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In this paper we continue our study of unbounded operator
algebras. On the basis of the space L“[0, 1] introduced by R.
Arens [1] we define and investigate unbounded Hilbert
algebras. The primary purpose of this paper is to investigate
the relation between unbounded Hilbert algebras and
EW?*-algebras and the structure of some EW *-algebras.

1. Introduction. In a previous paper [10] we began our study
of EW?”-algebras. For the definitions and the basic properties concern-
ing EW*-algebras is referred to [10]. It is well known that semifinite
von Neumann algebras are related to Hilbert algebras. That s, if @,isa
Hilbert algebra, then the left von Neumann algebra % (%,) is defined and
UN(D,) is a semifinite von Neumann algebra and conversely if U is a
semifinite von Neumann algebra, then there exists a Hilbert algebra %,
such that 2 is isomorphic to the left von Neumann algebra %,(2,). In
this paper we study the above facts about EW7*-algebras. So, our
starting point will be the extension of Hilbert algebras.

DerintTiON 1.1, Let & be a pre-Hilbert space with inner product
(1 )anda=-algebra. If & satisfies the following conditions (1) ~ (3);
1) ¢Eln)=Mn*|€", &nED;
@ =M%, &niE€D;
By (2) we define 7 (¢) and #'(n) by;

7 =7m'(m)é=&n, EnED

Then w(£) and ='(n) are closable operators on 2 and we have
m(§)* D w(E*)and w'(n)* D w'(n*). Wecall 7 (resp. 7’) the left (resp.
right) regular representation of %.

(3) Putting

Dy={& € D; w(&) is continuous},

95 is dense in P, then 2 is called an unbounded Hilbert algebra over
D,. In particular, if &, # 2, then @ is called a pure unbounded Hilbert
algebra over %,.

In §2 we investigate the properties of unbounded Hilbert algebras
and we introduce examples of such unbounded Hilbert algebras (L°[0, 1],
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Le(—o,0), Li.(—o0,®), L{(—ow,0), LY(G), L5(G) (G; unimodular
locally compact group)).

In §3 we consider the noncommutative integration with respect to a
von Neumann algebra as constructed by Segal in [14]. Let 9 be a pure
unbounded Hilbert algebra over %,. Then L°(%,) and L3(%,) are
defined and they are pure unbounded Hilbert algebras. In particular,
L$(2,) is maximal in pure unbounded Hilbert algebras containing
9,. Furthermore &° (resp. 9) is a *-subalgebra of pure unbounded
Hilbert algebra L*(9,) (resp. L$(%,)) (Theorem 3.9.). We can define a
left EW”-algebra U (2) of a pure unbounded Hilbert algebra 9 over %,
i.e., U(D) is a minimal EW~*-algebra on L$(2,) over Uy(%,) and
U(D) D 7w (D), where we denote by A the smallest closed extension of a
closable operator A and we put A ={A; A € A} (Theorem 3.10.).

In §4 we define traces on EW™-algebras and we investigate the
structure of some EW*-algebras.

DEerFINITION 1.2, Let 2 be an EW*-algebra and let ¢ be a map of
9" into [0,]. If ¢ satisfies the following conditions (1) ~ (3), then ¢ is
called a trace on A%,

(1) e(S+T)=¢(S)+e(T), SSTEA,

(2) e(AS)=Ar¢(S), AZ0, SeU,

(3) @(S7S)= ¢(SS7), Se.

If the conditions ¢ (S)=0, S € A" implies S =0, then ¢ is called
faithful. If, for each increasing net {T,} of A" that converges o-weakly
to $ € A" (hereafter we denote T, T S), we have ¢(T,) T ¢(S), then ¢ is
called normal. If ¢(S) <o forevery § € A", then ¢ is called finite. If,
for each S € A", there exists a net {T,} such that T, 1 S and ¢(T,) <,
then ¢ 1s called semifinite.

Let U (D) be the left EW”-algebra of a pure unbounded Hilbert
algebra 9 over %,. Then there exists a faithful normal semifinite trace
¢ on U(D)" such that ¢/U(D); equals the natural trace on U\(%,)" and
U(D)(N,)s CN, (we note N, ={T E U(D); p(T*T)<} and N,), =
- M, NU(D),) (Theorem 4.2.). Conversely if A is an EW*-algebra with
a faithful normal semifinite trace ¢ satisfying A(N,), CN,, then N, is a
pure unbounded Hilbert algebra over (Jt,), and Y is isomorphic to the
left EW”-algebra U (N,) of N, (Theorem 4.11.).

2. Unbounded Hilbert algebras. In thissectionlet & be a
pure unbounded Hilbert algebra over %, and let $ be the completion of
9. Clearly 9, is a Hilbert algebra and the completion of 9, is a Hilbert
space . For each x €  we define my(x) and =g(x) by;

m(x)¢ =7 (€)x, EED,
mo(x)§ = m(§)x,  EE D,
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where m, (resp. ;) is the left (resp. right) regular representation of the
Hilbert algebra ®,. Then my(x) and m((x) are linear operators on 9
with domain 9,. By ([12] Theorem 3) we have

mo(Jx ) = mo(x)*, mo(Jx) = mo(x)*
for all x € , where J denotes the involution of .
LemMA 2.1.  For each £ € 9D we have

(1) m(§) = m(§), 7w'(£)= mi(£);
@) w(F)=7(6)*, m'(¢£%)=7'"(§)".

Proof. (1); Clearly we get mw(£)Cw(€). Hence mo(€)*D
m(£€)*. Since m(€)* = m(£*) and 7 (£€)* D w(£*), we have

() = mo(£*)* D w(£*)* D w(£).

Therefore we get m(€) = (&)
(2); By (1) we have

m(£%) = mo(§%) = mo(£)* = w ()"

LEMMA 2.2. Foreach A, u € € (the field of complex numbers) and
ga §u n, M €D (l = 1,2) we have

m(AE + pé) = Am (&) + um(€);
m(§:6) = m(&)7(&);
m(E*)Cm(€)*;

7' (A + un) = Am'(n) + pm'(n.);
m'(mm2) = 7' ()7’ (m);

m'(n*) Ca'(n)*.

Putting

w(£)y =m(£*), w(n)=a(n"),

m(D) and ©w'(D) are #-algebras on P and we have the following
properties ;

(1) (D), =7(Dy), 7(D)y=7"(D0o);
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Q) Jm () =€), Jn'(E) =7(E), (€ D;
G) #@)m'(n)=n'(n)m(£), &nED;

@) w(@) ==, 7E=7()" (€D

Hence we get

m(D)y = U(Do), T'(D)y = Vo(Do),

where U(2D,) (resp. V'(D,)) is the left (resp. right) von Neumann algebra
of D,.

ProprosITION 2.3. For each A €C and &, m € & we have

7(§)rm(m)=na(E+m), =) 7(n)=n(n),
A-m(§)=m(AE), w(6)"=m(¢Y).

Therefore w(2) is a x-algebra of closed operators on © under the
operations of strong sum, strong product, adjoint and strong scalar
multiplication.  Similarly w'(2) is a *-algebra of closed operators on
9. Furthermore we have

Jm(€) = 7'(£)*, Ja'(€)] =w(£)*, ¢€D.

Proof. By Lemma 2.1. we have w(£) = w(£*)* forevery £ € & and
hence

m(&)+m(n)=m(§)+m(n)=m(£*)* + m(n*)*
C(m(E*)+m(n*)*=m((£+n))*

=m(§+m),

and so w(&)+ 7(n)=nw(£+n). Similarly 7w (&) -7(n)=nw(€)m(n)=
m(én) and A -w(£)= w(A¢) are showed. By Lemma 22 (2) we
have Jm(¢)J = 7w'(£)*, € €D and hence Jmw(&)J=n'(€)" = m'(£)* by
Lemma 2.1. On the other hand we can easily show Jm(¢)J=
Jm(¢)J. Therefore we have Jw(&)J = 7'(€)*.

Problem. Does there exist an EW?*-algebra 2 such that A, =
U(D,) and AD 7(D)?
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In §3 we show that there exist such EW?”-algebras. In particular,
there exists an EW*-algebra such that is minimal in such EW?*-algebras
and we call it the left EW”-algebra of &.

We introduce examples of unbounded Hilbert algebras.

(1) L°[0,1]. Let L*[0, 1] be the set of all complex-valued measur-
able functions f on [0, 1] such that fe L*[0,1], p=1,2,---. By the
whole collection of L?-norms

i1 =[ [ 1rwra]”, P12

and by pointwise multiplication and involution (f*(t)= f(¢), t €[0,1])
the space L*[0, 1] is a complete metrizable locally convex *-algebra with
jointly continuous multiplication. R. Arens [1] showed L“[0, 1] is not a
locally m-convex algebra. However, G. R. Allan [2] showed that
L°[0,1] is a GB*-algebra with (L“[0,1]),= L*[0,1]. We introduce the
inner product into L“[0, 1] by;

¢ 19)= ] rwgdd fgerion.

Then L“[0,1] is regarded as a pure unbounded Hilbert algebra over
L7[0,1].

(2) L“(—w,»). Let L“(—x, o) be the set of all complex-valued
measurable functions f on (— o, ®) such that f € L”( — =, ») for every real
number p=Z1. Under the following operations

(fg)(x) = f(x)g(x), (Af)(x)=Af(x),
fH(x) = f(x)

and inner product (f | g) = J’x f(x)g(x)dx, we can show that L*(— %, )

is a pure unbounded Hilbert algebra.

(3) L¥(G) and L$(G). Let G be a unimodular locally compact
group and let dx be a Haar measure on G. Let L?(G) be the Banach
space of measurable functions f on G for which the norm

i =] [ 1rwra]” 1=p <=,
I£1l= esssup| )|

is finite. We note
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L(G); the space of complex-valued continuous functions with
compact supports,

L*(G)= N L/ (G), LT(G)=I<QOOL”(G),

1=p==x

L(G)= N L'(G).

I<p=

Under the convolution f*g as multiplication, involution f* (f*(x)=
f(x™") and inner product (f| g)=f f(x)g(x)dx on L*(G), L°(G) is a
G

Hilbert algebra and L{(G) and L3$(G) are unbounded Hilbert
algebras. In fact, suppose f€ L?(G) and g € L'(G) (1/p+1/q =1).
Then by Young’s inequality f* g exists and ||[f*g|. =|Ifl, /g, where
1/r=1/p+1/q —1. Furthermore, for each f€ L’(G) (1=p <®) we
have ||[f*|, =|fl,. Therefore we can easily show that L*(G), L(G) and
L3(G) are *-algebras. Since L(G)CL*(G)CL(G)N L*G) and L(G),
L'(G)NL*G) are Hilbert algebras, L“(G) is clearly a Hilbert
algebra. We can easily show that (f|g)=(g*|f*) and (f*xg | h)=
(g | f**h) for every f,g,h € LY(G) (resp. L$(G)). Furthermore we
have

L*(G)C(L¥G)), (resp. LG),)CIXG),

and so (L{(G),) (resp. (L5(G)o)) is dense in L*(G). Therefore L(G)
and L$(G) are unbounded Hilbert algebras.

Problem. Is an unbounded Hilbert algebra L (G) (or L3(G)) pure?

If G is a compact group, then L*(G) is an H *-algebra, and so L {(G)
and L$(G) are Hilbert algebras.
If G = (—%,®), then

14?1( - OO’OC) = {-1 lJp( - OO’OO)
I<p=wx
and

Lg(—w,0)= M LF(—o,x)

I<p=2

are pure unbounded Hilbert algebras under the following operations and
inner product
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()= [ f)gtx =),

(Af)(x) = Af(x), f*(x)=f(—x),
(9= fegtoax

In fact, we note

7(f)g=f*8 fgELI(—»,)
and
(L$-(— ,%)), = {f € L{:(— »,®); 7 (f) is continuous}.
We have only to show (L{(—o0,®)),# L3(—0,0), By the theory of

Hilbert algebras we have

(L'(— »,®) N L*(— o, ®)), = {f € L*(— ,®); 7 (f) is a bounded
linear operator on L*(— o, )}
={f € '(~ @, ®); f € L*(—», %)},

where f denotes the Fourier transform of f. Clearly we have
(L1(— %0,))y C{f € LX(— 0, ); f € L*(—,)}.

Putting

0, x<l1
f(x)= {

1/x, x=1

we can show fE€L&(—»,©) and fgZL(—%,), and so
Li.(—ow,0),# Li.(—,0). Consequently Lu.(—,®) is pure.

3. L°-spaces with respect to noncommutative inte-
gration. Our starting point for the construction of L“-space will be
the algebras of operators measurable with respect to a von Neumann
algebra as constructed by Segal in [14]. Let 2 be a semifinite von
Neumann algebra on a Hilbert space $ and let ¢ be a faithful normal
semifinite trace on A*. Let U, and A,, respectively, denote the set of all
projections and that of unitary operators in 2.
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DEeFINITION 3.1. A linear set © in £ is said to be strongly dense
(resp. ¢-restrictedly strongly dense) provided

(@) U'DCD for every U' €U,

(b) there exists a sequence of projections P, €% such that P,H CD,
P; | 0 and P; is a finite projection (resp. ¢(P»)<®). An operator
TnU is called essentially measurable (resp. ¢-restrictedly essentially
measurable) if T has a strongly dense (resp. ¢-restrictedly strongly
dense) domain and a closed extension. Moreover if T is closed, T is
called measurable (resp. ¢-restrictedly measurable).

Lemma 3.2. ([11] Lemma 1.1.) Let T be a closed densely defined
operator nA. Then,

(1) T is measurable (resp. ¢-restrictedly measurable) if and only if
sois |T|.

(2) LetTz0andletT= j AdE (A) be its spectral resolution. T is
0

measurable (resp. ¢ -restrictedly measurable) if and only if E(A)* (= 1—
E (X)) is a finite projection (resp. ¢ (E(A)*) <o) for a positive A.

We denote the set of all operators on $ measurable (resp. ¢-
restrictedly measurable) with respect to U by I(A) (resp. V(o).

ProrosiTiON 3.3. ([7] Prop. 4.3.) The sets M(A) and M(¢) form
EW*-algebras over U under the operations of strong sum, strong product,
adjoint and strong scalar multiplication.

Let I, be the maximal ideal associated with ¢, that is, the set of
A €U with ¢(|]A|)<®. For every T € M(A)" we put

p(T)= sup ¢(A).
AEM,, AT

DEFINITION 3.4. A measurable operator T is said to be pth
power integrable with respect to ¢ if w(|T|P)<c. Let L°(¢)
(1= p <) stand for the set of pth power integrable operators n. The
L’-norm of T€E€ L°(¢) is defined as w(|T|?)"” and designated by
| T|,. If p=c, we shall identify A with L*(¢).

A measurable operator T belongs to L?(¢) (1 = p <) if and only if

T is ¢-restrictedly measurable and —f APde (E(A)Y) <o, where
0

f AdE(A) is the spectral resolution of | T'|.
0

THEOREM 3.5. [11] (1) For 1=p <x L?(¢) is a Banach space
with norm || T|, and the following properties are satisfied.
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@ [Tl =IT*, =|U-T-U*|, for TE L(¢) and U €,

(b) For S, TE€ L’ (¢) such that |T|=|S| we have ||T|, =S|,
(c) For A€ and TE L*(¢) we have ||A -T|, =|A|IIT],

d) If0=T,=T,= --- isa sequence of elements of L”(¢) such that
|,} is bounded, then there exists T: = sup T, andlim, .| T — T,|, = 0.
(2) Let 1/p+1/q =1 where 1=p, q=». Then

@ wpS-T)y=pu(T-S)forSEL () and TE L' (¢). If further-
more, S, T Z0, then u (S - T)= 0; and conversely, if u(S - T)= 0 for every
T=0, then S =0.

®) |u(h T - T)=p(T T - - TH=TLI Tl -
o for TEL? (@) with 27 1/p, =1, p=1 (i=1,2,---, n).

© IS, = sup [u(S-T)|

TELY(¢)|Tlg=1

{IT.

IT.|

for S € L*(¢) where the sup is attained by some T if 1=p <.
@ [u(S-DF=pdS*[-[THa(S[-IT*D=p(S - THu(T-SI)

for SEL’(¢) and T € L (o).

(3) Let 1/p+1/q =1/r where 1=p,q, r = .

(@) If TEL(p) and SE L (¢), then T-S € L'(¢) and we have
IT-Sl =TS,

(b) Let T be a ¢-restrictedly measurable operator n. If T-S €
L'(¢) for every S € L(¢)*, then T € L*(¢).

Let &, be a Hilbert algebra. Let %U,(%,) be the left von Neumann
algebra of 9, and let ¢, be the natural trace on Uy(%,)". The comple-
tion  of 9, is equivalent to an H-system [3]. Putting

(2,), = {x € ; m(x) is bounded},

(2,), is a maximal Hilbert algebra containing &, and U (D,)(%s)s C(D)s-
For every x €9 my(x) is ¢o-restrictedly measurable ([11] Lemma
2.3.). We can easily show that L*(¢,) = {m(x); x € D} and L*(¢,) is a
Hilbert space isometric with . Moreover we remark that L*(¢,) is an
H-system isomorphic with § by the map. x — m(x). This follows from
the facts that (1) if xy is defined and equals z, then mo(x) - mo(y) = mo(xy)
and (2) if my(x) - mo(y) equals m(z), then xy is defined and equals z. We
have

L'(¢o) = {Z mo(x:) - mo(y1); X, Yo € O}

and the integral w(T) of T = =, my(x,) - mo(y,) equals =, (y, | x*).
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DEerINITION 3.5. We define the L“-spaces with respect to the
natural trace ¢, as follows;

Lw((Po) = 1§Q<x L"(goo),
L3(@o) = 2§rpl _ (o).

Similarly we define the L*-spaces with respect to the Hilbert algebra 9,
as follows;

L*(D,) = {x € §; my(x) € L* (¢0)},
LY(D) = {x € 9; m(x) E L(o)}-

ProPOSITION 3.6. The space L*(9,) (resp. L5(%,)) is an unbounded
Hilbert algebra containing (2,); (resp. (2o)s)-

Proof. For 1=p<wand S, T € L*(¢,)
IS Tl =[S 1o [ Tl

and hence S - T € L“(¢,). Therefore, for each x and y in L“(9,) xy
is defined and equals my(x)y. Furthermore for each T &€ L’(¢,)
(1=p<ew) |T|,=|T*|, and hence x*€& L“(2,) for every x€&
L°(%,). Consequently L“(%,) is a *-algebra. We can easily show
L*(2:) D (D), and so L°(2D,) is a pre-Hilbert space and its completion is
L (%,)=$%. For every x,y and z in L*(9,) we have

(xly)=0*lx*)

and

(xy [ 2)=(m(x)y | 2) = (y | mo(x)*2) = (y | mo(x*)z) = (y [ x*2).

Consequently L“(%,) is an unbounded Hilbert algebra. Similarly we
can show that L3(%,) is an unbounded Hilbert algebra containing (2,)s.

ProposITION 3.7.  The space L*(¢,) (resp. L3(¢o)) is an unbounded
Hilbert algebra containing m((92,),)* (resp. mo((2,)»)) under the strong
sum, strong product, adjoint, strong scalar multiplication and inner product
on L*(¢y).
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Proof. We can easily show that the map x € — mo(x) € L*(¢o) is
an isometric isomorphism of L“(9,) onto L*(¢,). By Proposition 3.6.
L“(¢o) is an unbounded Hilbert algebra.

Problem. 1s L*(9,) a pure unbounded Hilbert algebra? Does there
exist a pure unbounded Hilbert algebra containing %,?

PROPOSITION 3.8. The following conditions are equivalent.

(1) There exists a pure unbounded Hilbert algebra & containing %.

(2) L3(9,) is a pure unbounded Hilbert algebra.

(3) L“(2,) is a pure unbounded Hilbert algebra.

(4) There exists a positive element x in © (i.e., w(x)=0) such that
xZ(Do)yand x"EH, n=1,2,---.

Proof. (1) = (4); There exists an element ¢ € 9 such that 7 (§) is
an unbounded operator on . Clearly £*¢ & (2,), and (§*¢)" € D CH,
n=12,---.

(4) > (3); Let y = x*>. Then we can easily show that y & (%,), and

for each positive integer n m(y) € L"(¢,). Let m(y) =f AE(X) be
0

the spectral resolution. For each p with 1=p < there is a positive
integer n such that n =p <n+1. Then we have

1

- [(wdeEoy)= - [ ardeEa- [ ardedEW))

= - [ arden B0 - [ Ao EQY)
< o,

Therefore mo(y) € L? (o), i.e., y € L?(D,) for every 1 =p <=, and so
y € L“(9,) and m(y) is unbounded. Consequently L“(%,) is a pure
unbounded Hilbert algebra.
(3) = (2); Since L“(2,) C L$(9,), the assertion (3) = (2) is obvious.
(2) = (1); L5(%,) is a pure unbounded Hilbert algebra containing
Dy.

THEOREM 3.9. Let & be a pure unbounded Hilbert algebra over
D,. Then D° (resp. D) is a *-subalgebra of the pure unbounded Hilbert
algebra L*(D,) (resp. L5(%,)). In particular, L$(2,) is maximal in pure
unbounded Hilbert algebras containing 9,.

Proof. By Proposition 3.8 L*(9,) and L3(%,) are pure unbounded
Hilbert algebras. In the same way as the proof (4) = (3) of Proposition
3.8 we can easily show L“(2,) D @* and L(D,) D %.
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Problem. Let % be a pure unbounded Hilbert algebra over
9,. _Does there exist an EW*-algebra A such that A, = %(2,) and
AD 7 (D)?

Let & be a pure unbounded Hilbert algebra over %,. By Proposi-
tion 3.8 L$(%,) is a pure unbounded Hilbert algebra such that

DeCDCLAD)CH, and L)L 2(Dy) CLADy).

Let 7 (resp. mw5) be the left regular representation of % (resp.
L$(2,)). By Lemma 2.1 we have 735(2D) = 7(D)= 7(D).

Then 735(9) is a # -algebra on L$(2,) under w5(¢)* = w5(£*) and
L (@0)/L$(2,): ={T/L%(2,); T€E L*(¢,)} is a # -algebra on L(Z,)
under (T/L5(9,))* = T*/L%(9,), where T/L$(%,) is the restriction of T
onto L3(2,).

NotATION. We denote by U (%) a # -algebra on L$(9,) generated
by m5(2) and L*(¢,)/L 3(%o)-

THEOREM 3.10. Let 9 be a pure unbounded Hilbert algebra over
Dy. _Then U(D) and U (L3(D,)) are EW*-algebras on L$(%,) such that
UD )= ULAD))s= UNDy) and U(L5(Dp)) D U(D)D 7 (D).

DEeriNITION 3.11.  Let & be a pure unbounded Hilbert algebra over
Dy. U(D) is called the left EW*-algebra of .

4. Traces on EW”*-algebras. Let % be an EW*-algebra
and let ¢ be a trace on *. We note

N, ={T€W; ¢(T*T) <)

and let M, be a linear combination of {ST*; S, T € N,}. Then, clearly,
N, (resp. M, ) is a # -subspace of A satisfying A, N, CN, and N, A, C
N, (resp. AP, CI, and WM, A, CI,). We can easily show that the
positive part I, of M, equals {T € A™; ¢(T) <=} and M, is a linear
combination of M,. We define ¢ by;

(S)=Ae(S)+ -+ A0e(S), S=AS+ - +AS,
LEG, S eM.

Then it is not difficult to show that ¢ is a well-defined linear form on ¢,
and it satisfies
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(1) ¢S)=e(S), Se;

(2) ¢(S"T)=¢(TS*), S, TeN,;

(3) @(ST)= ¢ (TS), SeMm, TeU,
We note

¢(T)=e(T), TEeEU.

Then ¢ is a trace on U; and we have

(msc )b = m@ and (gjew )b = EIR@'

DerINITION 4.1, Let U be an EW”-algebra and let ¢ be a trace on
A*. If every A €U is ¢-restrictedly measurable, then 9 is called
¢ -measurable.

Let & be a pure unbounded Hilbert algebra over &, and let $ be the
completion of &. Let & be a pure unbounded Hilbert algebra over (%),
containing 4. Let U be a ¢,measurable (merely measurable) EW*-
algebra on & such that A, = U,(D,) and AD 7(D) (U(D) and
U(L$(9,)) are examples of such EW?*-algebras), where ¢,.is the natural
trace on U\(2,)".

NotaTION.  For each § € %" we define ¢ as follows;

(x | x), if §”=my(x), x € LYD,);
®(S)= {

oc, if otherwise.

THEOREM 4.2. (1) ¢ is a faithful normal semifinite trace on A".
(2) We have

N, =AN L) and M, = AN L(p,).
(3) Putting
N(@) = {x € D: m(x) ENY and (D)= {x € H; m(x) EM,
N(D,) (resp. DUD,)) is a pure unbounded Hilbert algebra over (2,), (resp.
(2,),) containing P (resp. 2?).
(4) ¢ equals the natural trace ¢, on UN(2D,)".
(5) Let pu be the integral on L'(¢,). Then

¢(T)=p(T), TEM,
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In particular, for every x,y € U(D,)

@ (mo(y)* - mo(x)) = (x | y).

6) AM,), CN, and AEN,), CI,.
(7) Every element T of 2 is represented by

T:’[:)+711’ FI-;)E?/[IJ’ ﬂemzw
(8) If TE N, then we have T = (T/D,).
Proof. (2); Let TE N, and let T = U|T| be the polar decomposi-
tionof T. Since ¢ (T*T) = ¢(|T[)<o,|T|= m(x), x € L3(%,), and so

[T|€ L5(¢,) and hence T=U-|T|€L#g,)NA. The converse is
obvious. Moreover we get

M, = N2 = AN L)) =T N L (o).

(3); By (2) we can easily show (3).
(4); Let TEA;. Since A,N L¥(@o)= mo((Do)s)s

I

B (x | x), if T =m(x), x € LYD);
o(T)=¢(T) {

0, if otherwise

{ (x| x), if T" = mo(x), x €E(Dy)s;

o0, if otherwise
= <P0(T)~

(5); Let TEM;. By (2) there exists an element x of L3(%,) such
that T = my(x). Then we have ¢(T)=(x | x)=u(T), and so ¢(T)=
w(T), TEM,.

(6); Let = be the left regular representation of €. We can easily
show that

Tr(€)= m(TE), TEYA, ¢€ (Do), CE.

Therefore 7w (T¢é)= Tw(§)EU and w(T¢)= w(TE), TE € € CL(D),
and so Tw(¢£)EN,.
(7); Let TEY and let T = U|T| be the polar decomposition of

T. Let m = f AdE(A) be the spectral resolution of {—ﬂ Since J_T_f is

0
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a @,restrictedly measurable operator, Er(A,)* € (I, )," for some A,>
0. By (6) A(M, ), CIM,, and so putting

T,= TE;(A,)* = U| T|E;(A,)* and T, = TE:(A,),

T,eN, €M, and T=T,+ T..
(8); Let TE€ . By (7) we have

T=i+-ﬁ7 ’TZ)E%[[)’ nemqp

=T+ m(x), x €L*(D,)

=(To/ Do) + mo(x) = To/ Dy + mo(x) = T/ D,.

(1); We shall show that ¢ is a trace on ", i.e
(@) @(S+T)=¢(S)+e(T), S, TEA;

(b) e(AS)=2r¢(S), A =0, SEUA;

() @(S*S)=¢(S5%), Se.

(@); Let S, TEA". Suppose ¢(S+T)<ew. Since § (or T)=
S+TandS+TE§IRw, and T in M,", and so ¢(S) = u(S)<x and
(p(T)—,u(T)<00 by (5). Suppose ¢(S)<x and ¢(T)<w. Since S
and T in L'(¢.)*, by Theorem 3.5. we have S+ T € L'(¢,)* and

e(S)+e(T)=pS)+u(T)=pnS+T)=pn(S+D=¢(S+T).

(b); clear.

(c); Let SEA. Suppose ¢(§*S)<x. Let S =U|S]|be the polar
decomposition of S. Then |S|= m(x), x € LY(D,) and |S*|=|S*=
mo(x*), and so we get

e(§78)=(x [ x)=(x*|x*)= ¢(55%).

Consequently ¢ is a trace on A". Since ¢ = ¢, by (4), ¢ is a faithful
normal semifinite trace on A,". We can easily show that ¢ is
faithful. We shall show that ¢ is normal. Let T, 1 T, T, TEY".
Suppose ¢(T) <. Then there exist {x,} CL5(%,) and x € L3(Z,) such
that T)?= m(x,) and T'" = m(x). We can easily show that ¢(T,) =
[x. [P 1 ©(T)=| x|’ Suppose ¢(T)== and sup,¢(T,) <. There
exists a net {x,} of L%(@,) such that T = m,(x,). Let T = j AE+(X)

be the spectral resolution of T. Since T is @o-restrictedly measurable,
E;(A)* € (I,)," for some A,>0, and so by (5) we get
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TE:(A)EM: and T= f AdEr(A)+ TEr(A) .
0

From ¢(T) =, we have @(I AdET(A)>= . Since T, 1 T, we get
0
E:(X)T,E{A;) E A, and

/\U
Er(A)T,EHAq) 1 ET()&O)TET()\O)=J; AE;(M).
Then we can show that

EGOTEG) 1 [ M),

and so by the normality of ¢

# EOITEO) 1 6( [ AdEm) ==

On the other hand we have

o( [ ME) ) = sup & Br ()T

Slip @ (Er(Ao) - mo(xa)” - Er(A0))

Slip @ (mo(Er(Ao)xa ) - mo(Er(Xo)x %))

sup (Er(A¢)X. | Er(Ag)x¥)

= sup||x. | = sup ¢(T.) <.

/\U
This contradicts <,5<f

0
nally we shall show that ¢ is semifinite. Since ¢ is semifinite, there

exists a net {T,} of (M, ); suchthat T, 1 I. Let TEA". By (6) we have

AdET(/\)> =, Consequently ¢ is normal. Fi-

T'T. 7€M, and T:T,T*1 T,
and so ¢ is semifinite.

DEerINITION 4.3. The trace ¢ of Theorem 4.2. is called the natural
trace on A",
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CoRrROLLARY 4.4. For every A €U and x € L§(9D,) we have

ALAD,)CLAD,) and A - my(x)= m(Ax).
In particular, we have
AN, CN, and AWM, CI,.
Proof. By Theorem 4.2.(7) we get A = A+ A,, AjE Uy, A,EM,,

and so A = A+ my(y), y € L*(9D,). Hence D(A) = D(m(y)) D LAD\)
and we have

AL%(%,)= A L%D,)+ A, LAD,)
C L3(Dy),

and

A - ay(x) = (Ao + mo(y)) - mo(x)

=X0770(x)+77-0(y)- mo(X)

= ’iTo(Xox )+ mo(mo(y )x)
= 770(_14_0)6 + Xlx)

= m(Ax).

Moreover, since ‘_J?: =AN Ly, and @: =9 N L“(g,), we have
AN, CN, and AWM, CIX,.
For every A € U putting
Ax = Ax, x € L'z"(@o)7

A_ is a linear operator on L%(%, by Corollary 4.4.. Let =
{A; A €%} Then we have

AB=AB, M =)1A and A*=A*L:D)=A"
for every A,B €% and A €C. We can easily show that I equals the
left EW7”-algebra U(N(Z,)) of a pure unbounded Hilbert algebra

N(D,). So, we obtain the following theorem.

THEOREM 4.5. Let & be a pure unbounded Hilbert algebra over %,
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and let € be a pure unbounded Hilbert algebra over (%,), containing
9. Let A be a measurable EW*-algebra on € such that A, = U«(D,) and
AD 7(D). Then U is regarded as the left EW*-algebra U (N(Dy)) of a
pure unbounded Hilbert algebra N(2D,) over (D,), containing 9.

Finally we shall show that an EW*-algebra with a faithful normal
semifinite trace is isomorphic to a left EW *-algebra of a pure unbounded
Hilbert algebra (Theorem 4.11). Let 2 be an EW*-algebra on ® and let
¢ be a faithful trace on 2A*. For each S, T €N, putting

(A(S)[ A(T)) = ¢(T"S),
(| )is an inner product on A (9, ) and by, foreach S, T € N, and a € €,
AS)TA(T)=A(S+T), ar(S)=Ar(aS),
A(N,)is a pre-Hilbert space. Let §, be the completion of A (9,). Let
A be a ¢-measurable EW*-algebra on © and let ¢ be a faithful normal

semifinite trace on A" satisfying A(N, ), CN,.

LEMMA 4.6. The property “UAN,), CN,” leads the property
“AM, TN,

Proof. Let A€andS €N, LetS=U|S]|be thepolar decom-
position of S and let |S|=| AdEs(A) be the spectral resolution of
0

[-S—}. Since m is a ¢ -restrictedly measurable operator, Es(A)" € (N, ),"
for some A,>0, and so we have

AS=AU|S|= AU(J’AO AdEs(A) + JstES()‘O)L>
=AU f " AEs(A) + ASEq(Ao)*

eADN,), CN,.

LEMMA 4.7. Let A €. Then there exist A, €A, and A, €M
such that

¢

A=A+A.

L Proof. Let A =U|A| be the polar decomposition of A and let
|A|=| AdE.(A) be the spectral resolution. Since |A| is ¢-

0
restrictedly measurable, E,(A,)" € (I, )," for some A,>0. Putting
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Ao = U<J’ ’ /\dEA (/\ )) and Al = AEA (Ao)l,
0

A()E%[b, A]E %[(Emw)b CEIR«, and A = A0+A1.

LEmMA 4.8. The pre-Hilbert space A(N,) is a pure unbounded
Hilbert algebra over A ((N,),).

Proof. We shall show that A((:,),) is dense in A(N,). For each
TEN, let T=U|T]| be the polar decomposition of T. Then |T|=

U*TeN,. Let m=f AdEr(A) be the spectral resolution of

0

m. Putting
S, = f AdE; (M),
0

S, €(N,); and {S,} converges o-strongly to | T|, and so S2 1 |T| and
since ¢ is normal, we get

IASHIE=¢(S%) T e TH=lA( T
and
A(TDIAS)) = (I T]S,)
=o(ITPS, [T 1t o(ITP)=[A(TDIF,

and hence
lim [A(US,) = A(T)[[=lim | A(S,) = A(| T])| = 0.

Therefore A((N,),) is dense in A(MN,). Since ¢ is a faithful normal
semifinite trace on A,", A((N,),) = A(N,;) is a maximal Hilbert algebra,
and so we can easily show that A((M,),) is a maximal Hilbert
algebra. For every S, T €N, we define the operations on A(M,) as
follows;

ASA(T)=A(ST),  ar(S)=A(aS),
A(S)* = A(S7), (A(S) [ A(T)) = ¢(T*S).

Then it is not difficult to show that A(),) is an unbounded Hilbert
algebra over A((:M,),). Finally we shall show that A(3,) is pure. By
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Lemma 4.7. every element A of U is represented by A = A,+ A,
AeA,, AeM,. If A€A-U, then A, €M, —(M,), and so
A((N,)s) # AN, ) and A((N,),) is a maximal Hilbert algebra. Therefore
A(N,) is pure.

LEMMA 4.9. For every A € U putting
V(AW(T)= A(AT), TER,
W(A) is a linear operator on A(N,). V(A) is a measurable EW*-algebra

on A(N,) such that ¥(A), =V (A,) = Uy(A((N,),)) and ¥ (A)D w(A(N,))
and ¥ is an isomorphism of A onto Y(A).

Proof. By Lemma 4.6. AN, CN,, and so W(A) is a linear operator
on A(JN,). Forevery S €N, we have ¥(S)= 7w(A(S)), where = is the
left regular representation of the pure unbounded Hilbert algebra A (R,).
We shall show ¥(U), = ¥(A,). Clearly we have ¥(U,) C¥(A), Con-
versely let W(A)EW¥(A),. By Lemma 4.7. A=A,+A, A€,
A EM,, andso V(A)=7m(A(A))EV(ER, ), Since A((N,),) is a maxi-
mal Hilbert algebra, A(A,)E€ A((N,)s), i.e., A, € (N, ), Therefore A =
A+ A, €U, and so Y(A)eV(U,). By the theory of von Neumann
algebras, W(A,) = U(A((N,))). Moreover it is easy to show that
YERODOYN,)=m7(A(MN,)) and ¥ is an isomorphism of A onto
W(). Since A is ¢-measurable, we can easily show that W() is
measurable.

LeEMMA 4.10. Let s be the natural trace on W(A)". Then we have

p(A)=y¢(¥(A)), AU
Proof. By the definition of the natural trace | we get
My, = (A D)) = V()
and moreover for every A € I}
e (A)=A(AHF = ¢(m(A(A)) = Y (¥(A)).

By Lemma 4.6. ~ 4.10. and Theorem 4.5. we obtain the following
theorem.

THEOREM 4.11. Let A be an EW?*-algebra and let ¢ be a
faithful normal semifinite trace on A*. Suppose that A is a ¢ -measurable
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EW”-algebra and A(MN,), CN,. Then A(N,) is a pure unbounded
Hilbert algebra over A ((N,),) and putting

W(A)A(S)= A(AS), SEN,

for every A €U, W(A) is a linear operator on A(N,). The isomorphism
WV is extended to an isomorphism ® of U onto the left EW”-algebra
UAR,)) of A(N,). Let  be the natural trace on P(A)". Then

o =Yod,
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