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ELEMER E. ROSINGER

This paper deals with division in an associative commutative
algebra containing the distributions in R".

1. Introduction. In[5]and[6], a family (A, ,|p € N", A €A)
of associative, commutative algebras with unit element were constructed,
with the following main properties:

(1) @'(R")CA,, YpEN" A EA,

(here, N={0,1,2,--+-}, N=NU{»} and n €N, n = 1),

(2) The multiplication in each of the algebras A, ,, p € N", A €A,
induces on €*(R") the usual multiplication of functions and the function
¥ € €°(R"), with ¢(x) =1, Vx € R", is the unit element in the algebras;

(3) for each A € A, there exist linear mappings D?: A,., . —> A,
with p € N", g € N", such that

(3.1) Dr satisfies on A,., , the Leibnitz rule of product deriva-
tive.

(3.2) D* is the wusual distribution derivative on
€ (R)DP DYR"), where DYR")={S € D'(R")|supp S
is finite};

(4) The following relations hold for the Dirac §,, distribution,
concentrated in x, € R":

(x —x0) -D%,=0€A,,, VpEN" AEA,
if g rEN,rzp+e r=q+e where e=(1,---,1)EN".

In the present paper, within the one dimensional case n =1,
necessary or sufficient conditions are given for T € A, ,, in order to be a
solution of one of the equations x™ - T=0€ A,, andx™ - T=S €A, ,,
with m €N, m = 1.

2. Notations. Several classes of sequences of complex valued
smooth functions (see [5] and [6]) will be needed.

1 W=N->%(R"); if sE¥, vEN, xE€R', then s(v)€E
€~(R"), s(v)(x) € C"; for ¢ € €~(R") denote u(y) € W, where u(¢) (v)
=y, Vv € N; W is in a natural way an associative, commutative algebra
(the vector spaces and algebras are considered over the field C' of
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complex numbers), with the unit element u(1) and zero element u(0);
thus, 0 = {u(0)} is the null space in W;

(2) D: W— W is defined by (Ds)(v)(x)=(Ds(v))(x), Vs E W,
v € N, x € R'; for given x,E€ R, define 7,: W — W by (1,5)(v)(x)=
s(v)(x —x,), VsEW, vEN, x ER';

G) U={u@)|y e 6 (R}

(4) s the set of s € W, weakly convergent in Z'(R"); ¥, is the
kernel of the linear surjection:

F3s— (s, ) ED'(R)),

where

sw)=tim [ s)0sdn Ve E DR

One of the basic ideas in the construction of the associative and
commutative distribution multiplication in [5] and [6], is the way the
weakly convergent sequences of smooth functions representing the Dirac
& distribution are chosen:

(5) Z3 is the set of s € ¥,, satisfying the conditions:

(51) (S,'>=8,

(5.2) Ve>0:3v,EN:VvEN,

vZzu,xER|x|ze:s(v)(x)=0

(53) VpEN:3Iy,EN:YrvEN,

vy, W(s(v), -+, s(r+p))(0)#0.
where W(¢,, -+, ¢,)(x), x € R, denotes the Wronskian function of
o,y e € €7(RY).

The condition (5.3), called ‘““strong local presence of s in x =0 and
replaced in [6] by a weaker form, plays a central role in the associative,
commutative distribution multiplication presented in [5] and [6].

(6) for p € N, denote by V'3, the set of v € ¥, satistying the above
condition (5.2), as well as

6.1) VgeEN,gq=p: Ay, EN: Vv EN: v=2 v, > D (v)(0)=0;

(1) &5={s € F|supp(s,-) C{0}};

(8) Vs, with p € N, and ¥; are the vector subspaces generated in
W by U,cr 7.Y5,, tespectively U, cp: 7.F5%;

O %= XxER' %%

(10) for 3 = (s.|x € R") € &,, denote by () the vector subspace
generated in &, by the sequences D*s,, with x ER', p EN.

And now, the definition of the associative, commutative algebras
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(A,.|p €N, X € A), where A is the set of all A = (2, #;) with 3 € &, and
&, vector subspace in ¥, such that (U +%)NF =0 and ¥, =
U+ S5+ L.

Suppose p €N, A = (3, #)E A and denote

(1) %, =Y, BUDFE)D P

(12) o, , the smallest subalgebra in %, containing ¥,, and in-
variant of the mapping D: W — W',

(13) 4, , the vector subspace generated in W by V5, - A, ..

Then (see [S] and [6])

(1) AIM = ‘Q«M/fpv A

(2) D: A,...—A,, is given by

D(t+jp+l,/\):Dt+‘¢p'/\, VtEdp+1,)‘.

3. Multiplication by 1/x™, m =1,2,---. It is shown
(see Corollary 2) that in the algebras A, ,, the multiplication by 1/x™ does
not represent the division by x™.

THEOREM 1. Suppose T € A, ,, with given p € I\—I; A EA.
Suppose ¢ € €*(R") such that for a certain m € N

Dy (0)=0, Vq € N, q=m.
If there exists x € €*(R") such that ¢ - T = x in A, ,, then:
Dx(0)=0, Vq€&€N, q=min{p,m}.

Proof. Assume T=t+$,, witht€«,,. Theny -T=yxin A,,
implies u(x)=u(y)-t+w, with w € 4, ,. Therefore,

YVeaEN q=p: Ay, EN:YvEN, v=y,: D'w(r)(0)=0.
Since y = ¢ - t(v)+ w(v), Vv € N, the proof is completed.
COROLLARY 1. Suppose T € A, ,, with given p €N, A EA.

If ¢ € €7°(R") such that ¢(0) # 0, then, x™ - T# ¢ in A, ,, Vm € N,
m=1.

CoroLLARY 2. If m EN, m =1, then, x™ - (1/x™)# 1, in each of
the algebras A, ,, p EN, A EA.

4. Division by x”, m = 1,2,---. First, in Theorem 2, a
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sufficient condition is given for T € A, ,, in order to be a solution of the
equation x" - T=0€ A, ,, where m EN, m = 1.

For p € N and A € A, denote by BY, all the elements TE A, , of
the form T =t + 4, ,, where t € o, , N ¥, and satisfies also (5.2) in §2.

PROPOSITION 1. Suppose given p € N, A €A and € €*(R"), such
that, for a certain q €N, q Z p:

D¢ (0)=0, Vr €N, r=q.
Then, ¢ - B, ={0}CA, ..

Proof. Assume TE€B), and T=t+4,,, with t€ d,, NV, and
satisfying (5.2) in §2. Then, ¢ - T =u(y)-t+ 4,, But, obviously,
u() t€V3,CV8,C%, ., hence, T=0€A,,.

THEOREM 2. Suppose given p E N, A€EA and m €N, m = 1.
Then, any

T, = Z x" T, T, + 2 x%-D?§ - T,

0=i=k 0=/=h

with k, h, r, q, p EN, r,>p —m,

q, > max{p,p}—m,

and Tl, e B?)‘/\, TZ:; T‘&/ € Ap,/\,

will be a solution in A, , of the equation x™ - T = 0.

Proof. According to Proposition 1, x™-x"-T,=x""-T, =
0€E A, ,,sincem +r,>p. According to (4) in §1 (see also 3) in Theorem
6, 8§88 [5]), x™-x%-D®6=x""%-DPs=0€A,, since m+gq >
max{p, p;}.

It results the following sufficient condition on T € A, ,, solution of
the equation x" - T=S€ A, ..

CoOROLLARY 3. Suppose SE A, ,, with pEN, A €A given and
meN, m=1.

If T\ is any solution in A,, of the equation x™-T =S and T, is
given as in Theorem 2, then T = T, + T, will be again a solution of that
equation.

Before a necessary condition is given on T € A, ,, solution of the
equation x™ - T =0€ A, ,, the notion of support of the elements in A, ,
will be defined.
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Suppose T € A, ,, with p € N, A € A given and E CR'. Then,

(1) T vanishes on E, only if T =1t+ $,,, with t € o, ,, such that
t(v)(x)=0,VvEN, v=v, x EE.

(2) T strictly vanishes on E, only if T vanishes on a certain open set
G CR', containing E.

(3) T is supported by E, only if for every open set G CR',
containing E, one can write T=t+JY,, with t€ 4, , such that
supp t(r)CG, VVEN, v = v,.

The support of T is defined as the closed set

supp T = R'\{x € R"| T strictly vanishes on {x}}.

Obviously, for the distributions in €*(R")P DR'), the above
notion of support is identical with the usual one for distributions.

PropPoSITION 2.  Suppose x, € R' and q € N, then, D, € A, ,, for
pEN, AEA, and

(1) D9, is supported by {x,} and supp D8, = {x},

(2) ifE CR'andx,& closure E, then D8, strictly vanishes on E,

(3) D4, does not vanish on R'\{x,},

(4) D9, does not vanish on {x,}.

Proof. (1), (2) and (3) follow easily.
(4) Assume A = (2, %) and X =(s,|x € R"), then, D,= D, + 4,,
and s, € 7,%5 Suppose, D9, vanishes on {x,}, then, there exists
t€o,, such that t— D9, €%, and t(v)(x))=0, VVEN, v=
v,. Denoting v =t — D7, the relation v € .4, , implies v(v)(x,) =0,
Vv EN, v=v,. Therefore, it results

D4s, (v)(x0) = t(v) (x0) — v(v) (x0) = 0, Vv EN, VZE v,

But, that relation implies W (s,(v), ", s(v +q))(x0)=0, Vv EN, v =
v,, which contradicts the assumption s, € 7,%3.

REMARK. The property of the Dirac distributions that D95, does
not vanish on {x,}, Vx,€ R', g €N, is a direct consequence of the
“condition of strong local presence” (see (5.3) in §2) and it is proper for
the distribution multiplication presented in [5] and [6]. The ‘“‘delta
sequences’’ generally used (see [2]) do not necessarily prevent the
vanishing of D%, on {x.}.

THEOREM 3. Suppose T € A, , with p € N, A € A given.
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Ifx"-T=0€A,, foracertainm €N, m =1, then T is supported
by {0}, hence supp T C{0}.

Proof. Assume T=t+ 4, , witht€ «,,. Thenx"-T=0€A,,
implies u(x™)-t € 4, ,, therefore, according to the definition of %, , (see
(13), §2), it results

u(x™)-t= > v -a

0=1=k

with kEN, v, € V5 ,, a € A, .
Now, due to the definition 75, (see (8) and (6), §2), it follows that:
Vie{0,---, k}: 3X CR', X, finite: v, = Z,cx v,, where v, € 7,773 ,.
Concluding, there exists X CR', X finite, such that

u(x”‘)-tzz 2 v,-b, with hEN, v, €7Y5, b, EA,,.

XEX 0=jsh

It will be shown now, that in the above relation, one can consider
X ={0}. Indeed, suppose x,€ X\{0}, then v, € 7,74, with 0=j=
h. The condition (5.2) in §2, results in the existence of w,; € W, with
0=j=h, such that v, (v)(x)=x" -w,(v)(x), VO=j=h, xER',
vEN, v=Zv, Moreover, w,, € 1,Y%,, YO=j =h, since v,, € 1,73,
with 0=j = h, and x, # 0.

Denoting

U= 2 Z Wy 'bw
X0EX 0%=h
x0#0

it results v € #,,, hence, T=1t+9,, where t,=t—-v€E,, But
u(x™) -t =u(x™) t—u(x") v =221 0y, - by,

Since v,, with 0 =j = h, satisfy (5.2) in §2, it follows that u(x™)- ¢,
and, therefore t, satisfy the same condition. Thus, T=1t+¢4,, is
supported by {0}, which obviously results in supp T C{0}.
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