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Let u be the Green’s potential of a nonnegative mass
distribution 1 on unit disk D, defined by

(1.1) w@)= [ G wydum,

where G is the Green’s function on D. The following will be
proved.

THEOREM 1. Suppose 0 <p <1 and

(1.2) fD (1—-‘w|)logr_—l'—mdu(w)<oo.

Then for almost all 6, 0= 6 <2, u has finite variation on the
line segment joining pe* and e’

THEOREM 2. Fix 0, 0= 6 <27 and suppose

(1.3) L %lep(w)<w.

e
If L is a circular arc in D centered at ¢*, then for all a on L
except a set of capacity zero, u has finite variation on the line

segment joining a and e*.

It is known [4; 150] that if u satisfies

(1.4) [ a=pwhduowy <=

then u is finite everywhere except a set of capacity zero in D.
Carleson [2; 32] has implicitly proved the following result.

THEOREM A. Suppose 0<p <1 and

(1.5) fD A—=|w|)du(w) <

for some fixed a, 0= a <1. Then for all 6, 0= 0 <2, except a set E of

295



296 JANG-MEI G. WU

a-dimensional Hausdorff measure zero if 0 < a <1, or of capacity zero if
a =0, u has finite variation on the line segment joining pe” and e”.

Some ideas involved in Theorems 1 and 2 are borrowed from Rudin
[6] and Cargo [1], who studied the variation of Blaschke products on line

segments.
In §4 we shall extend the above three theorems to curves with

certain differentiability properties, which need not be line segments.

For convenience, we shall use /(z, w) to denote the line segment
joining z, w and V(F, y) to denote the total variation of the function F
on the curve y whenever this is meaningful.

2. Lemmas.

LemMmA 1. If [ is a Jordan rectifiable curve in D, then
V(u, l)éf V(G(-,w), l)du(w).
D

The proof follows directly from the definition of variation and (1.1).

Lemma 2. If z,w€D and |z—-w|=Z(A—|w]|)/2 then
[(z = w)/(1—-wz)|=1/5.

Proof. For fixed w, [(z — w)/(1 — wz)| attains minimum 1/(3|w | + 2)
on the circle |z —w|=(1—-|w|)/2. The lemma follows from minimal

modulus principle.

LEmMmA 3. Let weD, A be a subset of D and m=
min{(1-1|z|)/|1-z|: z € A}. If the distance from w to A is less than
(1=|wl)/2, then A1—|wD/(1—w|)=m/3.

Proof. let zE€ A and |z—-w|=(1—|w|)/2. It is easy to check
{A-|w)=1-|z|=3(1—|w]). Therefore

1-|w|_  1-lw|] _ id-]z) _m
M—-w| " [1—z|+|z-w| [1-z|+1—-[z|" 3

LEmmA 4. (Cargo [1; 145]) Suppose a,w €D, 0=0 <27 and
z(ry=a+r(e®—a) for 0=r=1. Then

l—lw dr < 8 1—]w[‘
f“ (1—]a|)sin|:g(l+’al)]le —wl
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LEMMA 5. Letw,a € D,0= 60 <2 and b be the projection of a on
I(w,e®). If 0<m =min{(1—|z|)/(|e*® —z]): z € (a,e”)}, we have

(21) V(G(’ w),l(a,e“’))

s<_.._40__+210g

Proof. We assume that w is not on the line through a, e”, otherwise
b=a and (2.1) is trivial. Also we may assume 6 =0 by a suitable
rotation. Let z(r)=a+r(1—a), 0=r=1, be a representation of
l(a, 1) and grad G be the gradient of Green’s function with respect to the
first variable, that is,

1-|w]
1-wzl|lz—w|

(2.2) lgrad G(z, w)| = |

if z#w. Let S ={r:|z(r)-w|=z(1-|w)/2}N[0,1] and §,=
[0,1]\S,. Thus

V(G(-,w)l(a1)=|1-a| sos [1— wzl(:)lLr;J(z,)_ wl Y

= ’1_ a’(I|+Iz).
From Lemma 2 and Lemma 4 we have

40 1—]&[‘
(1—[a|)sin[g(l+|a[)]“_w'

I <

Assume S, is nonempty and let , B8 (a < B) be the two real numbers
so that the points z(a)=a+ a(l—a) and z(B)=a + B(1—a) have
distance exactly (1—|w|)/2 from w. We observe that

zga)—w gg) S Rk
1—a -

1—a 1—a

and [Im(w —a)/(1—a)| is the distance from w to l(a,1), which is
(b —a)/(1-a)||1—w]|. Therefore

_Re z(a)—w_ ziﬂ) Yo

1—a 1—a
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With the aid of Lemma 3, we estimate I, as follows:

1<2fﬁ L4
—4 T 7 ~ 1 r
? o lz(r)—w|

=,1_2a’[log< ngz—aw'+ReZ(lr—L—aw>]ﬂ

a

2 o 1-—- 1-a
1—a] % [z(B)—w Re 2B =W
—Re
1—a 1—a
42_(§L‘12
1—a
= log 5
[1-a| (I z(@@—w)
m
1—a
1-|w])
= lo
[T—a] ®[b—a[[1-w]
12 1-|w]

Thus (2.1) follows from the estimations for I, and I.
3. Proofs and remarks.

Proof of Theorem 1. For a fixed w € D, let T, be {z: p=]|z|<
Llz=w|z(1—|w])/2}and T,={z: p =|z|<1\T,. We consider

f |gradG(z,w))da,=j ~daz+f do, = L+1,
Iz|zp T T2

where do, = rdrdf, z =re*. From (2.2), Lemma 2 and Lemma 4 we
obtain

2m ’_
I,écj A=]wl 4g
0 Ie _Wz

where C is a constant depending on p only. It is easy to verify that
there exists a constant C, so that

Iléc,(l—’w[)logl—_ﬁ when |[w|>}

and
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I =C/(1-|w]|) when |[w|=1

Noticing that |[1—wz|=1—|w/, we have

2
1—f ——=—do, =27(1-
T PR (1= |wl).

From (1.2), (1.4) and the estimations above, we see that

f”V(u,l(pe“’,e"’))doéif f |grad G (z, w)|do.du(w) <.
0 D Jlzlzp

Theorem 1 follows.

Proof of Theorem 2. We may assume # = 0. Let « be the distance
from1to L, L,be aclosed subarc of L and m = minimum of the numbers
in {I1-|al:a€LJU{(1-|z|)/(|1—-z|):z€E€ l(a,1)and a € L;}. It is
clear that m >0.

Let E be the set {a € L,: V(u,[(a, 1)) = o}. We shall show E is of

capacity zero. If we assume otherwise, there exist M >0 and a finite
positive measure v(a) on E such that

f loglz dV(a)<M
for every complex z. With the aid of Lemma 5 we obtain

J;Wa3WMMDMMM

_ 40 12 1\ 11-|w|
:f ( T +mlog]b—a[>mll—wldv(a)

2

40 2M7 1 1—-|w]
<|————v(E)+ — .
{sm—(?. m) m }m|1—w|

From Lemma 1 and the assumption of Theorem 2 we see that
f V(u,l(a,1))dv(a) <o which is a contradiction. Hence E is of
E

capacity zero. Theorem 2 is proved.

ReMARk 1. The conclusion in Theorem 2 is best possible, because
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for any compact set E of capacity zero in D, there is a mass distribution
on E such that the Green’s potential of u is +® on E and finite on D\E
[4; 152 and 271].

REMARK 2. Carleson [2; 26] showed that (1.5) implies (1.3) for all 6
except a set of a-dim Hausdorff measure zero for 0 < a <1 or of capacity
zero for « =0. Frostman [3] showed that (1.2) implies (1.3) for almost
all 6. But we note that Theorems A and 1 do not follow from Theorem
2 for any obvious reason.

ReMARK 3. If B is the Blaschke product with zeros at z,, then
—log| B | is the Green’s potential given by v = £ §,, where §,, is the unit
mass at z,. If [ is a line segment in D not passing through any z,, then
log(z — z,)/(1 - Z,z) is analytic in a neighborhood of . Thus we have

(3.1) V(arg B,1)= Y, V<arg Z "2 ,l)
1-2.z
z -2z,
éEL grad arg =7, |dz |

:f f;gradG(z,w)Hdz;dV(w)

and
(32) VBl = [ 1B')ldz)
éfD fl |grad G (z, w)||dz | dv(w).

In the above theorems, when we dealt with variation of u on line segment
I, we in fact studied an upper bound of it, which is

f f |grad G(z, w)||dz|dw(w). Therefore from (3.1) and (3.2) we see

that whenever v satisfies the same condition for u in Theorem j,j = 1,2
or A, B has the same variation property for u stated in Theorem
J. With the aid of a theorem by F. Riesz [5; 401] on variation of analytic
functions, we can conclude the following result of Cargo [1; 147]: if
Zio(1—|z,])/|e® —z,| < then all the subproducts of B have finite
variation on each line segment in D ending at e”.

4. Variation on curves. Let0<7n<1,0<m <M and f be
a one to one map from {n =|z|=1} to D\{0} mapping |z|=1 onto
|z|=1 and satisfying
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(4.1) mla = B|=|f(a)- f(B)|=M|a - B|

whenever n =|a|=1, n=|B|=1. We have the following result.

THEOREM 3. Let u satisfy the condition in Theorem j, j = 1,2 or A,
and assume that the line segments we considered in Theorem j are short
enough to be in {n <|z|=1}. Then the variations of u on the images
under f of the corresponding line segments are finite outside an exceptional
set of the same size as in Theorem j.

We note that when j = A or 1, Theorem 3 can be considered as a
generalization of a theorem in [7], in the sense of the size of the
exceptional set, of variation vs. limit and of the more generalized curves.

Proof. Let S be the image of f and ! be any fixed closed line
segmentin{n <|z|=1}. We may assume u« has support on S. In fact,
if v is the Green’s potential given by u | D\S, then v(z) is harmonic in the
interior of § and tends to zero uniformly as z tends to the unit circle; thus
v(z) has finite variation on f(!).

Let g =f"' and grad G be the gradient with respect to the first
variable of G. Thus from (2.2) we have

@2 |eadGUELw) _ 1-|wl [1-g(w)z||g(w)-z]
erad Gz, g(w)| ~ T=Tgw) [1- wf(z)] [w — ()]

We observe that

_1-lgw)P+]gw)|lg(w)—z|
B [1-wf(z)]

1-[gw)l , [gw)—z]
2w Tw-f)]"

Combining (4.1), (4.2) and (4.3), we have

‘l—mz
1-wf(z)

4.3)

iA

|grad G (f(z), w)| = M,|grad G(z, g(w))|

for some constant M,. Because f(/) is Lipschitz, for fixed w, we have
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4.4) V(G(z,w),f(l))éjm) |grad G (z, w)||dz |
= [ lerad G(f2), ) Mz
éMlel |grad G (z, g(w))||dz|.

From (4.4) and the proof of Theorem j, we see that it is enough to
show

(.5) | a-lgoniyduow <=
(46) [, A=1g00))log Ty du(w) <=,

4.7) du (w) <o,

f 1-|g(w)
o |g(e”)—g(w)]
for Theorems A, 1,2 respectively. (4.5) and (4.7) are simple conse-

quences of (4.1). We shall show (4.6). Let é be the distance from 0 to
S and assume w € S. We have

1 1
log—F—F——log—F—<logM,
BT-Tew)l~ B1-Tw] ™%
thus
1 log M 1
log————<(1+ lo ,
T () BT
1-6
therefore
1
(1 =180 Dlog T 1
4.8)

logM \ 1 1
< [1+ 1 m(l [w!)log————l_,wl.
10g1~6

Since we assume u has support on S, (1.2) and (4.8) imply (4.6). The
proof of Theorem 3 is complete.
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