Pacific Journal of Mathematics

VARIATION OF GREEN'S POTENTIAL

JANG-MEI GLORIA WU

Vol. 66, No. 1 November 1976

VARIATION OF GREEN'S POTENTIAL

JANG-MELG. WU

Let u be the Green's potential of a nonnegative mass distribution μ on unit disk D, defined by

(1.1)
$$u(z) = \int_{D} G(z, w) d\mu(w),$$

where G is the Green's function on D. The following will be proved.

THEOREM 1. Suppose $0 < \rho < 1$ and

(1.2)
$$\int_{D} (1-|w|)\log \frac{1}{1-|w|} d\mu(w) < \infty.$$

Then for almost all θ , $0 \le \theta < 2\pi$, u has finite variation on the line segment joining $\rho e^{i\theta}$ and $e^{i\theta}$.

THEOREM 2. Fix θ , $0 \le \theta < 2\pi$ and suppose

(1.3)
$$\int_{D} \frac{1-|w|}{|e^{i\theta}-w|} d\mu(w) < \infty.$$

If L is a circular arc in D centered at $e^{i\theta}$, then for all a on L except a set of capacity zero, u has finite variation on the line segment joining a and $e^{i\theta}$.

It is known [4; 150] that if μ satisfies

$$(1.4) \qquad \int_{D} (1-|w|) d\mu(w) < \infty,$$

then u is finite everywhere except a set of capacity zero in D. Carleson [2; 32] has implicitly proved the following result.

Theorem A. Suppose $0 < \rho < 1$ and

$$(1.5) \qquad \int_{D} (1-|w|)^{\alpha} d\mu(w) < \infty$$

for some fixed α , $0 \le \alpha < 1$. Then for all θ , $0 \le \theta < 2\pi$, except a set E of

 α -dimensional Hausdorff measure zero if $0 < \alpha < 1$, or of capacity zero if $\alpha = 0$, u has finite variation on the line segment joining $\rho e^{i\theta}$ and $e^{i\theta}$.

Some ideas involved in Theorems 1 and 2 are borrowed from Rudin [6] and Cargo [1], who studied the variation of Blaschke products on line segments.

In §4 we shall extend the above three theorems to curves with certain differentiability properties, which need not be line segments.

For convenience, we shall use l(z, w) to denote the line segment joining z, w and $V(F, \gamma)$ to denote the total variation of the function F on the curve γ whenever this is meaningful.

2. Lemmas.

LEMMA 1. If l is a Jordan rectifiable curve in \bar{D} , then

$$V(u,l) \leq \int_{D} V(G(\cdot,w),l) d\mu(w).$$

The proof follows directly from the definition of variation and (1.1).

LEMMA 2. If $z, w \in D$ and $|z - w| \ge (1 - |w|)/2$ then $|(z - w)/(1 - \bar{w}z)| \ge 1/5$.

Proof. For fixed w, $|(z-w)/(1-\bar{w}z)|$ attains minimum 1/(3|w|+2) on the circle |z-w|=(1-|w|)/2. The lemma follows from minimal modulus principle.

LEMMA 3. Let $w \in D$, A be a subset of D and $m = \min\{(1-|z|)/|1-z|: z \in A\}$. If the distance from w to A is less than (1-|w|)/2, then $(1-|w|)/(|1-w|) \ge m/3$.

Proof. Let $z \in A$ and $|z - w| \le (1 - |w|)/2$. It is easy to check $\frac{1}{2}(1 - |w|) \le 1 - |z| \le \frac{3}{2}(1 - |w|)$. Therefore

$$\frac{1-|w|}{|1-w|} \ge \frac{1-|w|}{|1-z|+|z-w|} \ge \frac{\frac{2}{3}(1-|z|)}{|1-z|+1-|z|} \ge \frac{m}{3}.$$

LEMMA 4. (Cargo [1; 145]) Suppose $a, w \in D$, $0 \le \theta < 2\pi$ and $z(r) = a + r(e^{i\theta} - a)$ for $0 \le r \le 1$. Then

$$\int_0^1 \frac{1-|w|^2}{|1-\bar{w}z(r)|^2} dr < \frac{8}{(1-|a|)\sin\left[\frac{\pi}{2}(1+|a|)\right]} \frac{1-|w|}{|e'^{\theta}-w|}.$$

LEMMA 5. Let $w, a \in D$, $0 \le \theta < 2\pi$ and b be the projection of a on $l(w, e^{i\theta})$. If $0 < m \le \min\{(1 - |z|)/(|e^{i\theta} - z|): z \in l(a, e^{i\theta})\}$, we have

(2.1)
$$V(G(\cdot, w), l(a, e^{i\theta})) \le \left(\frac{40}{\sin \frac{\pi}{2}(1+|a|)} + \frac{12}{m} \log \left| \frac{1}{b-a} \right| \right) \frac{1}{1-|a|} \frac{1-|w|}{|e^{i\theta}-w|}.$$

Proof. We assume that w is not on the line through $a, e^{i\theta}$, otherwise b = a and (2.1) is trivial. Also we may assume $\theta = 0$ by a suitable rotation. Let z(r) = a + r(1 - a), $0 \le r \le 1$, be a representation of l(a, 1) and grad G be the gradient of Green's function with respect to the first variable, that is,

(2.2)
$$|\operatorname{grad} G(z, w)| = \frac{1 - |w|^2}{|1 - \bar{w}z||z - w|}$$

if $z \neq w$. Let $S_1 = \{r : |z(r) - w| \ge (1 - |w|)/2\} \cap [0, 1]$ and $S_2 = [0, 1] \setminus S_1$. Thus

$$V(G(\cdot, w), l(a, 1)) \leq |1 - a| \int_{S_1 + S_2} \frac{1 - |w|^2}{|1 - \bar{w}z(r)| |z(r) - w|} dr$$
$$= |1 - a| (I_1 + I_2).$$

From Lemma 2 and Lemma 4 we have

$$I_1 < \frac{40}{(1-|a|)\sin\left[\frac{\pi}{2}(1+|a|)\right]^{\left|1-|w|\right|}}.$$

Assume S_2 is nonempty and let α , β ($\alpha < \beta$) be the two real numbers so that the points $z(\alpha) = a + \alpha(1 - a)$ and $z(\beta) = a + \beta(1 - a)$ have distance exactly (1 - |w|)/2 from w. We observe that

$$\operatorname{Im} \frac{z(\alpha) - w}{1 - a} = \operatorname{Im} \frac{z(\beta) - w}{1 - a} = -\operatorname{Im} \frac{w - a}{1 - a}$$

and $|\operatorname{Im}(w-a)/(1-a)|$ is the distance from w to l(a,1), which is |(b-a)/(1-a)||1-w|. Therefore

$$-\operatorname{Re}\frac{z(\alpha)-w}{1-a}=\operatorname{Re}\frac{z(\beta)-w}{1-a}>0.$$

With the aid of Lemma 3, we estimate I_2 as follows:

$$I_{2} \leq 2 \int_{\alpha}^{\beta} \frac{1}{|z(r) - w|} dr$$

$$= \frac{2}{|1 - a|} \left[\log \left(\left| \frac{z(r) - w}{1 - a} \right| + \operatorname{Re} \frac{z(r) - w}{1 - a} \right) \right]_{\alpha}^{\beta}$$

$$= \frac{2}{|1 - a|} \log \frac{\left| \frac{z(\beta) - w}{1 - a} \right| + \operatorname{Re} \frac{z(\beta) - w}{1 - a}}{\left| \frac{z(\beta) - w}{1 - a} \right| - \operatorname{Re} \frac{z(\beta) - w}{1 - a}}$$

$$\leq \frac{2}{|1 - a|} \log \frac{4 \left| \frac{z(\beta) - w}{1 - a} \right|^{2}}{\left(\operatorname{Im} \frac{z(\beta) - w}{1 - a} \right)^{2}}$$

$$\leq \frac{4}{|1 - a|} \log \frac{(1 - |w|)}{|b - a||1 - w|}$$

$$\leq \frac{12}{m|1 - a|} \frac{1 - |w|}{|1 - w|} \log \frac{1}{|b - a|}.$$

Thus (2.1) follows from the estimations for I_1 and I_2 .

3. Proofs and remarks.

Proof of Theorem 1. For a fixed $w \in D$, let T_1 be $\{z : \rho \le |z| < 1, |z - w| \ge (1 - |w|)/2\}$ and $T_2 = \{z : \rho \le |z| < 1\} \setminus T_1$. We consider

$$\int_{|z| \ge \rho} |\operatorname{grad} G(z, w)| d\sigma_z = \int_{T_1} \cdot d\sigma_z + \int_{T_2} \cdot d\sigma_z = I_1 + I_2$$

where $d\sigma_z = r dr d\theta$, $z = r e^{i\theta}$. From (2.2), Lemma 2 and Lemma 4 we obtain

$$I_1 \leq C \int_0^{2\pi} \frac{1 - |w|}{|e^{i\theta} - w|} d\theta$$

where C is a constant depending on ρ only. It is easy to verify that there exists a constant C_1 so that

$$I_1 \le C_1(1-|w|) \log \frac{1}{1-|w|}$$
 when $|w| > \frac{1}{2}$

and

$$I_1 \leq C_1(1-|w|)$$
 when $|w| \leq \frac{1}{2}$.

Noticing that $|1 - \bar{w}z| \ge 1 - |w|$, we have

$$I_2 \leq \int_{|z-w|<(1-|w|)/2} \frac{2}{|z-w|} d\sigma_z = 2\pi(1-|w|).$$

From (1.2), (1.4) and the estimations above, we see that

$$\int_{0}^{2\pi} V(u, l(\rho e^{i\theta}, e^{i\theta})) d\sigma \leq \frac{1}{\rho} \int_{D} \int_{|z| \geq \rho} |\operatorname{grad} G(z, w)| d\sigma_{z} d\mu(w) < \infty.$$

Theorem 1 follows.

Proof of Theorem 2. We may assume $\theta = 0$. Let α be the distance from 1 to L, L_0 be a closed subarc of L and $m = \min m$ of the numbers in $\{1 - |a| : a \in L_0\} \cup \{(1 - |z|)/(|1 - z|) : z \in l(a, 1) \text{ and } a \in L_0\}$. It is clear that m > 0.

Let E be the set $\{a \in L_0: V(u, l(a, 1)) = \infty\}$. We shall show E is of capacity zero. If we assume otherwise, there exist M > 0 and a finite positive measure $\nu(a)$ on E such that

$$\int_E \log \frac{1}{|z-a|} d\nu(a) < M$$

for every complex z. With the aid of Lemma 5 we obtain

$$\int_{E} V(G(\cdot, w), l(a, 1)) d\nu(a)$$

$$\leq \int_{E} \left(\frac{40}{\sin \frac{\pi}{2} (2 - m)} + \frac{12}{m} \log \frac{1}{|b - a|} \right) \frac{1}{m} \frac{1 - |w|}{|1 - w|} d\nu(a)$$

$$< \left[\frac{40}{\sin \frac{\pi}{2} (2 - m)} \nu(E) + \frac{12M}{m} \right] \frac{1}{m} \frac{1 - |w|}{|1 - w|}.$$

From Lemma 1 and the assumption of Theorem 2 we see that $\int_{E} V(u, l(a, 1)) d\nu(a) < \infty \text{ which is a contradiction. Hence } E \text{ is of capacity zero.}$ Theorem 2 is proved.

REMARK 1. The conclusion in Theorem 2 is best possible, because

for any compact set E of capacity zero in D, there is a mass distribution μ on E such that the Green's potential of μ is $+\infty$ on E and finite on $D\setminus E$ [4; 152 and 271].

REMARK 2. Carleson [2; 26] showed that (1.5) implies (1.3) for all θ except a set of α -dim Hausdorff measure zero for $0 < \alpha < 1$ or of capacity zero for $\alpha = 0$. Frostman [3] showed that (1.2) implies (1.3) for almost all θ . But we note that Theorems A and 1 do not follow from Theorem 2 for any obvious reason.

REMARK 3. If B is the Blaschke product with zeros at z_n , then $-\log |B|$ is the Green's potential given by $\nu = \sum \delta_{z_n}$ where δ_{z_n} is the unit mass at z_n . If l is a line segment in \bar{D} not passing through any z_n , then $\log (z - z_n)/(1 - \bar{z}_n z)$ is analytic in a neighborhood of l. Thus we have

(3.1)
$$V(\arg B, l) \leq \sum V\left(\arg \frac{z - z_n}{1 - \bar{z}_n z}, l\right)$$

$$\leq \sum \int_{l} \left| \operatorname{grad} \arg \frac{z - z_n}{1 - \bar{z}_n z} \right| |dz|$$

$$= \int_{D} \int_{l} \left| \operatorname{grad} G(z, w) \right| |dz| d\nu(w)$$

and

(3.2)
$$V(|B|, l) \leq \int_{l} |B'(z)| |dz|$$
$$\leq \int_{D} \int_{l} |\operatorname{grad} G(z, w)| |dz| d\nu(w).$$

In the above theorems, when we dealt with variation of u on line segment l, we in fact studied an upper bound of it, which is $\int_{D} \int_{l} |\operatorname{grad} G(z, w)| |dz| d\mu(w).$ Therefore from (3.1) and (3.2) we see that whenever ν satisfies the same condition for μ in Theorem j, j = 1, 2 or A, B has the same variation property for u stated in Theorem j. With the aid of a theorem by F. Riesz [5; 401] on variation of analytic functions, we can conclude the following result of Cargo [1; 147]: if $\sum_{n=1}^{\infty} (1-|z_n|)/|e^{i\theta}-z_n| < \infty \text{ then all the subproducts of } B \text{ have finite variation on each line segment in } D \text{ ending at } e^{i\theta}.$

4. Variation on curves. Let $0 < \eta < 1$, 0 < m < M and f be a one to one map from $\{\eta \le |z| \le 1\}$ to $\bar{D}\setminus\{0\}$ mapping |z|=1 onto |z|=1 and satisfying

(4.1)
$$m |\alpha - \beta| \leq |f(\alpha) - f(\beta)| \leq M |\alpha - \beta|$$

whenever $\eta \le |\alpha| \le 1$, $\eta \le |\beta| \le 1$. We have the following result.

THEOREM 3. Let μ satisfy the condition in Theorem j, j=1,2 or A, and assume that the line segments we considered in Theorem j are short enough to be in $\{\eta < |z| \le 1\}$. Then the variations of u on the images under f of the corresponding line segments are finite outside an exceptional set of the same size as in Theorem j.

We note that when j = A or 1, Theorem 3 can be considered as a generalization of a theorem in [7], in the sense of the size of the exceptional set, of variation vs. limit and of the more generalized curves.

Proof. Let S be the image of f and l be any fixed closed line segment in $\{\eta < |z| \le 1\}$. We may assume μ has support on S. In fact, if v is the Green's potential given by $\mu \mid D \setminus S$, then v(z) is harmonic in the interior of S and tends to zero uniformly as z tends to the unit circle; thus v(z) has finite variation on f(l).

Let $g = f^{-1}$ and grad G be the gradient with respect to the first variable of G. Thus from (2.2) we have

(4.2)
$$\frac{|\operatorname{grad} G(f(z), w)|}{|\operatorname{grad} G(z, g(w))|} = \frac{1 - |w|^2}{1 - |g(w)|^2} \frac{|1 - \overline{g(w)}z|}{|1 - \overline{w}f(z)|} \frac{|g(w) - z|}{|w - f(z)|}.$$

We observe that

$$\left| \frac{1 - \overline{g(w)}z}{1 - \overline{w}f(z)} \right| \leq \frac{1 - |g(w)|^2 + |g(w)||g(w) - z|}{|1 - \overline{w}f(z)|}$$

$$\leq 2 \frac{1 - |g(w)|}{1 - |w|} + \frac{|g(w) - z|}{|w - f(z)|}.$$
(4.3)

Combining (4.1), (4.2) and (4.3), we have

$$|\operatorname{grad} G(f(z), w)| \leq M_1 |\operatorname{grad} G(z, g(w))|$$

for some constant M_1 . Because f(l) is Lipschitz, for fixed w, we have

$$(4.4) V(G(z, w), f(l)) \leq \int_{f(l)} |\operatorname{grad} G(z, w)| |dz|$$

$$\leq \int_{l} |\operatorname{grad} G(f(z), w)| M |dz|$$

$$\leq MM_1 \int_{l} |\operatorname{grad} G(z, g(w))| |dz|.$$

From (4.4) and the proof of Theorem j, we see that it is enough to show

$$(4.5) \qquad \int_{D} (1 - |g(w)|)^{\alpha} d\mu(w) < \infty,$$

(4.6)
$$\int_{D} (1 - |g(w)|) \log \frac{1}{1 - |g(w)|} d\mu(w) < \infty,$$

$$(4.7) \qquad \int_{D} \frac{1-|g(w)|}{|g(e^{i\theta})-g(w)|} d\mu(w) < \infty,$$

for Theorems A, 1, 2 respectively. (4.5) and (4.7) are simple consequences of (4.1). We shall show (4.6). Let δ be the distance from 0 to S and assume $w \in S$. We have

$$\log \frac{1}{1 - |g(w)|} - \log \frac{1}{1 - |w|} < \log M,$$

thus

$$\log \frac{1}{1-|g(w)|} < \left(1+\frac{\log M}{\log \frac{1}{1-\delta}}\right) \log \frac{1}{1-|w|},$$

therefore

(4.8)
$$< \left(1 + \frac{\log M}{\log \frac{1}{1 - |g(w)|}}\right) \frac{1}{m} (1 - |w|) \log \frac{1}{1 - |w|}.$$

Since we assume μ has support on S, (1.2) and (4.8) imply (4.6). The proof of Theorem 3 is complete.

REFERENCES

- 1. G. T. Cargo, The segmental variation of Blaschke products, Duke Math. J., 30 (1963), 143-149.
- 2. L. Carleson, On a class of meromorphic functions and its associated exceptional sets, (1950), Thesis, University of Uppsala.
- 3. O. Frostman, Sur les produits de Blaschke, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar, 12 (1942), 169-182.
- 4. L. L. Helms, Introduction to potential theory, (1969), Wiley-Interscience, New York.
- 5. F. Riesz, Eine Ungleichung für harmonische Funktionen, Montash. Math. Phys., 43 (1936), 401-406.
- 6. W. Rudin, The radial variation of analytic functions, Duke Math. J., 22 (1955), 235-242.
- 7. Jang-Mei G. Wu, Boundary limits of Green's potentials along curves, Studia Math., (to appear).

Received November 10, 1975 and in revised form June 1, 1976.

University of Illinois - Urbana

Pacific Journal of Mathematics

Vol. 66, No. 1

November, 1976

Helen Elizabeth. Adams, <i>Factorization-prime ideals in integral do</i> Patrick Robert Ahern and Robert Bruce Schneider, <i>The boundary</i> in the country of the co	behavior of Henkin's	I
kernel Daniel D. Anderson, Jacob R. Matijevic and Warren Douglas Nich intersection theorem. II.	ols, <i>The Krull</i>	15
Efraim Pacillas Armendariz, On semiprime P.Ialgebras over com	mutative regular	
rings Robert H. Bird and Charles John Parry, Integral bases for bicyclic over quadratic subfields	biquadratic fields	23 29
Tae Ho Choe and Young Hee Hong, Extensions of completely regu		
spaces	• • • • • • • • • • • • • • • • • • • •	37
John Dauns, Generalized monoform and quasi injective modules.		49
F. S. De Blasi, <i>On the differentiability of multifunctions</i>		67
essentially continuous		83
Larry Quin Eifler, Open mapping theorems for probability measure		0.5
spaces		89
Garret J. Etgen and James Pawlowski, Oscillation criteria for seco	ond order self adjoint	
differential systems		99
Ronald Fintushel, <i>Local S</i> ¹ actions on 3-manifolds		111
Kenneth R. Goodearl, <i>Choquet simplexes and</i> σ -convex faces		119
John R. Graef, Some nonoscillation criteria for higher order nonli		105
equations	Founian ganiage an	125
example		131
Les Andrew Karlovitz, Existence of fixed points of nonexpansive n		131
without normal structure		153
Gangaram S. Ladde, Systems of functional differential inequalities differential systems	and functional	161
Joseph Michael Lambert, Conditions for simultaneous approximat		
with norm preservation in $C[a,b]$		173
Ernest Paul Lane, Insertion of a continuous function		181
Robert F. Lax, Weierstrass points of products of Riemann surfaces		191
Dan McCord, An estimate of the Nielsen number and an example of		195
Lefschetz fixed point theorem Paul Milnes and John Sydney Pym, Counterexample in the theory		193
functions on topological groups		205
Peter Johanna I. M. De Paepe, <i>Homomorphism spaces of algebras</i>		200
functions		211
Judith Ann Palagallo, A representation of additive functionals on I	L ^p -spaces,	
0		221
S. M. Patel, On generalized numerical ranges		235
Thomas Thornton Read, A limit-point criterion for expressions win coefficients		243
Elemer E. Rosinger, <i>Division of distributions</i>		257
Peter S. Shoenfeld, <i>Highly proximal and generalized almost finite</i>		
minimal sets		265
R. Sirois-Dumais and Stephen Willard, Quotient-universal sequen	tial spaces	281
Robert Charles Thompson, Convex and concave functions of singu	•	
sums		285
Edward D. Tymchatyn, Some n-arc theorems		291
Jang-Mei Gloria Wu, Variation of Green's potential		295