 on [—1, +1].
THEOREM 3.2. Let feC'[—1, +1] and assume that f has

nonnegative (r + 1)st oirder divided differences. Assume that there
s mo C > 0 for which

E(f)=C/n+ 1)y for n=0,1,---.

Then there are infinitely many n for which we do mot have
P(2) = 0 on [—1, +1].

COROLLARY 3.2. Let feC™'[—1, +1] and assume that f has
nonnegative (r + 1)st order divided differences. Define

9(t) = flcost) .

Assume that

. 1
2 r il = oo
(2) limsup % a)r<g, 7 )/log k=4 co.

k—oo

Then there are infinitely many n for which we do mot have
Pi™(x) = 0 on [—1, +1].

THEOREM 3.3. For each integer r =0 and modulus of conti-
nutty @ there exists feC[—1, +1] with
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(3) Sl <o+ 2,01 =0 >0 for all £, < +«+ < .,
wm [—1, +1] and with
(4) (k) = o(f", h) = Ko(h)
and yet there are imfinitely many m for which we do mot have
(@) = 0.

THEOREM 3.4. For each integer r = 1 and modulus of continuity
w there exists feC™—1, +1] with
(5) flxo, =+, ] =0 >0 for all ) <« < 2,4,
wm [—1, +1] and with

w(h) = o(f"7, k) = Ka(h)

and yet there are imfinitely many n for which we do nmot have

() = 0.

4. Proofs of the main theorems. We first state some known
lemmas. The first lemma is due to Steckin [13] and is found in
[5] page 59.

LemMmA 4.1. There exist constants M, p =1,2, --+, such that

Jor each feC*
(6) o, (f, ) = M,h? (n + 1)"7EN(S) .

0sn=p—1

LEMMA 4.2. Let feC[—1, +1] and define geC* by g(t)=
f(cost). If

i r+i ,_.1_ = co
(7) lim sup £ a)m(g, k)/logk + oo,

k- oo

then there does mot exist M > 0 for which
E(f)EM/n+1)", for n=012 ---.
Proof. Assume such a constant M exists. Then E¥(g) =

E(f)E M/(n + 1) for n=0,1,---. Now use Lemma 4.1 with
h =1/N. This gives

1 _KlgN
1 = N+t *

®,..(9, N) = A= S =

Hence
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N™*w,..(9,1/N)/log N = K. .

This is a contradiction.

The next lemma is stated in [12] and is a simple consequence
of a theorem of Kadec [4].

LeMMA 4.38. Let feC[—1, +1] and for each n =0,1,2, «-+ let
Lo < +00 < Xpir. be a Chebyshev alternation for f.

Let 6, = MaXoci<ns | %, — cos (kx/(n + 1))|. Then there is a
sequence {n;};=, of positive integers for which

lim3,, = 0.

j—oo

The next lemma is found in [5] page 45.

LEMMA 4.4. Let w be any modulus of continuity. Then there
8 a concave modulus of comtinuity ® with the same domain of
definition as @ for which

(8) %@(h) < w(h) < @) .

The next lemma is well-known. We first define for » =1, 2, ---

0 for 250
9 To= u
(9) o 2" for x>0.

LemMA 4.5. There is a constant C, > 0 for which

(10) E. (7)) = C./(n + 1) .

Proof. This is an easy consequence of a theorem of S.N.
Bernstein [1].

LEMMA 4.6. If there are m non-overlapping tntervals I, ---, I,
contained in [a, b] each with length 1,4 =1, ---, m respectively, then
Jor each positive integer | there must be at least [m(l — 1)/l] inter-
vals I, for which 1, < (b — a)/m).

Proof. The proof of this is elementary and is omitted.

LemMMA 4.7. Let m = 2 be an integer and let z, <2z, < - <2,
be given. Define hlzy, -+ -, 2,] = D H%o lz; — 2,7 Then
=y

(11) (zm - Zo)h[zo, Tt zm] = (m -+ 1)(zm - ZO)_m—{'l
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(12) (zm - zo)(zm - zl)h[zoy M) zm] g (zm - zo)—m+2
(13) (zm - ZO)(zm-l - zo)h[z(n Tty zm] = (zm - zo)_m+2 .
Proof. The proof of (11) is easy. The proofs of (12) and (13)

are obtained by considering the terms j =1 and j = 0 in the sum
respectively.

LemmA 4.8. If floy, -, %,.,] =0 for all z, < -+ <2, in
[-1— €,1+ €] for some €>0 then flt, -+, t.] ts bounded on
[-1, +1].

Proof. Use the above mentioned result in [2] that
feC™(-1— ¢,1+ €)

and therefore that f“ " is convex on (—1— €,1 + ¢€).

We now proceed with the proof of Theorem 3.1 and its corol-
laries. Let f have bounded rth order divided differences and nonnega-
tive (» + 1)-st order divided differences on [—1, +1]. Assume that
for n sufficiently large we have p{™(x) =0 on [—1, +1]. We will
show that this gives a constant M > 0 for which

E(f) £ M/(n+ 1)+ for n=20,1,2---.

This will give Theorem 3.1. Corollary 3.1(a) will then follow from
Theorem 3.1 and Lemma 4.2. Corollary 3.1(b) follows from Theorem
3.1 and Lemma 4.8.

Proof of Theorem 3.1. Let n=1r and let ., <z, < -+ <,
be a Chebyshev alternation for f. Assume that there is a positive
integer N so that for all » = N we have p¢*(z) 20 on [—1, +1],
and let » = N.

Now

(@) = pa(e;) + e(—1)E(S)

for ¢ =0,1, ---, % +1 where ¢ = = 1 is fixed relative to 7. Let g
be any function which satisfies

g(x;) = (=1 for ¢=0,1,---,n+ 1.
Then
(14) F(@) = pa@) + cE(fg(x)
for ¢+ =0,1,2, ---, n + 1.
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From [3] p. 247 we have the identity
(15) Floy -+, m] = 3 Fa) 11 (@ — 2™
kxj
Ifi+r+1<n+1 we have
r+1 LTt _
(16) gl oy Bispir] :j;} (—=1) kI;IO (@ss5 — Tigr) ™" s
k5

We note that all terms in the sum on the right of (16) have
the same sign. If ¢ is as in (14) and if

. ortl
17) (—1)e Igl (@ — %00) >0
we have from (16)

(18) eglas, « vy Tivrrl] = Ry, <00y i)

where h is as in Lemma 4.7.
From (11) and (17) we have

(19) E@irrir = BII[Tsy » 0y Do) Z2 (0 + 2) (@i — )77

Now wusing (14), (17), and (19) and the assumption that
plwg, -, 2i4ea] = 0 we have

(20)  (@osrss — @) Sy + o0, Tigrrs] = BN @igres — 2)77(r + 2) .

There are at least ¢, = [(n — r + 1)/2] points «; in [—1, +1] for
which (17) holds. We now consider non-overlapping sets {x;, -,
X;4r1e.p Where (17) holds for z,. There are at least

m

such sets, and by Lemma 4.6 there are at least [m/2] such sets
with »;,.,., — 2, < 4/m. It is clear that there is a constant K > 0
for which

21) 4
m

Thus ,.,., — 2; < K/n for n sufficiently large.
Now we sum (20) over all such sets and use this to get

(22) K,[%](%)rEn(f) = ZZ (@i — B)S[@sy =005 Tivrra]
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Clearly there is K, > 0 for which

K
Tj_l 20 (@i — ) fl2e <) Tippail
n 3

= X, D 1%iss = i) — fl@sy -0, Tier])

n1‘+1 K

< 2K, M*

= prt

(23) E(f) =

where M* = max {| flt, -+, t.}]: —1 = ¢, < -+« <t,=1}. This proves
Theorem 3.1.

For the proof of Theorem 3.2 we use (12) and (13) and the fact
that f" ™ is of bounded variation. The proof proceeds as above
except that flx;, ---, ®;1,4.] is written in terms of (» — 1)st order
divided differences and therefore in terms of f“ %, We omit the
details here.

Corollary 3.2 is a simple consequence of Lemma 4.2 and Theorem
3.2.

For the proof of Theorems 3.3 and 3.4 we may as well assume
that @ is concave in view of (8). The proofs will be done simulta-
neously. We will work on [—2, 2] here instead of on [—1, 1].

Proofs of Theorem 3.3 and Theorem 3.4. Let ¢ > 0 be given
and let @ be any concave modulus of continuity. Define

e(x® + 5x + 1) on [—2, —1]
g(x) = {(x — 1y + [z| + (5 + 3e)» on [—1, +1]
32 + )+ w(l) — w2 —z) on [1,2].
g is easily seen to be continuous, increasing, and convex on [—2, 2].

Moreover, ¢'(0) does not exist.
Let g, be an »th order integral of g. Then ¢g,cC’[—2, 2] and

)
Aoy » oty = ————
!][o H] (7._%_1)!
for
—2=Zt < e Kty =2
and
2¢e
Loy y brgel =2 ————
g[o +2] r + 2)1

for
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-—2§t0<.“<tr+1<tr+2§2-

We will show that there are infinitely many n for which we
do not have p{*(x) =0 on [—2, +2] and infinitely many = for
which we do not have p{"™®(z) =0 on [—2, +2], where p, is the
polynomial from H, of best approximation to ¢,. This will be
sufficient for the proofs of both theorems in view of the fact that
for0<hr <1

(24) w(h) = a(g, h) = Ko(h) ,

which is easy to show. The proof of (24) is essentially the same
as the proof of (16) in [12]. It is easy to see that on [—1, +1]
we have ¢,(x) = Cx’** + Dq,(x) where ¢, € H,,,, and where C depends
only on . In view of this and Lemma 4.5 we have

K,

(25) E.(9.) = W

for n=0,1,---,

where K, depends only on r.
If -2<t,<+-- <t,,, £ —1 then

3e

(26) gr[to, Tty t1-+1] = ('}"——IT)'—

and if —25¢, <+ <t < —1 then

2e

(27) Golbo, = o0y tris] = m‘)_"‘ .

Now assume that »¢™(x) =0 on [—2, +2] for n sufficiently
large. Then as in the proof of Theorem 3.1 we choose a Chebyshev
alternation for such n»

—2§xo<x1< e KXy =2
and for ¢, and obtain
(28) g%y o0y Cpnrn] = 0E (g )Yl2sy - o) Bisrial

where o = * 1 is independent of ¢, and ¥ is any function for which
yx)=(-1D%=0,1,--+-,n + 1.

Now by Lemma 4.3 there is a sequence {n;}3, for which
lim; ., 0,; =0. Thus for j sufficiently large 1/4 of the mu;+ 2
Chebyshev alternation points for g, lie in [—2, —1]. Thus there is
a constant K depending only on » such that for j sufficiently large
there are » + 2 alternation points «,, -+, 2,,,,, in [—2, —1] with
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K

29 Ligpir — Ty =
(29) +r41 m o+ 1

and for which
(30) oylwy o0y Ty ] Z 0

An application of (11) now gives

(31) oz, -+ vl 2 D+ 170

Thus from (26), (28), and (31) we get for j sufficiently large

K+ 1
(32) Enj(gr) = (’i" T 2)' .36((’)’&_7- ¥+ 1)r+1> :

This together with (25) gives

Tg_s_lzil__e
(r + 2)!

But for ¢ sufficiently small this can easily be violated. Thus we
have a contradiction.

To show that we cannot have p{"®(x) =0 for n sufficiently
large we proceed in similar fashion. We use (27) and obtain a
sequence {n;};~, for which

207+ 5
r4+8)  (n; + 1)yt

(33) E.(9:) = (

This together with (25) gives an obvious contradiction. We omit
the proof of (33) since it is the same as the proof of (32).

We remark that the existence of a g€ C[—2, 2] such that (24)
holds implies the existence of A > 1, B > 0 such that

w(k) £ w(Ag, h) < Bwo(h) ,

for 0 < h < 4. Thus both theorems are proven.
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