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THE CENTRALISER OF E®λF

A. W. WlCKSTEAD

If E is a real Banach space then &(E) is the space of
all bounded linear operators on E, and &(E) the subspace
of M-bounded operators, i.e. the centraliser of E. Two
Banach spaces E and F are considered as well as the tensor
product E ®λ F. There is a natural mapping" of the algebraic
tensor product &(E)®%T(F) into %T(E®XF). It is shown
that ^(E(g)λF) is precisely the strong operator closure, in

)y of its image.

1* Definitions and statement of results* A linear operator T
on a real Banach space E is M-bounded if there is λ>0 such that
if e e E and D is a closed ball in E containing Xe and — λe, then
Te e D. The centraliser of E, %(E), is the commutative Banach
algebra of all M-bounded linear operators on E. Let K denote the
unit ball of E*, the Banach dual of E, equipped with the weak*
topology. We denote the set of extreme points of a convex set C
by g"(C). In [2], Theorem 4.8 it is shown that a bounded linear
operator T on E is M-bounded if and only if each point of ξ?(K)
is an eigenvalue for T*, the adjoint of T. Thus there is a real
valued function f on ξ?(K) such that Γ*p = f(p)p(pe^(K)).

An L-ideal in a real Banach space is a subspace I with a com-
plementary direct summand J such that | |ΐ| | + \\j\\ = | | i + j\\(iel,
jej). The sets In^(K) for I a weak*-closed L-ideal in #* form
the closed sets of the structure topology on ^(K). The map T\-+T
is an isometric algebra isomorphism of ^ (E) onto the bounded
structurally continuous real valued functions on *ίf(K) with the sup-
remum norm and pointwise multiplication ([2], Theorem 4.9).

We shall consider two Banach spaces E and F, K will retain its
meaning and M will denote the corresponding subset of .F*. We
use E 0 F to denote the algebraic tensor product of E and F. We
shall consider the norm

Σ λ = sup : k e K, m e M

E Qλ F will denote E 0 F with this norm, and E®λF its completion.
We may identify E(&λF concretely in a number of ways. The

formula (kf m)\-^^=1k(ei)m(fi) defines a real valued function on
K x M. Such functions are continuous and affine in each variable.
IIΣ?=iβt (8)/<||JI is the same as the supermum norm for such a func-
tion, so we may identify E®λF with a subspace H, the closure of
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these functions, in C(K x M), the continuous real valued functions
on K x M. We shall have need to call upon:

LEMMA. Every extreme point of the unit ball of if* is of the
form h ι-> h(p, q)(p e &(K), q 6 gf (ikΓ)).

Let B:C(Kx ikf)*—*iϊ* be the restriction map, and let B be
the unit ball of C(K x M)*. If / is an extreme point of the unit
ball of if*, then R~ιf Π B is a weak* closed face of B which is
nonempty by the Hahn-Banach theorem. By the Krein-Milman
theorem, R~ιf π B has an extreme point, which must be extreme
in the unit ball of C(KxM)*, so is of the form h\->±h(p,q) for
peK, qeM. By replacing p by —p, if necessary, we may ensure
a positive sign. If p (say) is not extreme, then p — l/2(p1 + p2)f

pl9 p2zKt px Φ p2. h{p, q) = 1/2 (̂2?!, q) + l/2h(p2, q)(heH) as these
functions are affine in each variable. As the functions of H separate
the points of K x M, this contradicts the extremality.

COROLLARY.

Σ β* ΘΆ = sup •• P 6 , q e &(M)\ •

We consider the centraliser of E(ξξ)λF. We have quite easily:

PROPOSITION. // S< e %{E\ Tt e %r{F)(l ^i^n) there is Ue
F) such that if e5 e E, fό e F(l ^j£m) then E/(ΣJU ei Θ Λ) =

To show that ί7 exists (as a bounded linear operator) we need
only show that the linear operator defined on EQλF by this formula
is bounded. This is so because,

= sup

= sup : p e , g e Ϊ

i

Sil l IIT<II s u p
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It remains to show that each extreme point of the unit ball of
F)* is an eigenvalue for U*. If we denote by p®q the

functional Σf eί Θ fi >-* Σ ; P(e,)q{fj) then we have

= {p®q)U[Zej®

= (P Θ q) Σ (S^) <8> (T,/,)Σ

= Σ St(p)t(pMej)q(fi)
*j

( βy (8) Λ

It is immediate that U*(p®q) = [ΣiSt(p)Tt(p)](p®q).
We thus have an embedding of SΓ(E) 0 ST(F) in %T{E®λF)

in an obvious way. The remainder of this paper is devoted to a
proof of the following result.

THEOREM. %{E ® A F) is the closure, for the strong operator
topology, of the canonical copy of %{E) 0 ^(F) in

2. The proof• For this proof we shall identify the element
Σni=ιGi®fi£EQF with the function k H> Σ?=I k(et)ft from K into
F. This is continuous affine function vanishing at 0. The set of
all jP-valued continuous affine functions of K which vanish at 0 we
shall denote by A0(K, F), and norm it by | |α | | = sup {||α(fc)||: keK},
which corresponds to the norm on EQλF. We may thus identify
E®λF whith the closure, H, in A0(K, F) of the functions with finite
dimensional range.

If Σ,USi(S)Tie^(E)Q^(F) then π: p ι-> Σ?=i St(p)T< is a
function from &{K) into ^(F) which is bounded and continuous
for the structure topology on &(K) and the strong operator topology
on %T(F). If U is the image of Σ?=i St (g) T, in %T(H) (using the
proposition and the identification of H with E (§); F) then we have

(Uh)(p) = π(p)h(p) (heH,pe &(K)) .

This is because, if ε > 0, we may find ΣJU ed ̂ )f3 eEQF with
\\h - ΣJUβyΦ/iH i < e and then

(Uh)(p) - u(± ed(g)fλ(p)
\j = l J

+ \\u(jtei®fJ)(p)-n(p)h(p)

But
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) = Σ (S*β,
i

Σ
ί = l

= Σ 3«

Thus \\(Uh)(p) - π(p)h(p)\\ £ \\U\\e + | |π(p)|| | |ΣΓ=iβj®Λ - *XP)II ^
(||Z7|| + l|π(p)||)ε, which can be made as small as desired, so that
(Uh)(p) = π(p)h(p).

Let V(K) denote the set of extreme points, p, of K for which
there is xeE with p(x) = ||a?||, then V(K) is weak* dense in W(K).
To show this it will suffice to prove that K = co (V(K)), the weak*
closed convex hull of V(K), for then &(K)czV(K) by Milman's
theorem. If co (V(K)) Φ K we may, by Hahn-Banach separation,
find xeE with A(α?) ̂  α < &0(#) for some real α, all & G co (V(JSL)) and
some koeK. Then {& e K: k(x) = ||OJ||} is a nonempty weak* closed
face of K. This possesses an extreme point, which cannot lie in
co(V(K)), yet which is in V(K) by its construction, a contradiction.

If p G V(K), q 6 Tφlf) then p (x) # is extreme in the unit ball of
{E®λF)\ Fix β e # , / 6 F with | |β | | = e(p) = 1, | | / | | = /(p) - 1.
Define injections P: JE7—>E®λF, Q:F-*E®λF by P(x) = x®f, Q(y) =
β (x) 1/. P, Q are isometric injections so the image of the unit ball
of (E®λF)* under P* (respectively Q*) is JSΓ (respectively Λf). P*,
Q* are continuous and affine, so P*~x(p) and Q*"x(^) intersect the
unit ball of (E®λ F)* in weak* closed faces, as must P*"1^) Π Q**"1^).
This intersection is nonempty, for P*(p (E) 9) = p, Q*(p (S) 9) = ?• This
is because for a e S, (P*(p (x) 9»(a?) = (p (x) g)(P^) = (p (x) 9)(a? (g) /) =
p(%)Q(f) = p(^), with a similar proof for Q*. This face must have an
extreme point which is extreme in the unit ball of (E($λF)*9 so is
p' 0 q' for p' e g 7 ^ ) , q' e &(M). But now p=P*(p ® 9) = P*b' (x) 9') =
p' and also q — 9', so that p (g) g is itself extreme.

It follows that if Ue^(H) then all points p(g)9 for peg^ίίΓ),
geg^ίilί) are eigenvectors for J7*. For let p r —> p, gδ —> g be nets
with pr G F(iί), 9δ G F(M). The continuity of the map (k, m) \~* k (x) m
from iΓx ilί into (JS'®^ ί7)* implies that pr®qδ—^p®q* But U*(pr®qδ) =
U{pr®qδ){Vr®qδ)' The reals U(pr®qδ) are bounded (by ||Z71|) so
we may suppose (by choosing a subnet if necessary) that ί7(;pr (x) qδ) -+
λ. Now Ϊ7*(p ® 9) = lim ?7*(pr (x) 9β) = limί/(pr (g) gδ) lim (pr (g) 9,) =

Suppose Z7G ^(jff), peξ?(K) and ft, ft' G H with Λ(p) - λ'(p). If
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e ϊf(M) then

ϊ(( Uh)(p) =

= U{p®q){q{h{p)))

= U{p®q){q(h\p))) = q((Uh')(p)) .

Thus (Uh)(p) — (Uh')(p). We may thus define a linear operator ττ(p)
on i*7 by π(p)?/ = (Uh)(p) whenever h(p) = y. π(p) is clearly linear,
is well defined, and has domain the whole of F since we may take
h = e®y where e(p) == 1.

π(p) has norm at most || £7||, for we may find eneE with en(p) =
1, | | e w | | ^ (n + ΐ)/nf and then

= \\U(en®y)(p)\\ £ \\U(en®y)\[

^\\U\\\\en(g)y\\ = \\U\\\\y\\(n + ΐ)/n.

Thus 11 Tripoli ^ || Γ7|| | |y | | . In fact π(p)e&(F) because if yeF,
q e &(M) and eeE with p(β) = 1 then

q(π(p)y) = g( U(β (x) J/)(J>)) = (p(g) ?)(U(e (x) j/))

We thus have a function π: &(K) -> %T{F) with (Uh)(p) = π(p)h(p)(p e
Also π is norm bounded, and we let ||7r|| denote sup{| |π(p)| |:

π is continuous for the structure topology on &(K) and the
weak operator topology on %{F\ Suppose y e F, geF* and x e E
then & h-> g( U(x (x) y)(k)) is a continuous aίfine function on K vanishing
at 0, so may be identified with an element of E. If pe^(K) then

g( U(x (x) y){p)) - g(π(p)(x

= g(π(p)x(p)y) = x(p)(g(π(p)y)) .

Thus x H-> gf( ?7(x (x) 2/)) is an element of ^(E), so the function p H*
g(π(p)y) is structurally continuous.

By [2], Proposition 3.10 π has an extension, π, to W(K)\{0} which
is continuous for the weak* topology on W(K)\{0} and the weak
operator topology on 3Γ(F) (the result there is stated for real valued
functions but the proof remains valid in this context). We note
for later reference that π&(K)) = n(W(K)\{0}). We propose now to
show π is still continuous when 3~(F) is given its strong operator
topology.

Provisionally we define π(lc), for JceW(K)\{Q}, to be that linear
operator on F such that

π(Jc)y - U(x (8) y)(k)/Jc(x)
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with x e E, k(x) > 0. This definition coincides with that of π if k e
&(K), and is well defined because if kre&(K) and kr-+k for the
weak* topology then

jt{k)y = U(x <g) y)(k)/k(x) = limϋ(α; <g> y)(kr)/k7(x)

= lim π(kr)y .

Clearly π(fc) acts linearly on F, and it is bounded because

= \\U(x(g)y)(k)\\l\k(x)\

= lim \\U(x®y)(kr)\\l\kr(x)\
= lim\\π(kr)y\\^\\π\\\\y\\.

Also | |π | | = swp{\\π(k)\\:ke^(K)\{0}} = (|π||. π is locally a quotient
of a function that is clearly strong operator continuous and a non-
vanishing scalar function, so is strong operator continuous. In fact
π is the same as π as both are extensions of π to if(iΓ)\{0} which are
continuous for the weak* topology on W{K)\{ϋ] and the weak operator
topology on %{¥).

We do not know if π itself is continuous when 3f(F) is given
the strong operator topology. All that we shall require is that if
Dd^(K) and 0 does not lie in the weak* closure of D, then π\D

is continuous for the structure topology on D and the strong operator
topology on %T(F). For suppose dr,deD and dγ—>d for the structure
topology, then π{dr) —* π{d) for the weak operator topology whenever
{dγf) is a subnet of (dr). Let (dr,>) be a weak* convergent subnet of (dγ)
with limit d' Φ 0, which exists as K is weak* compact. Then π(dr,,)~^
π(d) for the weak operator topology whilst π{dr,) = π(dr) —>7r(cf')
for the strong operator topology, and hence also for the weak operator
topology. Thus π(d) = π(d') and π{dr,) —>π(c£) for the strong operator
topology. I.e. every subnet of (π(dr)) has a subnet converging to
π{d), so in fact π(dr) —+ π(d) for the strong operator topology.

We now seek, given hi e H(i = 1, 2, , n) and ε > 0, to find
π': ^(JBL)—*%'(F) which is of finite dimensional range and continuous
for the structure topology, such that

\\π'(p)K(p) - πiφ^W £ e (p e &(K), l£i£n).

π' is the image of an element of %(Έ) 0 ^Γ(F) so defines an element
U' of the copy of %T(E) 0 %T(F) in &{E®λF). We then have

\\(U%)(p) - (UhJWW £ e (p

The function & ι-> || (U'h^k) — (Uh^k) \\ on K is continuous and convex,
so by [1], Lemma Π.7.1, ||(I7%) - {Uh^W ̂  e(l S i S n). This will
show that U is in the strong operator closure of the copy of
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βΓ(F) in %(E%XF).
We first prove that [3], Proposition 4.8 remains valid in this

context. I.e. if xeE then P — {pβef(K): \p(x)\ ̂  <%} is structurally
compact provided a > 0. If (Cs)ses is a family of nonempty struc-
turally closed subsets of P with the finite intersection property, let
Cs = Pf\Fs with each Fs a weak* closed L-ideal in #* . Set Q •=
{&eif: i&(#)l ^ α} then each i^ Π Q is nonempty and this family has
the finite intersection property. As Q is weak* compact and these
sets are weak* closed, Γl(FsΓ)Q) = (Π^.)nQ ^ 0 . Π ^ is a weak*
closed L-ideal and for some ke K Π (Π Fs)\k(x)\ >̂ α. But x attains
its supremum at an extreme point, p, of K n (Π ^ ) which is an
extreme point of if by [2], Proposition 1.15. As if Π (Π -P7.) is sym-
metric, p(x) ^ α so that p e # ( # ) Π (Π ^ S ) = Π (p Π -F.) - Π Cs. We
note also that such a set P does not contain 0 in its weak* closure,
so π\P is continuous for the strong operator topology.

Given h% e H, δ > 0, we may find a weak* closed subset Qt of
not containing 0 and with Q% Π &(K) structurally compact,

such that \\ht(k)\\ < δ if k e ^(K)\Qt. For we can find ΣJU β; ®/,• e
J2 0 .F with ||Σ3Γ=i fc(ey)/y-At(fc)ll < δ / 2 ( & e #)• Now let Py = {fc e &(K):
\k(βj)\ \\fj\\ ^ δ/2m), which is weak* closed, does not contain 0, and
is such that Pό Π &(K) is structurally compact. Define Qt = \J?=1 Pjf

then Qi will have all the desired properties except possibly that on
the norm. If keWiK)\Qi then

^ m(δ/2m) + δ/2 = δ .

We may thus find a weak* open neighbourhood of 0 in &(K), O0,
with structurally compact complement in g^(if), such that O0a{ke
W{K)\ ||λi(A;)|| < e/(21|π|| + 1)(1 ^ i ^ w)}. Indeed if we take δ =
6/(21|π|| + 1) and choose ζ^ as above we take O0 to be

which has the desired properties. If k e W{K) we let Uk = {T e
|| T(/ι^^))|| < ε/3(l <J ΐ ^ ^)}, an open symmetric neighbourhood of the
origin in %*(F) for the strong operator topology. Thus π~~ι(π{k) + Uk) is
an open subset of if (l£)\{0} (by the continuity of π for the strong oper-
ator topology) and hence of W(K). The set &{K) Π ΠΓ=i hτ\ht(k) + B)
(where B is the open ball in F of centre the origin and radius
ε/(3(||τr|| + 1))) is also weak* open, hence so is

Ok = (π~\π(k) + ϋk)) Π Π hτι(h%(k) + B)
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for each k e %?(K)\{0}, and we have k e Ok. Now let {0, k19 k2, , kr}
be a finite set of distinct points oί~W(K) with &{K) = O0 U U;=i<λr

Let W = Πy=if4y» a n °P e n convex symmetric neighbourhood of
the origin in ^Γ(JF) for the strong operator topology. Because
<?f(K)\O0 is structurally compact and π is continuous on this for the
strong operator topology on 3f(F), π(tf(K)\O0) is strong operator
compact. Thus there exist {Tί9 T2, , Ts}a%r(F) such that
{jUΛTt+W/2)z>π(&(K)\O0). Define G to be the linear span of
{Tt:l^i^s} in 3T(F), and let Φ be defined on π(ξf(K)\O0) with,
values in 2G by

Φ ( S ) = {geG: \\g\\ < \\π\\ + l , g - S e W / 2 } - .

For some i, Γ< - Se W/2 and T, eπ(gf(iO\Oo) so || ΓJ| ^ ||τr||, so that
Φ(S) is certainly nonempty. It is clear that Φ(S) is closed and
convex.

We show that Φ is lower semi-continuous, for the unique vector
topology on G, and the weak and strong operator topologies on
7r(g*(i<O\O0) which coincide by the compactness of π(^(K)\0Q) for the
latter topology. If DcG is open we must show that {Seπ(^(K)\OQ)ι
Φ(S) ΠDΦ 0} is open. Suppose So e π(&(K)\O0) with Φ(S0) Π D ψ 0 .
By the definition of Φ, we can find xQeD with ||xo|| < ||τr|| + 1,
x0 — SQe W/2. As W is open, there is a symmetric strong operator
neighbourhood of the origin in 3T(F), V, such that x0 - SQ + Va W/2.
Now if S e (So + V) Π π(&(K)\O0) we claim Φ(S) Π D Φ-0, f or x0 - S -
(xQ - So) + (So - S) G (cc0 - So) + VaW/2. It is now clear that
xoeΦ(S) 0 D, completing the proof that Φ is lower semi-continuous.

As G is finite dimensional we can apply a selection theorem (e.g.
[4], Theorem 3.2') to assert the existence of a continuous selection
for Φ, φ. We note that φ(π(ξ?(K)\O0)) is contained in the closed ball
in G of centre the origin and radius ||τr|| + 1. We extend ^ to f
defined on the whole of π(&(K)) with values in the same ball and
with ψ continuous for the weak operator topology on π(^{K)). Let
β(π(ϊ?(K))) be the Stone-Cech compactification of π(W{K)) (for the
weak operator topology), and p the natural injection of π{W{K))
into β(π(&(K))). Since the weak operator topology is uniformisable
p is a homeomorphism, so that φ°ρ~ι is a continuous function from
the closed set p(π(&(K)\O0)) into G. Let σ be a continuous extension
of Φ°p~1 to the whole of β(π(&(K))) with values in the required ball
in G, which exists by Tietze's extension theorem. Now f - σop is
the desired function. Define π' — ψ°π, a function from ^(K) into
G that is bounded and continuous for the structure topology on
&{K), since π is continuous for the structure topology on £? (K) and
the weak operator topology on %?{F) whilst ψ is continuous for the



THE CENTRALISER OF E®2F 571

weak operator topology on 7r(i?(iΓ)). We claim π' has the required
property.

If peϊ?(K)\O0 then peθkj for some j . _Then \\ht(p) - &,(**) || <
6/3(||π || + 1) and we also have π'(p) - π(p) e W/2 c W. Thus for 1 ^

+ \\π\p)hi{kj)-πt{p)hi(v)\\

^ \\π{p)\\ WUV) - λ*(fci)ll + (e/3) + | |π '(p) | | \\ht(kd) - Λ
(since π(p) — π'(p) e W c I7Ay)

^ ||7r||(ε/3(||7r|| + 1)) + (e/3) + (||τr|| + l)(ε/3(||τr|| + 1))

< ε .

On the other hand if peO0 Π ί?(K) then

Thus π' has the desired properties.
So far we have shown that %£ (E ® ; F) is contained in the

strong operator closure in ^(E <gh F) of the copy of &(E) 0
there. It remains only to show that for any Banach space, X,
is strong operator closed in &(X). Indeed if Tλ-+T for the strong
operator topology with Tr e %*(X), p is an extreme point of the unit
ball of X* and x e l , then

(T*p)(x) = lim (T*p)(x) = Km Tr(p)p(x) .

Thus lim Tr{p) exists and T*p = (lim fr(p))p, so T e %T(X).
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