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Highly proximal extensions are a nonmetric generalization
of the notion of almost one-to-one extensions of minimal
flows. These extensions are studied and the results are applied
to the Veech structure theorem and to generalized almost finite
homomorphisms.

1. Introduction. In Veech’s paper on point distal flows [7],
hyperspaces are used to associate an almost one-to-one homomorphism
with a given homomorphism of metric minimal sets. In §2, the notion of
a highly proximal homomorphism is used to obtain a nonmetric general-
ization of this construction. An abstract characterization is obtained
and a strengthened version of the Veech Structure Theorem is
proved. Generalized almost finite homomorphisms are studied in §3.

- A flow (X, T) consists of a discrete group, 7, acting on a compact
Hausdorff space X as a group of homeomorphisms. Since T remains
fixed in this paper, we will write X instead of (X, T). An extension, or
homomorphism, is a continuous, equivariant map. Given a family of
homomorphisms {¢: X, — Y}, its product is the homomorphism
y: X—Y where X = {(x;) € I1,{X;}| ¢:(x,) the same for all i}, with the
group action and ¢ defined in the obvious way. We assume the basic
material in [3] concerning BT, almost periodicity, universal minimal sets,
etc. We distinguish a universal minimal set M and let J = {idempotents
in M}. Given x € X, we define J(x)={u € J|xu = x}. We will gener-
ally deal with a fixed homomorphism 7: X — Y, with X and Y minimal.

The hyperspace flow 2% is the space of all closed, nonempty subsets
of X with the Hausdorff topology and with the group action defined in
the obvious way. We will use the subflow 2" = {A €2*| A C#77'(y) for
some y € Y} and the naturally defined homomorphism 7:27->Y.
Given A €2% p€ BT, we let Acp denote the action of p on A
within 2*¥ and let Ap ={xp|x € A}. Generally A°p# Ap. It is
easily seen that x € A op if and only if x,t, = x for some nets (x,) in A
and (t,) in T such that t, - p. We may define A °p this way when the
set A CX is not necessarily closed. It is then readily shown that
Acp=Aop.
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Basic material on hyperspace flows may be found in [5] and
[6]. The following lemma from [6] will be used frequently.

LemMA 1.1. The following statements hold for any homomorphism
m: X — Y, without minimality assumptions.

(i) #w(A)ep=m(Ac°p) forall A€2X peEpBT.

(i) #'(B)epCw'(Bep) for all BE2", p € BT.

(i) 7 (y)ep Cm'(yp) forally €Y, p € BT.

(iv) 77'(y)o(pq)= w"'(yp)°q for all almost periodic points y € Y
and p, q € M.

Next we use hyperspaces to get a new characterization of almost
periodic homomorphisms. The following lemma is well known.

LEMMA 1.2.  Suppose S is a dense subset of the equivalence relation
determined by m and x, x', x"€ X. Then the pair (x, x') is regionally
proximal relative to  iff there exist nets (x,), {x,) in X, and (t,) in T such
that each (x,,x,)E S and

X, —> X X, t, —> x"
x'—x' xnt,—>x".

LeMMA 1.3. Suppose i is distal. Consider x, x'€EX, yE Y, pE
BT, and nets (x,) in w7 '(y) and (t,) in T such that x, —> x, t,— p, and
X.t,—>x'. Then x' = xp.

Proof. Let A, ={x,|n'=n} for each n. Pick u €J(y). Then
Acu = A foreach closed A C7'(y), since 7 is distal, and, in particular,

Ayou=A,ou= A, Also xu=x Clearly, N,{A,}={x} and
x'€ N, {A,°p}. Pick g €M so q =qu and upq = gpu = u. Now

{x}=N.{A.} =N, {A,°(upq)}
=N, {(A,°p)ogq} D (N.{A,°p}eq D{x'q}

and so x = x'q. Pick v € J such that upv = up. Lety'= m(x'). Then
y'=a(x')=m(limx.t,) =lim (7 (x.t,))=lim yt, = yp = yup = yupv = y'v.
We have x'=x'v also, since 7 is distal. Finally, x'=x'v = x'uv =
x'qpuv = xpuv = xupv = xup = xp.

THEOREM 1.4. The following are equivalent:
(i)  m is almost periodic.

(i) Each element of 27 is almost periodic.
@it1) 77 is distal.

(iv) 7 is almost periodic.
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Proof. (iv) = (iil) = (ii) is clear.

(i) > (iv). Suppose A, A’ are relatively regionally proximal (rela-
tive to 77)in2”. Then there exists B € 27, nets (A, ), (A, in 27, (y,)in Y,
and (t,) in T such that #(A,)=y, for each n and

A, — A A,t,— B
A,—> A’ At,— B.

We must show A = A’. Consider x € A; it will suffice to show
x € A’. Taking subnets, there exists x, € A,, for each n, such that
x, — x. Taking a subnet again, x,t, — x, for some x,€ B. Taking
subnets two more times, we can find x.,€ A/ such that x,t, — x, and
x'€ A'suchthat x,—x'. We now have 7 (x,)= m(x,) =y, for each n,
and

X, ™ X Xnbn — Xg

x,—x' Xl —> X.

Since 7 is assumed almost periodic, we have x =x’ so x €A’ as
required.

(ii)) = (iii). Consider y€Y, u€J(y). Given A €2" with
7(A) =y, it will suffice to show that A-u = A. Clearly, the element-
wise almost periodicity of 27 implies that = is distal so that Bw = B
whenever BC7 '(y)andw € J(y). Thus A = AuCA-u. Since2" is
element-wise almost periodic, we have A v = A for some v € J(y).
Therefore Acu =(Acu)v C(Aou)ov=A°(uv)=Acv=A.

(iii) = (i). Suppose x, x' relatively regionally proximal, with
m(x)=m(x)=y. We must show x =x’. Now = is distal since 7
is. Therefore 7 is an open map. Thus, for every y' € Y, there exists a
net (t,) in T such that 7w7'(y)t, > 7~ '(y’). Hence (7= '(y)X 77 '(y))T is
dense in the equivalence relation determined by #. By Lemma 1.2 there
exist nets (x,), (x.) in 7w '(y) and (t,), (s,) in T such that

(a) xt,—x (b) xut.5,—x

(c) xut,—x’ (d) xnts.—x.

Taking subnets, we can find x,, x{€ 7 '(y) and p, r € BT such that
t,s,—p, t.,—>r and

e x.—x; € x,—xi



268 PETER S. SHOENFELD

Applying Lemma 1.3 to (b) and (e), and (d) and (f) we get that
x,p =x =xip. Since 7 is distal, x, = x;. Applying Lemma 1.3 to (a)
and (e), and (c) and (f) gives x = x,r and x’'= xir; hence x = x".

2. Highly proximal extensions. We temporarily drop the
condition X minimal; we still assume Y minimal.

ProOPOSITION 2.1. The following are equivalent:

(i) All almost periodic elements of 2™ are singletons.

(i) Forsomey € Y and net (t,) in T, lim (7 "'(y)t,) is a singleton.
(ii) For some y € Y, p € BT, = '(y)°p is a singleton.

Proof. (iii) > (i). Suppose A almost periodic in 2" and card
(7 '(y)ep)=1. Pick u€J(y) and y'EY, u'€J, g €M such that
Acu'=A, ACwm'(y'), and ypg =y’. Using Lemma 1.1,

ACa N (y)eu' =7 "(yupq)ou'= m7'(y)°(upqu') C(m'(y)°op)e(qu’),
a singleton.

DErINITION.  We call 7 highly proximal if the conditions of 2.1 are
satisfied.

LemmaA 2.2. Consider a continuous map : A — B where A and B
are compact metric spaces. Then ¢ is open at all points of ¢ (b) for a
dense, G; set of points b € B.

Proof. See [6, 4.1.4].

ProposITION 2.3. If X and Y are metrizable, 1 is highly proximal if
and only if it is almost one-to-one.

Proof. = . By Lemma 2.2, there exists y € Y with 7 open on
7 (y). If u€J(y), then 7 7'(y)= 7"'(y)°u, a singleton.

Highly proximal is a nonmetric generalization of almost one-to-
one. Itisa purely relative notion; it is easily seen that a highly proximal
extension of the trivial flow is itself trivial. The Ellis two circle minimal
flow [3, 5.29] taken as an extension of the circle with irrational rotation
provides a nonmetric example of a homomorphism which is highly
proximal but not almost one-to-one.

We establish some closure properties. A property of extensions of
a fixed minimal flow is called admissible if it is nonvoid and closed under
restriction of products to minimal sub-flows.
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ProrosITION 2.4. Highly proximal is admissible.

Proof. Suppose {¢,: W, — Y} are highly proximal and ¢y: W — Y is
a restriction of their product to a minimal sub-flow. Pick y €Y,
u € J(y) and let ¢;'(y)ou ={w,} for each i. Then ¢ '(y)={{w)}.

Lemma 2.5.  Consider homomorphisms ¢: U -V, : V—> W, with
all flows minimal. Then  ° ¢ is highly proximal iff both ¢ and ¢ are.

Proof. Lemma 1.1.

LEMMA 2.6. Suppose {¢,: U — V} are proximal minimal flow
homomorphisms with product ¢: U — V. Then U has a unique minimal
subflow.

The category of point transitive flows with distinguished basepoints
has unique inverse limits. Given an inverse system of minimal flows
{U.,} we can choose basepoints in a consistent way; we call the inverse
limit of the point transitive system thus obtained a pointed inverse limit of
{U}. We can always choose a minimal pointed inverse limit.

PROPOSITION 2.7.  Suppose we have an inverse system of minimal
flows {U.} and highly proximal homomorphisms with a least element
U,. Then the system has a unique minimal pointed inverse limit U. and
the canonical projections P,: U.— U, are all highly proximal.

Proof. Proposition 2.4 and Lemmas 2.5 and 2.6.
Veech, in [7] associates with 77: X — Y a diagram of the type

X*L*, y*

X —Y

with 7* open and & and vy almost one-to-one, assuming
metrizability. We generalize by dropping metrizability and replacing
almost one-to-one with highly proximal. Our construction will coincide
with Veech’s in the metric case.

Once more, we assume both X and Y minimal. We define
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Y*={n"'(y)ouly €Y, u€J(y)} and
X*={(xu, m7'(y)ou)lyE€ Y, x €77 \(y), u €J(y)}

We define y: Y*—> Y by y(A)=y iff A Cx7'(y). Finally, we define
6: X*—= X and 7*: X*— Y* as the coordinate projections. It will be
clear that these maps are all homomorphisms once we’ve shown that X*
and Y* are minimal flows.

ProrosiTiON 2.8.  With the definitions above

(i) Y™ is the unique minimal subflow of 27 contained in the orbit
closure of some (every) m fiber.

(i) X* is the unique minimal set in {(x,y*)[xE X, y*€E
Y m(x)=vy()

Proof. (i) Consider minimal sets M, M’ in BT and points y,,
y €Y. Lemma 1.1 and an enveloping semigroup argument show that
7 '(yo)eM = 7w 7'(y,)e M’. This proves that there is a unique minimal
subflow as asserted and that this subflow contains Y*. Consider some
A =x"Yy)ep in 77 (y;)eM. There exist u, v €J, y €Y such that
you =y, pv =p,and y = yopv. Then A = 7w '(you)o(pv)=m"'(y)ov by
Lemma 1.1. Hence Y*= 7""(y,)°o M.

(i) Consider y€ Y, x€ 77'(y), u €J(y). A similar argument
shows X* = (xu, w7 '(y)ou)M.

ProrosITION 2.9.  The homomorphisms y and 8 are highly proximal.

Proof. Applying Zorn’s Lemma to a fiber y™'(y)C Y* yields an
inclusion minimal element B with B = 7w~ '(y)op forsome p € M. Also
y'(y)epCy '(y)andif A € y'(y)op then A CB. Hence y'(y)op =
{B} and v is highly proximal. If x € X, u € J(x) then 6 '(x)ou C{x} X
vy '(m(x))ou. Hence & is also highly proximal.

Fory € Y, let JM(y, ) be the set of idempotents u € J(y) such that
m '(y)eu is inclusion minimal in Y* Zorn’s Lemma implies that
JM(y, ) is always nonempty. The idea of the following lemma is due
to Glasner.

LEMMA 2.10. Suppose u € JM(y,m) and x € w'(y)ou. Then
there exists an idempotent v € J(x) such that 7w '(y)ev = aw"'(y)eou.

Proof. We can find nets (x,) in #7'(y), {t,) in T, and {p,) in M such
that xp, =x, t,—u, xt—x, and pt —>q for some qE M. Then
7 ' (y)e(pt,) Ca (yp)oti = w7 (y)ot, for each i, and so 7w '(y)oq C
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77 '(y)ou. Hence w7'(y)oq = w'(y)°u by minimality. Pick v € J such
that qu =q. By Lemma 1.1, 7 '(y)ev =m""(yq)ov =n"'(y)°(qv) =
7m(y)eq =7 '(y)ou, and xv = xqv = xq = x.

PropOSITION 2.11. The homomorphism w*: X*— Y* is open.

Proof. It suffices to show 7* '(y*p)C#w* '(y*)op for some y* €
Y* and any pE M. Pick yE Y, u €JM(y, w) and let y* =7 '(y)ou.
Then m* '(y*)= (7 "'(y)ou) x {y *}, by Lemma 2.10. It is easily seen that,
for p € M,

m* ' (y*p)C(m ' (y)ep) X {y*pt=((m""(y)ou) X {y*Hep = 7* ' (y*)°p.

We’ve shown that in the diagram

77'*

X* Y™

|

A*(m) =8 | y

|

X— Y
T
the homomorphisms & and vy are highly proximal while 7* is open. We
will use these properties to characterize A* abstractly.

LEMMA 2.12.  We have m open iff vy (and hence also &) is an
isomorphism.

Proof. = . For y€Y, y'(y)={r"'(y)oulucJy)}={m"(y)
since 7 open.

& . Wemustshow w7 '(yp)=7"'(y)epfory € Y,pE M. Nowy
one-to-one implies y '(yp) = {7 '(yp)} and = '(y)op € vy '(yp) neces-
sarily.

Clearly, if y is an isomorphism, so is 6.

LEMMA 2.13. Suppose B is highly proximal in a diagram of minimal
flows

v v

X—>Y.
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Then, for all v € V, 77 (B(v)) and a (¥ (v)) are proximal in 2%

Proof. We’ll show (w7 '(B(v)))ou = (a(y(v)))ou for u € J(v).
Clearly (a(y'(v))eu C(m'(B(v)))ou. Now (a (77 (B(v)))ou =
W' (BT (B))ou Cy(BT(B(v)eu)=y¢ '(v), since B highly

proximal. Thus

(7 (B(v)))ou = (ala™ (7w (B(v)))ou
=a(a™ (7 (B(v)))ou) Ca(y(v))

and finally
(m ' (B())ou =(m (B(w))ou)ou Cla(y(v))ou.

Given minimal flow diagrams

Xl—_) Y1 XZ_——) YZ
A= l l and A= l l
X —Y X —Y,

s o

we say that A, is less than A, if there exist homomorphisms from X, to X,
and from Y, to Y, making everything commute.

THEOREM 2.14. The diagram A*(mr) is the unique (up to isomorph-
ism) least such diagram with ©* open and vy highly proximal.

Proof. Consider another such diagram

vy

v = i lﬁ

X—>Y
T

with ¢ open and B highly proximal. We apply the A* construction to
both 7 and ¢ to obtain
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*

’

&' Y

6 Y

x* T y+,

We’ll show that there exist homomorphisms a': U*— X*,
B': V*— Y* making everything commute. Pick v € V. By Lemma
2.13, there exists a minimal right ideal I in BT such that (7 '(B(v)))ep =
(x(¢'(v)))ep forall p € I Pick an idempotent u € I such that vu = v,
let y=8(v), v*=¢'(v)ou, and y*= w"'(y)ou. To obtain B’ with
B'(v*)=y* it will suffice to show that for p, g € BT, if v*p = v*q then
y*p=y*q. Now

y*'p=(m"(y)ou)ep = (w7 (B(v))euep = (a(y'(v)eucp
=a(v*p)=a(v*q)=y*q.
We obtain «' by a similar argument.

Since ¢ is open, 6’ and vy’ are actually isomorphisms, by Lemma
2.12. Thus A* is less than A’. To prove uniqueness consider another
such diagram

* %

o
X K Yy **

.y

X N

with the same minimality property. Then we have homomorphisms
A X** > X* A X*—> X** such that 6**eA’'=86 and b°A =
8**. We have §°(A°A')=48 and & is a proximal homomorphism; it
follows that A°A’ is an automorphism and hence A’ an
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isomorphism. The same argument provides the required isomorphism
from Y* to Y**.

The homomorphism 7: X — Y is said to be point-distal with distal
point x € X if x is proximal to no other point in its fiber. The minimal
flow X is point-distal if the trivial homomorphism X —1 has that
property. Veech [7] showed that if X is metric and has a residual set of
distal points it has an almost one-to-one extension which can be built up
from the trivial flow by isometric (almost periodic) and almost one-to-one
extensions. Ellis [4] extended this result to homomorphisms and
showed that it is sufficient to assume a single distal point rather than a
residual set. He also showed that the metrizability assumption could be
replaced by the weaker condition of quasi-separability if proximal
extensions were used instead of almost one-to-one extensions. Here we
strengthen the second Ellis result by replacing his proximal extensions by
highly proximal extensions. Since highly proximal and almost one-to-
one extensions are the same in the metric case, this result includes the
earlier ones.

The homomorphism II: X — Y is said to be quasi-separable if it is
isomorphic to a restriction of the projection onto Y of the product of Y
and a family of metrizable flows. For the rest of this section we assume
both X and Y minimal and = point-distal and quasi-separable. Under
these hypotheses Ellis {4, 7.4] showed

Lemma 2.15. If = is also open there exists a nontrivial almost
periodic homomorphism ¢: Z — Y and a homomorphism ¢: X — Z such
that = ¢ o . Inother words, m has a nontrivial almost periodic factor.

THEOREM 2.16. There exists an ordinal sequence of minimal sets
{Y.|a = v} such that

i) Y,=Y.

(i1)) Y, is a highly proximal extension of X.

(i)  Y,., is either an almost periodic or a highly proximal extension
of Y,, for each successor ordinal o +1= v.

(iv) Y, is a uniquely determined pointed inverse limit of the system
{Y.|a <A} for each limit ordinal A = v.

v) Ifn:Y, =X, and p.p: Y,— Y, for ordinals a < are the
homomorphisms implicitly defined by (i)-(iv), then womn, = p,,.

Proof. The proof is by transfinite induction. At each ordinal stage
B =v we’ll get a diagram
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g
Xs— Y

%
|

Y,
| v

Xo=X —@Y=Y,

m =T

such that Y, is as promised, 7, is highly proximal, and , is point-distal
and quasi-separable. The procedure stops when , is almost
periodic. Call an ordinal odd if it’s of the form A + n where A is a limit
ordinal or 0, and n is an odd natural number. Proceed as follows.

(a) Take Xy=X, Yo=Y, and my==

(b) Atstage a + 1, with @ + 1 an odd successor ordinal, stop if , is
almost periodic, taking v =a +1 and Y, = X,. Otherwise, construct
the diagram

X*__) Y*

w\,&

) Y
X —Y

as follows. Obtain 7% as usual. Then =% is open, y and & are highly
proximal, and =% is easily seen to be point-distal and quasi-
separable. By Lemma 2.15, 7% has a nontrivial almost periodic factor,
¢: Z— Y% Clearly since 7% is point-distal and quasi-separable, so is
(,l’ X*'_) Z. Take Y,. = Ya7 Y..=2Z Xy = Xor2= X:, To+1 = Wja
and m,.,=¢. We now have

Xa+2 7Ta+2 er+2
identityl ¢ almost periodic
Mo+l
Xa+1 Ya+1
) l highly proximal ly highly proximal
X > Y,
v
\’
Na Y,
¥
Xz Y,
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and everything is as needed, taking 1,.; = m,°8. This gets us up to the
next odd successor ordinal.

(c) At stage A, where A is a limit ordinal, let X, be the unique (by
Proposition 2.7) pointed inverse limit of the system {X,|a <A} and let
P,: X, — X, be the projections which are highly proximal. Define
OQ:TH{X, |a <A}=>TI{Y,|a <A} by Q(x,))=(m,°P.(x,)). Let Y, =
Q(X,), m = Q| X,, and n, = P,| X,. Then m, is point-distal and quasi-
separable and everything is as needed.

T\

XA—_)Y)\

l v
T

U X, —Y,

l A4
0

X,—> Y
Ty

The definition of the maps w.p: Y.— Ys has been left to
context. By cardinality considerations and the coalescence of the
universal minimal set, the procedure must terminate at some stage of
(b). This proves the theorem.

3. Generalized almost finite extensions. We assume
minimality of Y but not of X.

LEMMA 3.1. Suppose A €2%, p € BT. If A is finite, then Ap =
Avop.

Proof. Ap CA op inany case. For x € A op, there exist nets (x,,)
in A, (t,,) in T such that t, — p and x,t, — x. Since A is finite, (x,,) has
a constant subnet. Hence for a subnet and some x'€ A, x't, — x. Thus
x=x'p and x € Ap.

ProPOSITION 3.2.  The following conditions are equivalent:

(i) Card(w'(y)oep)= N for some y €Y, p €M, and integer N.

(i) The cardinality of each almost periodic element in 27 is not
greater than some fixed integer N.

(iii) All elements of Y* have the same finite cardinality, N.

Moreover, the integer N in (iii) equals the least integer satisfying (i)
and (ii).
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Proof. Use Lemmas 1.1, 3.1 and the minimality of Y.

DEerINITION.  We call 7 generalized almost finite (GAF), or general-
ized almost N to one if the conditions of Proposition 3.2 are satisfied.

Lemma 3.3. If wis GAF, y € Y, and u € J(y), then w7'(y)ou =
7 (y)u.

ProposITION 3.4.  If 7 is generalized almost N to one the following
are equivalent, for any y € Y.

(i)  is open on w7 '\(y).

(i) Card(w#7'(y))=N.

(iii) 77'(y) is an almost periodic set.

(iv) 7 '(y)e Y™

Proof. Use Lemma 2.3 to prove (iii)< (iv). The rest is
straightforward.

ProposITION 3.5. If X is metric the following are equivalent:
(i) is GAF.

(ii) Some fiber is finite.

(ili) Y has a dense, G; subset of points with finite fibers.

Proof. Lemma 2.2 and Propositions 3.2 and 3.4.

We say that a minimal flow homomorphism is regular [6, 2] if every
almost periodic pair of points contained in a common fiber is connected
by an automorphism. If every pair contained in a common fiber is so
connected we say we have a group extension. We now assume that X is
minimal as well as Y.

There are nonmetric examples of homomorphisms which are GAF
(in fact highly proximal) but which have all fibers infinite. Suppose
m: X — Y is almost one-to-one but has some infinite fiber and Y is distal
regular, so that every pair in Y is connected by an automorphism. Let
¢: N — Y be the restriction of the product II{f o7 |6 € Aut(Y)} to a
minimal subflow. Then ¢ will be highly proximal but will have all fibers
infinite. The Floyd minimal flow [1], taken as an extension of the triadic
group provides an example of 7 as required.

Next we characterize regular, GAF homomorphisms. Recall the
natural map y: Y*—> Y.

ProposITION 3.6. If o is regular and GAF there exists a group
extension y: X = Y* such that m = vy .
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Proof. It follows from the regularity of = and Lemma 3.3 that the
fibers of 7 are partitioned by the elements of Y*. Thus we define
Y: X—=>Y*by y(x)=A & x € A. ltis easily seen that ¢ is a group
extension and 7 = yo .

ProOPOSITION 3.7. The following are equivalent:

(i)  is regular and GAF.

(ii) There exists a finite group extension ¢ and a highly proximal
homomorphism « such that w = a° ¢.
Moreover, the representation in (ii) is unique.

Proof. (ii)) = (i). Suppose (x,x’) is an almost periodic pair with
m(x)=m(x")=y. Pick u€J(y) such that (x,x")u =(x,x'). Then
d(x)=¢(x'), since ¢(x), ¢(x')E a™'(y)ou, a singleton. Thus we get
an automorphism taking x into x’, so 7 is regular. Also 7 '(y)ou C
¢ '(a”'(y)ou) which is finite. Thus 7 is GAF.

(i) = (ii) has already been shown; the uniqueness follows easily.

Many examples of regular GAF extensions may be constructed by
taking products of highly proximal and finite group extensions or by
taking finite group extensions of highly proximal extensions. The
following lemma is proved in [6].

LemMA 3.8.  The relative (to ) proximal relation on X is closed iff
m = Boa for some proximal a and distal B.

ProposITION 3.9.  Suppose m: X,— Y, m,: X,— Y are highly proxi-
mal and finite group extensions respectively with product m: X — Y. Then:

(i) m is regular GAF.

(ii) ar is a highly proximal extension of a group extension.

(iii) The automorphism groups of the two group extensions are
isomorphic.

Proof. We have the diagram

Py
X, 1 X,
™ Y T2

where P, and P, are the projections. X is minimal, since proximal
and distal extensions are always disjoint. Suppose x, € X,, u € J(x,).
Let {x,} = wi'(mx,))ou. Then clearly P;'(x,)ou ={(xy,x,)}, so P, is
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highly ~ proximal. Let  Aut(m)={0 € Aut(X;)|m°8 =m} and
Aut(P,)={6 € Aut(X)|P,o§ = P}}. Define F: Aut(m,)— Aut(P;)
by F(6)(x,, x;) = (x1, 0(x,)). It is clear that F is a group isomorphism
and that P, is a group extension.

THEOREM 3.10. If 7 is regular, GAF the following are equivalent :

(i)  The relative proximal relation on X is closed.

(ii) = Bea for some highly proximal a and finite group extension
B L

(i) = is the product of a highly proximal and a finite group
extension.

Proof. (iii) = (ii) = (i). Proposition 3.9 and Lemma 3.8.
(i) > (ii). By 3.6 and 3.8 we have a diagram

>

m\ﬁ/:

‘”/
with y highly proximal, ¢ a finite group extension, # distal, and «
proximal. Also, a is GAF, since = is; hence a is in fact highly
proximal. Supposey € Y, u € J(y). Since « is proximal and B distal,
a maps 7 '(y)u bijectively onto B87'(y); hence B has finite fibers. It
now suffices to show that for arbitrary w,, w, & B7'(y), we can define an
endomorphism § by §(w,)= 6(w,)= w,. Since vy is proximal and ¢ a
group extension, it follows that for any almost periodic pair (x,, x,) with
a(x,)=w, there exists 6 € Aut(X) with 0(x,)= x,. From this the
existence of § follows easily.
(ii) = (iii). We get a diagram

ZIN

*‘/X\

<~ —

where 7: X = Y is the product of y and B, P, and P, are the projections,
& is defined naturally, and # = 7o8 = Boca =y°y. We need only
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show that & is one-to-one. Now if 6(x)= 6(x’), then ¢(x)= ¢(x') and
a(x)=a(x’). We have ¢ distal and a proximal, so the pair (x, x’) is
both proximal and almost periodic. Thus x = x".

We close with the following result.
ProrosiTiON 3.11.  If m is GAF, then w* is almost periodic.

Proof. Suppose y*€ Y*and A Cw*7'(y*). By 1.4, we need only
show Aou = A for some u €J. Now y*= 7"'(y)ou for some y € Y,
u€lJ(y). Since w= is GAF, #*'(y*)=a""(y)u X{y*}, a finite
set. Thus Aou =Au = A, by 3.1.

An interesting question is whether the results of this section can be
obtained with a hypothesis weaker than GAF, not involving any finite-
ness assumption. This will be the subject of a subsequent paper.
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