R-ENDOMORPHISMS OF $R[[X]]$ ARE ESSENTIALLY CONTINUOUS

P. M. Eakin, Jr. and Avinash Madhav Sathaye
R-ENDOMORPHISMS OF $R[[X]]$ ARE ESSENTIALLY CONTINUOUS

PAUL EAKIN AND AVINASH SATHAYE

Let R be a commutative ring with identity, $A = R[[X]]$ and $B = R[[Y]]$ with X and Y finite sets of indeterminates. Consider A and B as topological rings with the respective X and Y-adic topologies. If $\sigma: A \to B$ is any R-homomorphism then there are R-automorphisms s and t of A and B respectively, so that $t \circ \sigma \circ s: A \to B$ is continuous. As a corollary we see that an R-endomorphism of A is surjective only if it is an automorphism.

Let $X = \{X_1, \ldots, X_n\}$ be a set of indeterminates over R. $R[X]$ and $R[[X]]$ denote as usual the polynomial ring and the formal power series ring respectively over R in the variables X. A number of authors have studied and applied automorphisms and endomorphisms of $R[[X]]$ over R; [3], [4], [5], [6], [7] and [1]. A common feature of many of the arguments seems to be the complexity resulting from the fact that R-endomorphisms of $R[[X]]$ need not be continuous in X-adic topology. In this note we show that they are essentially continuous, i.e. differ from a continuous one by an automorphism. Precisely, we make the following

Definition 1. If A, B are topological rings and $\sigma: A \to B$ is a homomorphism, then σ is said to be **essentially continuous** if, for some automorphisms s and t of A and B respectively, we get that $t \circ \sigma \circ s: A \to B$ is continuous.

With this definition we get the main statement that "every R-homomorphism between any two formal power series rings over R is essentially continuous." (Corollary B)

As a corollary we get an easy proof of the statement that, "an R-endomorphism of $R[[X]]$ is surjective if and only if it is an R-automorphism of $R[[X]]". (Corollary C)\footnote{O'Malley had done the one variable case of this result in [3]. Gilmer and O'Malley have independently given another proof of Corollary C in [2].}

Finally, we make

Definition 2. If \mathfrak{I} is a finitely generated ideal of R we say that R is **complete in the \mathfrak{I}-adic topology** if there is a finite set of indeterminates X and an R-homomorphism $\sigma: R[[X]] \to R$ with $\sigma(XR[[X]]) = \mathfrak{I}$.
Let $I_c(R)$ denote the set of all $a \in R$ such that there is an R-homomorphism $\sigma: R[[X_i]] \to R$ with $\sigma(X_i) = a$.

Using the "essential continuity" we establish that $I_c(R)$ is an ideal of R contained in the Jacobson radical of R and containing the nil-radical of R. (Theorem E)

Once $I_c(R)$ is shown to be an ideal it is easy to show that $I_c(R)$ is nothing but the union of all ideals \mathfrak{I} of R such that R is complete in the \mathfrak{I}-adic topology. This fact is indeed the reason for the suffix "c" in $I_c(R)$. This fact also answers some questions raised by Gilmer; see remarks at the end.

Theorem A. Suppose R is a commutative ring with identity and $X = \{X_i\}_{i=1}^n$ and $Y = \{Y_i\}_{i=1}^m$ are sets of indeterminates over R. Suppose $R[[X]] \to R[[Y]]$ is an R-homomorphism and that for each i, $\sigma(X_i) = c_i + f_i$, where $c_i \in R$ and $f_i \in YR[[Y]]$. Then there exists an automorphism $t: R[[X]] \to R[[X]]$ such that $t(X_i) = X_i + c_i$.

Proof. Let $\beta: R[[Y]] \to R$ be defined by $\beta(Y) = 0$. Then composing β and σ we get a mapping $\sigma^*: R[[X]] \to R$ such that $\sigma^*(X_i) = c_i$. Let $\{Z_i\}_{i=1}^n$ be n additional indeterminates. We extend σ^* to a mapping $\sigma^*: R[[X,Z]] \to R$ by $\sigma^*(Z) = 0$. We now have a sequence

$$R[[Z]] \to R[[X,Z]] \to R[[Z]]$$

where $\alpha(Z_i) = X_i + Z_i$ and γ is defined by regarding $R[[X,Z]]$ as $R[[X]][[Z]]$ and setting

$$\gamma(\Sigma h_iZ^i) = \Sigma \sigma^*(h_i)Z^i \quad \text{where} \quad h_i \in R[[X]].$$

We define $\tau^* = \gamma \circ \alpha$ and note that $\tau^*(Z_i) = Z_i + c_i$. Since $R[[Z]] \cong R[[X]]$ by $X \to Z$ there is a mapping $\tau: R[[X]] \to R[[X]]$ such that $\tau(X_i) = X_i + c_i$. We must now see that τ is an automorphism of $R[[X]]$. There is an automorphism δ of $R[[X]]$ which takes X_i to $-X_i$.

The homomorphism $\delta \circ \tau \circ \delta \circ \tau: R[[X]] \to R[[X]]$ is a continuous endomorphism carrying X_i to X_i. It is then clear that $\delta \circ \tau \circ \delta \circ \tau$ is the identity map and hence τ is an automorphism.

Corollary B. If R is a commutative ring with 1 and $X = \{X_i\}_{i=1}^n$, $Y = \{Y_i\}_{i=1}^m$ are indeterminates over R, then any R-homomorphism $\sigma: R[[X]] \to R[[Y]]$ is essentially continuous.

2 This result in the one-variable case appears in [1].
Proof. Let $\sigma(X_t) = c_t + f_t$ with $c_t \in R$ and $f_t \in YR[[Y]]$. Then by Theorem A, there is an automorphism τ of $R[[X]]$ such that $\tau(X_t) = X_t + c_t$. Thus $\tau^{-1}(X_t) = X_t - c_t$. The mapping $\sigma \circ \tau^{-1}$ is continuous since

$$\sigma \circ \tau^{-1}(X_t) = \sigma(X_t - c_t) = c_t + f_t - c_t = f_t$$

and $f_t \in YR[[Y]]$.

Corollary C. If R is a commutative ring with 1 and $\{X_t\}_{t=1}^r$ are indeterminates, then an R-endomorphism $\sigma: R[[X]] \to R[[X]]$ is surjective if and only if it is an automorphism.

Proof. One way is clear. By the proof of Corollary B we may write

$$\sigma(X_t) = l_t + F_t,$$

where l_t is a linear form in X over R and $F_t \in (XR[[X]])^2$.

Using the fact that X_t can be expressed as $\sigma(G_t)$ for some $G_t \in R[[X]]$ and comparing terms of degree one, it is easy to check that if L is the matrix formed by the coefficients of l_t (as the ith row) then L is invertible and hence $\det L$ is a unit in R. Then a standard argument as in Lemma 2, Corollary 2 [ZSII, p. 137] yields that σ is an automorphism.

Now we turn to proving the properties of $I_c(R)$. We will write I_c for $I_c(R)$, whenever there is no confusion.

Theorem D. Let

$I_1 = \{a \in R \mid \text{there exists an } R\text{-automorphism } \sigma: R[[X]] \to R[[X]] \text{ with } \sigma(X_t) = X_t + a\}$

$I_2 = \{a \in R \mid \text{there exists an } R\text{-homomorphism } \sigma: R[[X]] \to R[[Y]] \text{ where } X, Y \text{ are finite sets of indeterminates over } R \text{ such that } \sigma(X_t) = a + f \text{ for some } X_t \in X \text{ and } f \in (YR[[Y]])\}$.

Then $I_c = I_1 = I_2$.

Proof. $I_1 \subseteq I_2$ is obvious. If $a \in I_2$ and σ and X_t are as in the definition, let $\sigma^* = \text{the restriction of } \sigma \text{ to } R[[X]]$ and $\tau: R[[Y]] \to R$ the unique R-homomorphism with $\tau(Y_t) = 0$ for all $Y_t \in Y$. Then $\tau \circ \sigma^*: R[[X]] \to R$ carries X_t to a. Thus $a \in I_c$ and hence $I_2 \subseteq I_c$. Finally, by Theorem A it is clear that $I_c \subseteq I_1$.

Theorem E. I_c is an ideal contained in the Jacobson radical of R. Moreover, the nil-radical of R is contained in I_c.

Proof. Let $a \in I_c$. Since X is in the Jacobson radical of $R [[X]]$ and by Theorem A there is an R-automorphism of $R[[X]]$ carrying X to
X + a we get that X + a belongs to the Jacobson radical of R[[X]]. Thus a belongs to the Jacobson radical of R[[X]] and hence of R. The last remark is easy to prove, and is left to the reader.

Now let X, Y, Z be indeterminates over R. Let a, b ∈ I. Hence by definition we may assume that there exists an R-homomorphism σ: R[[X, Y]] → R with σ(X) = a and σ(Y) = b. Let r, s ∈ R. Let τ: R[[Z]] → R[[X, Y]] be the unique R-homomorphism defined by

\[τ(Z) = rX + xY. \]

Then σ ◦ τ: R[[Z]] → R is an R-homomorphism with σ ◦ τ(Z) = ra + sb. Thus ra + sb ∈ I and hence I is an ideal.

Remarks.

(1) The fact that I is an ideal shows that Theorem 3.4 of [1] is true with no restriction on the element “r”. Thus the conjecture which follows that theorem is false.

(2) In his review of [5] (MR47 # 8532) Gilmer suggests a program for simplifying some of the proofs. This would rest on whether a ring R is a complete Hausdorff space in its \((a, \cdots, a_n) \)-adic topology, if it is a complete Hausdorff space in its \((a_i) \)-adic topology for each i. However, it is easy to give an example where this does not hold. For Gilmer’s example in [1] is a ring R and an element a such that R is complete, but not Hausdorff in its \((a) \)-adic topology. On the other hand, by Theorem D there is an automorphism of R[[X]] which takes X to X + a. Since R[[X]] is a complete Hausdorff space in its X-adic topology, it is also a complete Hausdorff space in its \((X + a) \)-adic topology. However, since R is not Hausdorff in its \((a) \)-adic topology, neither is R[[X]]. So, since \(a \in (X, X + a)R[[X]] \) we see that R[[X]] is not Hausdorff in its \((X, X + a) \)-adic topology.

(3) I may be properly contained in the Jacobson radical of R and it may properly contain the nil-radical of R. For example if \(R' = \mathbb{Z}/4[X], M = (2, X)R' \) and \(R = R_{a}[Y] \). Then the nil-radical of R is \(2R \), I in this case is \((2, Y) \) and the Jacobson radical is \((2, Y, X) \).

(4) It would be nice to have an intrinsic characterization of the ideal I since it allows us to utilize the form of Nakayama’s lemma for complete local rings, namely

Lemma. Suppose that M is an R-module and J ⊂ I is a finitely generated ideal with \(\cap J^n M = \{0\} \). If N is a finitely generated submodule of M with \(M = N + JM \), then \(N = M \).

The proof would be the same as in the complete local ring case [8, Th. 7, p. 259].
REFERENCES

2. R. Gilmer and M. J. O’Malley, R-endomorphisms of $R[[X_1, \ldots, X_n]]$, to appear J. Algebra.

Received July 28, 1975.

UNIVERSITY OF KENTUCKY