SOME NONOSCILLATION CRITERIA FOR HIGHER ORDER NONLINEAR DIFFERENTIAL EQUATIONS

JOHN R. GRAEF
SOME NONOSCILLATION CRITERIA FOR HIGHER ORDER NONLINEAR DIFFERENTIAL EQUATIONS

JOHN R. GRAEF

Sufficient conditions for an \(n \)th order nonlinear differential equation to be nonoscillatory are given. An essential part of the hypotheses is that a related linear equation be disconjugate.

The linear differential equation

\[
x^{(n)} + p(t)x = 0,
\]

where \(p: [t_0, \infty) \to \mathbb{R} \) is continuous, is said to be eventually disconjugate if there exists \(T \geq t_0 \) such that no solution of (1) has more than \(n - 1 \) zeros (counting multiplicities) on \([T, \infty)\). A solution \(x(t) \) of (1) (or equation (2) below) will be called nonoscillatory if there exists \(t_1 \geq t_0 \) such that \(x(t) \neq 0 \) for \(t \geq t_1 \). Equation (1) (or (2)) will be called nonoscillatory if all its solutions are nonoscillatory. Clearly, disconjugacy implies nonoscillation. On the other hand, for \(n = 2, 3 \) or 4 and either \(p(t) > 0 \) or \(p(t) < 0 \), if equation (1) is nonoscillatory, then (1) is eventually disconjugate. Whether this is true for \(n > 4 \) remains an open question (see Nehari [11]).

In this paper we consider the nonlinear differential equation

\[
x^{(n)} + q(t)f(t, x, x', \ldots, x^{(n-1)}) = 0
\]

where \(q: [t_0, \infty) \to \mathbb{R} \) and \(f: [t_0, \infty) \times \mathbb{R}^n \to \mathbb{R} \) are continuous, and obtain some nonoscillation results by making assumptions on the disconjugacy of certain related linear equations. A discussion of disconjugacy criteria for linear differential equations can be found in Coppel [2], Levin [10], Nehari [11], Trench [12], or Willett [13]. For a discussion of nonoscillation criteria for second order nonlinear equations we refer the reader to the recent papers of Coffman and Wong [1], Graef and Spikes [3–5], Wong [14], and the references contained therein. There appears to be no known sufficient conditions for nonoscillation of higher order nonlinear equations.

We will assume that there is a continuous function \(W: [t_0, \infty) \times \mathbb{R}^n \to \mathbb{R} \) such that

\[
|f(t, u_1, \ldots, u_n) - W(t, u_1, \ldots, u_n)| \leq W(t, u_1, \ldots, u_n)|u_1|
\]

for all \((t, u_1, \ldots, u_n) \in [t_0, \infty) \times \mathbb{R}^n\), and
(4) \[f(t, u_1, \ldots, u_n)/u_1 \to A \text{ as } u_1 \to 0. \]

Theorem 1. Suppose that conditions (3) and (4) hold, \(W(t, u_1, \ldots, u_n) \leq B \) and \(M = \max \{ |A|, B \} \). If the equations

(5) \[x^{(n)} + M |q(t)| x = 0 \]

are eventually disconjugate, then equation (2) is nonoscillatory.

Proof. Suppose that equations (5) are disconjugate on \([T, \infty)\) where \(T \geq t_0 \) and let \(x(t) \) be a solution of (1). Define \(Q: [T, \infty) \to \mathbb{R} \) by

\[
Q(t) = \begin{cases}
q(t)f(t, x(t), \ldots, x^{(n-1)}(t))/x(t), & \text{if } x(t) \neq 0 \\
Aq(t), & \text{if } x(t) = 0.
\end{cases}
\]

It then follows that \(Q(t) \) is continuous and \(x(t) \) is a solution of

(6) \[x^{(n)} + Q(t)x = 0. \]

Kondrat’ev [9] showed that if \(p_1(t) \leq p_2(t) \) and the equations

\[x^{(n)} + p_i(t)x = 0, \quad i = 1, 2 \]

are disconjugate on \([T, \infty)\), then for any \(p(t) \) with \(p_1(t) \leq p(t) \leq p_2(t) \) the equation

\[x^{(n)} + p(t)x = 0 \]

is disconjugate on \([T, \infty)\). Here we have \(|Q(t)| \leq M|q(t)| \) so \(-M|q(t)| \leq Q(t) \leq M|q(t)|\). Hence equation (6) is disconjugate and so \(x(t) \) is nonoscillatory.

Remark 1. If \(q(t) \geq 0 \) and \(u_1 f(t, u_1, \ldots, u_n) \geq 0 \), then \(Q(t) \geq 0 \). Since the equation \(x^{(n)} = 0 \) is disconjugate on \([T, \infty)\) for any \(T \geq t_0 \), we would only need to assume that equation (5) with "+" is eventually disconjugate. Note also that condition (4) is only needed to insure that \(Q \) is continuous.

Remark 2. Equations (5) are eventually disconjugate if, for example,

\[\int_{t_0}^{\infty} t^{n-1} |q(t)| \, dt < \infty \]
(see Kiguradze [8], Kondrat'ev [9], or Willett [13]). In this regard we would then have a generalization of a result of Kartsatos [7; Theorem 2].

Willett [13; Theorem 1.4] has shown that if for each $i = 1, 2, \ldots, n$, $p_i : [t_0, \infty) \rightarrow \mathbb{R}$ is continuous and

$$(7) \quad \int_{t_0}^{\infty} t^{-1} |p_i(t)| \, dt < \infty,$$

then the equation

$$(8) \quad x^{(n)} + p_1(t)x^{(n-1)} + \cdots + p_n(t)x = 0$$

is eventually disconjugate. (Recently Gustafson [6] showed that even though nonoscillation implies disconjugacy for equation (8) with $n = 2$, this is not the case for $n > 2$.) Employing the method of proof used above we can obtain that all solutions of

$$(9) \quad x^{(n)} + p_1(t) f_1(x^{(n-1)}) + \cdots + p_n(t) f_n(x) = 0$$

are nonoscillatory.

Theorem 2. Suppose that condition (7) holds and there are bounded continuous functions $W_i : [t_0, \infty) \rightarrow \mathbb{R}$, $i = 1, 2, \ldots, n$ such that

$$|f_i(u)| \leq W(u) |u|$$

and

$$f_i(u)/u \rightarrow A_i \quad \text{as} \quad u \rightarrow 0.$$

Then all solutions of (9) are nonoscillatory.

Proof. If $x(t)$ is a solution of (9), then $x(t)$ is also a solution of

$$(10) \quad x^{(n)} + Q_1(t)x^{(n-1)} + \cdots + Q_n(t)x = 0$$

where

$$Q_i(t) = \begin{cases}
 p_i(t)f_i(x^{(n-i)}(t))/x^{(n-1)}(t), & \text{if } x^{(n-i)}(t) \neq 0 \\
 A_i p_i(t), & \text{if } x^{(n-i)}(t) = 0
\end{cases}$$

In addition, for each $i = 1, 2, \ldots, n$
\[
\int_{t_0}^{\infty} t^{-1} |Q_i(t)| \, dt \leq \int_{t_0}^{\infty} t^{-1} \left[|p_i(t)| / |f_i(x^{(n-i)}(t))| / |x^{(n-i)}(t)| \right] \, dt
\leq \int_{t_0}^{\infty} t^{-1} |p_i(t)| / {\mathcal{W}}(x^{(n-i)}(t)) \, dt
\leq K_i \int_{t_0}^{\infty} t^{-1} |p_i(t)| \, dt
< \infty
\]

where \(K_i\) is a constant. It follows from Willett's theorem that equation (10) is disconjugate and hence \(x(t)\) is nonoscillatory.

Clearly various other forms of equation (9) can be handled in a similar fashion.

As an example of the above results, consider the equation

\[
(11) \quad x^{(n)} + x^3(\sin t)/t^{n+1}(x^2 + 1) = 0.
\]

The corresponding linear equation

\[
(\text{11}) \quad x^{(n)} + x(\sin t)/t^{n+1} = 0
\]

is disconjugate, so equation (11) is nonoscillatory.

References

10. A. Ju. Levin, Non-oscillation of solutions of the equation \(x^{(n)} + p_i(t)x^{(n-i)} + \cdots + p_n(t)x = 0\), Russian Math. Surveys, 24 (1969), 43–90.

Received March 15, 1976. Research supported by the Mississippi State University Biological and Physical Sciences Research Institute.

Mississippi State University