Pacific Journal of Mathematics

DIVISION OF DISTRIBUTIONS

ELEMER E. ROSINGER

Vol. 66, No. 1 November 1976

DIVISION OF DISTRIBUTIONS

ELEMER E. ROSINGER

This paper deals with division in an associative commutative algebra containing the distributions in Rⁿ.

- 1. Introduction. In [5] and [6], a family $(A_{p,\lambda} | p \in \bar{N}^n, \lambda \in \Lambda)$ of associative, commutative algebras with unit element were constructed, with the following main properties:
- (1) $\mathcal{D}'(R^n) \subset A_{p,\lambda}, \forall p \in \bar{N}^n, \lambda \in \Lambda,$ (here, $N = \{0, 1, 2, \dots\}, \ \bar{N} = N \cup \{\infty\} \text{ and } n \in N, n \ge 1$);
- (2) The multiplication in each of the algebras $A_{p,\lambda}$, $p \in \bar{N}^n$, $\lambda \in \Lambda$, induces on $\mathscr{C}^{\infty}(R^n)$ the usual multiplication of functions and the function $\psi \in \mathscr{C}^{\infty}(R^n)$, with $\psi(x) = 1$, $\forall x \in R^n$, is the unit element in the algebras;
- (3) for each $\lambda \in \Lambda$, there exist linear mappings $D^p: A_{q+p,\lambda} \to A_{q,\lambda}$, with $p \in N^n$, $q \in \bar{N}^n$, such that
- (3.1) D^p satisfies on $A_{q+p,\lambda}$ the Leibnitz rule of product derivative.
- (3.2) D^p is the usual distribution derivative on $\mathscr{C}^{\infty}(R^n) \oplus \mathscr{D}'_{\delta}(R^n)$, where $\mathscr{D}'_{\delta}(R^n) = \{S \in \mathscr{D}'(R^n) | \text{supp } S \text{ is finite}\};$
- (4) The following relations hold for the Dirac δ_{x_0} distribution, concentrated in $x_0 \in \mathbb{R}^n$:

$$(x-x_0)'\cdot D^q\delta_{x_0}=0\in A_{p,\lambda},\quad \forall p\in N^n,\quad \lambda\in\Lambda,$$

if
$$q, r \in N^n$$
, $r \ge p + e$, $r \ge q + e$, where $e = (1, \dots, 1) \in N^n$.

In the present paper, within the one dimensional case n = 1, necessary or sufficient conditions are given for $T \in A_{p,\lambda}$, in order to be a solution of one of the equations $x^m \cdot T = 0 \in A_{p,\lambda}$ and $x^m \cdot T = S \in A_{p,\lambda}$, with $m \in \mathbb{N}$, $m \ge 1$.

- 2. Notations. Several classes of sequences of complex valued smooth functions (see [5] and [6]) will be needed.
- (1) $\mathcal{W} = N \to \mathcal{C}^{\infty}(R^1)$; if $s \in \mathcal{W}$, $\nu \in N$, $x \in R^1$, then $s(\nu) \in \mathcal{C}^{\infty}(R^1)$, $s(\nu)(x) \in C^1$; for $\psi \in \mathcal{C}^{\infty}(R^1)$ denote $u(\psi) \in \mathcal{W}$, where $u(\psi)(\nu) = \psi$, $\forall \nu \in N$; \mathcal{W} is in a natural way an associative, commutative algebra (the vector spaces and algebras are considered over the field C^1 of

complex numbers), with the unit element u(1) and zero element u(0); thus, $\mathcal{O} = \{u(0)\}$ is the null space in \mathcal{W} ;

- (2) $D: \mathcal{W} \to \mathcal{W}$ is defined by $(Ds)(\nu)(x) = (Ds(\nu))(x)$, $\forall s \in \mathcal{W}$, $\nu \in \mathbb{N}$, $x \in \mathbb{R}^1$; for given $x_0 \in \mathbb{R}^1$, define τ_{x_0} : $\mathcal{W} \to \mathcal{W}$ by $(\tau_{x_0}s)(\nu)(x) = s(\nu)(x x_0)$, $\forall s \in \mathcal{W}$, $\nu \in \mathbb{N}$, $x \in \mathbb{R}^1$;
 - (3) $\mathscr{U} = \{u(\psi) | \psi \in \mathscr{C}^{\infty}(\mathbb{R}^1)\};$
- (4) \mathcal{S}_0 is the set of $s \in \mathcal{W}$, weakly convergent in $\mathcal{D}'(R^1)$; \mathcal{V}_0 is the kernel of the linear surjection:

$$\mathcal{S}_0 \ni s \to \langle s, \cdot \rangle \in \mathcal{D}'(\mathbb{R}^1),$$

where

$$\langle s, \psi \rangle = \lim_{\nu \to \infty} \int_{R^1} s(\nu)(x)\psi(x)dx, \quad \forall \psi \in \mathcal{D}(R^1);$$

One of the basic ideas in the construction of the associative and commutative distribution multiplication in [5] and [6], is the way the weakly convergent sequences of smooth functions representing the Dirac δ distribution are chosen:

- (5) \mathscr{Z}^0_{δ} is the set of $s \in \mathscr{S}_0$, satisfying the conditions:
- $(5.1) \quad \langle s, \cdot \rangle = \delta,$
- (5.2) $\forall \epsilon > 0 : \exists \nu_{\epsilon} \in N : \forall \nu \in N,$ $\nu \ge \nu_{\epsilon}, x \in R^{1}, |x| \ge \epsilon : s(\nu)(x) = 0$
- (5.3) $\forall p \in N: \exists \nu_p \in N: \forall \nu \in N, \\ \nu \ge \nu_p: W(s(\nu), \dots, s(\nu+p))(0) \ne 0.$

where $W(\psi_1, \dots, \psi_m)(x)$, $x \in R^1$, denotes the Wronskian function of $\psi_1, \dots, \psi_m \in \mathscr{C}^{\infty}(R^1)$.

The condition (5.3), called "strong local presence of s in x = 0" and replaced in [6] by a weaker form, plays a central role in the associative, commutative distribution multiplication presented in [5] and [6].

- (6) for $p \in \overline{N}$, denote by $\widetilde{V}_{\delta,p}^0$ the set of $v \in \mathcal{V}_0$, satisfying the above condition (5.2), as well as
 - (6.1) $\forall q \in N, q \leq p : \exists \nu_q \in N : \forall \nu \in N : \nu \geq \nu_q \Rightarrow D^q v(\nu)(0) = 0;$
 - (7) $\mathscr{S}^0_{\delta} = \{ s \in \mathscr{S}_0 | \operatorname{supp} \langle s, \cdot \rangle \subset \{0\} \};$
- (8) $\mathcal{V}_{\delta, p}$, with $p \in \vec{N}$, and \mathcal{S}_{δ} are the vector subspaces generated in \mathcal{W} by $\bigcup_{x \in R^1} \tau_x \mathcal{V}_{\delta, p}^0$, respectively $\bigcup_{x \in R^1} \tau_x \mathcal{S}_{\delta}^0$;
 - $(9) \quad \mathscr{Z}_{\delta} = X_{x \in R^1} \tau_x \mathscr{Z}_{\delta}^0;$
- (10) for $\Sigma = (s_x | x \in R^1) \in \mathcal{Z}_{\delta}$, denote by $\mathcal{S}(\Sigma)$ the vector subspace generated in \mathcal{S}_0 by the sequences $D^p s_x$, with $x \in R^1$, $p \in N$.

And now, the definition of the associative, commutative algebras

 $(A_{p,\lambda} | p \in \overline{N}, \lambda \in \Lambda)$, where Λ is the set of all $\lambda = (\Sigma, \mathcal{S}_1)$ with $\Sigma \in \mathcal{Z}_{\delta}$ and \mathcal{S}_1 vector subspace in \mathcal{S}_0 , such that $(\mathcal{U} + \mathcal{S}_{\delta}) \cap \mathcal{S}_1 = \mathcal{O}$ and $\mathcal{S}_0 = \mathcal{U} + \mathcal{S}_{\delta} + \mathcal{S}_1$.

Suppose $p \in \bar{N}$, $\lambda = (\Sigma, \mathcal{S}_1) \in \Lambda$ and denote

- (11) $\mathcal{S}_{p,\lambda} = \mathcal{V}_{\delta,p} \oplus \mathcal{U} \oplus \mathcal{S}(\Sigma) \oplus \mathcal{S}_1;$
- (12) $\mathcal{A}_{p,\lambda}$ the smallest subalgebra in \mathcal{W} , containing $\mathcal{S}_{p,\lambda}$ and invariant of the mapping $D: \mathcal{W} \to \mathcal{W}$;
 - (13) $\mathcal{I}_{p,\lambda}$ the vector subspace generated in \mathcal{W} by $\mathcal{V}_{\delta,p} \cdot \mathcal{A}_{p,\lambda}$. Then (see [5] and [6])
 - (1) $A_{p,\lambda} = \mathcal{A}_{p,\lambda}/\mathcal{I}_{p,\lambda}$
 - (2) $D: A_{p+1, \lambda} \rightarrow A_{p, \lambda}$ is given by

$$D(t + \mathcal{I}_{p+1, \lambda}) = Dt + \mathcal{I}_{p, \lambda}, \quad \forall t \in \mathcal{A}_{p+1, \lambda}.$$

3. Multiplication by $1/x^m$, $m = 1, 2, \cdots$. It is shown (see Corollary 2) that in the algebras $A_{p,\lambda}$, the multiplication by $1/x^m$ does not represent the division by x^m .

THEOREM 1. Suppose $T \in A_{p,\lambda}$, with given $p \in \overline{N}$, $\lambda \in \Lambda$. Suppose $\psi \in \mathscr{C}^{\infty}(R^1)$ such that for a certain $m \in \overline{N}$

$$D^q \psi(0) = 0, \quad \forall q \in \mathbb{N}, \quad q \leq m.$$

If there exists $\chi \in \mathscr{C}^{\infty}(\mathbb{R}^1)$ such that $\psi \cdot T = \chi$ in $A_{p,\lambda}$, then:

$$D^q \chi(0) = 0, \quad \forall q \in \mathbb{N}, \quad q \leq \min\{p, m\}.$$

Proof. Assume $T = t + \mathcal{I}_{p, \lambda}$, with $t \in \mathcal{A}_{p, \lambda}$. Then $\psi \cdot T = \chi$ in $A_{p, \lambda}$ implies $u(\chi) = u(\psi) \cdot t + w$, with $w \in \mathcal{I}_{p, \lambda}$. Therefore,

$$\forall q \in \mathbb{N}, q \leq p \colon \exists \nu_q \in \mathbb{N} \colon \forall \nu \in \mathbb{N}, \nu \geq \nu_q \colon D^q w(\nu)(0) = 0.$$

Since $\chi = \psi \cdot t(\nu) + w(\nu)$, $\forall \nu \in \mathbb{N}$, the proof is completed.

Corollary 1. Suppose $T \in A_{p,\lambda}$, with given $p \in \overline{N}$, $\lambda \in \Lambda$.

If $\psi \in \mathscr{C}^{\infty}(\mathbb{R}^1)$ such that $\psi(0) \neq 0$, then, $x^m \cdot T \neq \psi$ in $A_{p,\lambda}$, $\forall m \in \mathbb{N}$, $m \geq 1$.

COROLLARY 2. If $m \in N$, $m \ge 1$, then, $x^m \cdot (1/x^m) \ne 1$, in each of the algebras $A_{p,\lambda}$, $p \in \overline{N}$, $\lambda \in \Lambda$.

4. Division by x^m , $m = 1, 2, \cdots$. First, in Theorem 2, a

sufficient condition is given for $T \in A_{p,\lambda}$, in order to be a solution of the equation $x^m \cdot T = 0 \in A_{p,\lambda}$, where $m \in \mathbb{N}$, $m \ge 1$.

For $p \in \bar{N}$ and $\lambda \in \Lambda$, denote by $B_{p,\lambda}^0$ all the elements $T \in A_{p,\lambda}$ of the form $T = t + \mathcal{I}_{p,\lambda}$, where $t \in \mathcal{A}_{p,\lambda} \cap \mathcal{V}_0$ and satisfies also (5.2) in §2.

PROPOSITION 1. Suppose given $p \in \bar{N}$, $\lambda \in \Lambda$ and $\psi \in \mathscr{C}^{\infty}(R^1)$, such that, for a certain $q \in \bar{N}$, $q \ge p$:

$$D'\psi(0) = 0, \quad \forall r \in \mathbb{N}, \quad r \leq q.$$

Then, $\psi \cdot B_{p,\lambda}^0 = \{0\} \subset A_{p,\lambda}$.

Proof. Assume $T \in B_{p,\lambda}^0$ and $T = t + \mathcal{I}_{p,\lambda}$, with $t \in \mathcal{A}_{p,\lambda} \cap \mathcal{V}_0$ and satisfying (5.2) in §2. Then, $\psi \cdot T = u(\psi) \cdot t + \mathcal{I}_{p,\lambda}$. But, obviously, $u(\psi) \cdot t \in \mathcal{V}_{\delta,q}^0 \subset \mathcal{V}_{\delta,p}^0 \subset \mathcal{I}_{p,\lambda}$, hence, $T = 0 \in A_{p,\lambda}$.

THEOREM 2. Suppose given $p \in N$, $\lambda \in \Lambda$ and $m \in N$, $m \ge 1$. Then, any

$$T_0 = \sum_{0 \leq i \leq k} x^{r_i} \cdot T_{1i} \cdot T_{2i} + \sum_{0 \leq j \leq h} x^{q_j} \cdot D^{p_j} \delta \cdot T_{3j},$$

with k, h, r_i, q_j, p_j \in N, r_i > p - m, q_i $> \max\{p, p_j\} - m$, and $T_{1i} \in B^0_{p,\lambda}$, T_{2i} , $T_{3j} \in A_{p,\lambda}$, will be a solution in $A_{p,\lambda}$ of the equation $x^m \cdot T = 0$.

Proof. According to Proposition 1, $x^m \cdot x^{r_i} \cdot T_{1i} = x^{m+r_i} \cdot T_{1i} = 0 \in A_{p,\lambda}$, since $m + r_i > p$. According to (4) in §1 (see also 3) in Theorem 6, §8 [5]), $x^m \cdot x^{q_i} \cdot D^{p_i} \delta = x^{m+q_i} \cdot D^{p_i} \delta = 0 \in A_{p,\lambda}$, since $m + q_i > \max\{p, p_i\}$.

It results the following sufficient condition on $T \in A_{p,\lambda}$, solution of the equation $x^m \cdot T = S \in A_{p,\lambda}$.

COROLLARY 3. Suppose $S \in A_{p,\lambda}$, with $p \in N$, $\lambda \in \Lambda$ given and $m \in N$, $m \ge 1$.

If T_1 is any solution in $A_{p,\lambda}$ of the equation $x^m \cdot T = S$ and T_0 is given as in Theorem 2, then $T = T_1 + T_0$ will be again a solution of that equation.

Before a necessary condition is given on $T \in A_{p,\lambda}$, solution of the equation $x^m \cdot T = 0 \in A_{p,\lambda}$, the notion of *support* of the elements in $A_{p,\lambda}$ will be defined.

Suppose $T \in A_{p,\lambda}$, with $p \in \overline{N}$, $\lambda \in \Lambda$ given and $E \subset R^1$. Then,

- (1) T vanishes on E, only if $T = t + \mathcal{I}_{p,\lambda}$, with $t \in \mathcal{A}_{p,\lambda}$, such that $t(\nu)(x) = 0$, $\forall \nu \in \mathbb{N}, \nu \geq \nu_0, x \in E$.
- (2) T strictly vanishes on E, only if T vanishes on a certain open set $G \subset \mathbb{R}^1$, containing E.
- (3) T is supported by E, only if for every open set $G \subset \mathbb{R}^1$, containing E, one can write $T = t + \mathcal{I}_{p,\lambda}$, with $t \in \mathcal{A}_{p,\lambda}$, such that supp $t(\nu) \subset G$, $\forall \nu \in \mathbb{N}, \nu \geq \nu_0$.

The support of T is defined as the closed set

supp
$$T = R^1 \setminus \{x \in R^1 \mid T \text{ strictly vanishes on } \{x\}\}.$$

Obviously, for the distributions in $\mathscr{C}^{\infty}(R^1) \oplus \mathscr{D}'_{\delta}(R^1)$, the above notion of support is identical with the usual one for distributions.

PROPOSITION 2. Suppose $x_0 \in R^1$ and $q \in N$, then, $D^q \delta_{x_0} \in A_{p,\lambda}$, for $p \in \overline{N}$, $\lambda \in \Lambda$, and

- (1) $D^q \delta_{x_0}$ is supported by $\{x_0\}$ and supp $D^q \delta_{x_0} = \{x_0\}$,
- (2) if $E \subset \mathbb{R}^1$ and $x_0 \notin \text{closure } E$, then $D^q \delta_{x_0}$ strictly vanishes on E,
- (3) $D^q \delta_{x_0}$ does not vanish on $R^1 \setminus \{x_0\}$,
- (4) $D^q \delta_{x_0}$ does not vanish on $\{x_0\}$.

Proof. (1), (2) and (3) follow easily.

(4) Assume $\lambda = (\Sigma, \mathcal{S}_1)$ and $\Sigma = (s_x \mid x \in R^1)$, then, $D^q \delta_{x_0} = D^q s_{x_0} + \mathcal{S}_{p,\lambda}$ and $s_{x_0} \in \tau_{x_0} \mathcal{Z}_{\delta}^0$. Suppose, $D^q \delta_{x_0}$ vanishes on $\{x_0\}$, then, there exists $t \in \mathcal{A}_{p,\lambda}$, such that $t - D^q s_{x_0} \in \mathcal{S}_{p,\lambda}$ and $t(\nu)(x_0) = 0$, $\forall \nu \in N$, $\nu \ge \nu_0$. Denoting $v = t - D^q s_{x_0}$, the relation $v \in \mathcal{S}_{p,\lambda}$ implies $\nu(\nu)(x_0) = 0$, $\forall \nu \in N$, $\nu \ge \nu_1$. Therefore, it results

$$D^{q} s_{x_{0}}(\nu)(x_{0}) = t(\nu)(x_{0}) - v(\nu)(x_{0}) = 0, \quad \forall \nu \in \mathbb{N}, \quad \nu \geq \nu_{2}.$$

But, that relation implies $W(s_{x_0}(\nu), \dots, s_{x_0}(\nu+q))(x_0) = 0, \ \forall \nu \in \mathbb{N}, \ \nu \ge \nu_2$, which contradicts the assumption $s_{x_0} \in \tau_{x_0} \mathscr{Z}^0_{\delta}$.

REMARK. The property of the Dirac distributions that $D^q \delta_{x_0}$ does not vanish on $\{x_0\}$, $\forall x_0 \in R^1$, $q \in N$, is a direct consequence of the "condition of strong local presence" (see (5.3) in §2) and it is proper for the distribution multiplication presented in [5] and [6]. The "delta sequences" generally used (see [2]) do not necessarily prevent the vanishing of $D^q \delta_{x_0}$ on $\{x_0\}$.

THEOREM 3. Suppose $T \in A_{p,\lambda}$ with $p \in \bar{N}$, $\lambda \in \Lambda$ given.

If $x^m \cdot T = 0 \in A_{p,\lambda}$, for a certain $m \in \mathbb{N}$, $m \ge 1$, then T is supported by $\{0\}$, hence supp $T \subset \{0\}$.

Proof. Assume $T = t + \mathcal{I}_{p,\lambda}$, with $t \in \mathcal{A}_{p,\lambda}$. Then $x^m \cdot T = 0 \in A_{p,\lambda}$ implies $u(x^m) \cdot t \in \mathcal{I}_{p,\lambda}$, therefore, according to the definition of $\mathcal{I}_{p,\lambda}$ (see (13), §2), it results

$$u(x^m)\cdot t=\sum_{0\leq i\leq k}v_i\cdot a_i$$

with $k \in \mathbb{N}$, $v_i \in \mathcal{V}_{\delta, p}$, $a_i \in \mathcal{A}_{p, \lambda}$.

Now, due to the definition $\mathcal{V}_{\delta,p}$ (see (8) and (6), §2), it follows that: $\forall i \in \{0, \dots, k\}: \exists X_i \subset R^1, X_i \text{ finite: } v_i = \sum_{x \in X_i} v_{ix}, \text{ where } v_{ix} \in \tau_x \mathcal{V}^0_{\delta,p}.$ Concluding, there exists $X \subset R^1, X$ finite, such that

$$u(x^m)\cdot t=\sum_{x\in X}\sum_{0\leq j\leq h}v_{x_j}\cdot b_{x_j}\quad \text{with}\quad h\in N,\quad v_{x_j}\in \tau_x\mathcal{V}^0_{\delta,\,p},\quad b_{x_j}\in \mathcal{A}_{p,\,\lambda}.$$

It will be shown now, that in the above relation, one can consider $X = \{0\}$. Indeed, suppose $x_0 \in X \setminus \{0\}$, then $v_{x_0j} \in \tau_{x_0} \mathcal{V}_{\delta,p}^0$ with $0 \le j \le h$. The condition (5.2) in §2, results in the existence of $w_{x_0j} \in \mathcal{W}$, with $0 \le j \le h$, such that $v_{x_0j}(v)(x) = x^m \cdot w_{x_0j}(v)(x)$, $\forall 0 \le j \le h$, $x \in R^1$, $v \in N$, $v \ge v_0$. Moreover, $w_{x_0j} \in \tau_{x_0} \mathcal{V}_{\delta,p}^0$, $\forall 0 \le j \le h$, since $v_{x_0j} \in \tau_{x_0} \mathcal{V}_{\delta,p}^0$ with $0 \le j \le h$, and $v_0 \ne 0$.

Denoting

$$v = \sum_{\substack{x_0 \in X \\ 20}} \sum_{0 \le j \le h} w_{x_{0j}} \cdot b_{x_{0j}}$$

it results $v \in \mathcal{I}_{p,\lambda}$, hence, $T = t_1 + \mathcal{I}_{p,\lambda}$, where $t_1 = t - v \in \mathcal{A}_{p,\lambda}$. But $u(x^m) \cdot t_1 = u(x^m) \cdot t - u(x^m) \cdot v = \sum_{0 \le j \le h} v_{0,j} \cdot b_{0,j}$.

Since v_0 , with $0 \le j \le h$, satisfy (5.2) in §2, it follows that $u(x^m) \cdot t_1$ and, therefore t_1 satisfy the same condition. Thus, $T = t_1 + \mathcal{I}_{p,\lambda}$ is supported by $\{0\}$, which obviously results in supp $T \subset \{0\}$.

REFERENCES

- 1. H. Kang, J. Richards, A general definition of convolution for distributions, (to appear).
- 2. J. Mikusinski, On the square of the Dirac delta distribution, Bull. Acad. Pol. Sci., 14, 9, (1966), 511-513.
- 3. E. Rosinger, Embedding the $\mathcal{D}'(R^n)$ distributions in pseudotopological algebras, Stud. Cerc. Mat., 18. 5, (1966), 687–729.
- 4. ——, Pseudotopological spaces. Embedding the $\mathcal{D}'(R^n)$ distributions into algebras, Stud. Cerc. Mat., **20**, 4, (1968), 553–582.

- 5. ——, A distribution multiplication theory, Haifa Technion's Preprint Series, AMT-31, October 1974 (to appear).
- 6. ——, An associative, commutative distribution multiplication, Technical Report, Haifa Technion, March 1976 (to appear).
- 7. L. Schwartz, Sur l'impossibilité de la multiplication des distributions, C. R. Acad. Sci. Paris, 239 (1954), 847-848.

Received June 23, 1975 and in revised form April 12, 1976.

TECHNION — ISRAEL INSTITUTE OF TECHNOLOGY

Pacific Journal of Mathematics

Vol. 66, No. 1 November, 1976

Helen Elizabeth. Adams, <i>Factorization-prime ideals in integral domains</i>	1
kernel Daniel D. Anderson, Jacob R. Matijevic and Warren Douglas Nichols, The Krull	9
intersection theorem. II	15
rings Robert H. Bird and Charles John Parry, Integral bases for bicyclic biquadratic fields over quadratic subfields	23 29
Tae Ho Choe and Young Hee Hong, Extensions of completely regular ordered spaces	37
John Dauns, Generalized monoform and quasi injective modules	49 67
Paul M. Eakin, Jr. and Avinash Madhav Sathaye, R-endomorphisms of R[[X]] are essentially continuous	83
Larry Quin Eifler, Open mapping theorems for probability measures on metric spaces	89
Garret J. Etgen and James Pawlowski, Oscillation criteria for second order self adjoint differential systems	99
Ronald Fintushel, Local S ¹ actions on 3-manifolds	111
$^{\prime}$ 1 1	119
John R. Graef, Some nonoscillation criteria for higher order nonlinear differential	
1	125
Charles Henry Heiberg, Norms of powers of absolutely convergent Fourier series: an	
example	131
Les Andrew Karlovitz, Existence of fixed points of nonexpansive mappings in a space	152
	153
Gangaram S. Ladde, Systems of functional differential inequalities and functional differential systems	161
Joseph Michael Lambert, Conditions for simultaneous approximation and interpolation	
1 2 7 3	173 181
	191
Robert F. Lax, Weierstrass points of products of Riemann surfaces	191
	195
Paul Milnes and John Sydney Pym, Counterexample in the theory of continuous	1)3
	205
Peter Johanna I. M. De Paepe, Homomorphism spaces of algebras of holomorphic	211
Judith Ann Palagallo, A representation of additive functionals on L ^p -spaces,	221
	235
Thomas Thornton Read, A limit-point criterion for expressions with oscillatory	
33	243
	257
Peter S. Shoenfeld, Highly proximal and generalized almost finite extensions of	265
	265
1	281
Robert Charles Thompson, Convex and concave functions of singular values of matrix	
	285
Edward D. Tymchatyn, Some n-arc theorems	285 291 295