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Suppose 0 < R < 1, G is the open annulus {z | R <|z| <1}
and A (G) denotes the uniform algebra of functions analytic on
G and continuous on G. Each nonzero endomorphism T of
A(G) has the form Tf=fo¢p for some ¢ € A(G) with
¢(G)CG. In the main result of this note, the spectra of
endomorphisms of A (G) are determined for the case where the
inducing maps ¢ have a fixed point in G. In addition, further
results are discussed for other algebras of analytic functions.

Introduction. In [2] we determined the spectra of a class of
endomorphisms of the disc algebra A (D), the uniform algebra of
functions analytic on the open unit disc D and continuous on D. In this
note, other algebras of analytic functions are considered and the tech-
niques and results of [2] are used to prove a generalization of the
following theorem.

THEOREM A. If T is a nonzero endomorphism of A (D), then T has
the form Tf = fo ¢, for some ¢ € A(D) with ¢: D — D. If, moreover, the
inducing function ¢ has a fixed point z, in D, then exactly one of the
following three possibilities holds.

(1) ¢ isa schlicht map of D onto itself and T is an automorphism of
A (D). Inthiscase o(T), the spectrum of T, is either the entire unit circle
or else o(T) is a finite union of finite subgroups of the circle, or

@) a(M)={r[[A[=1}, or

(3) TV is a compact operator for some positive integer N in which
case a(T)={(¢'(z,))" | n is a positive integer} U {0, 1}.

The plan is to first prove that an analytic function ¢ which maps a
bounded (open) region into itself has at most one fixed point unless ¢ is
schlicht and onto. Knowing this, we consider an annular region G and
the uniform algebra A(G) of analytic functions on G which are
continuous on G and prove a theorem for A (G) similar to Theorem
A. Finally, we will indicate other regions for which similar results are
valid and also state some later results concerning endomorphisms of the
disc algebra.

1. Maps with two fixed points. In this section we prove
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that if ¢ is an analytic function mapping a bounded region (1 into itself
and if ¢ has two fixed points in (1, then ¢ is a schlicht map of ) onto 2.

Throughout this section,  will denote a fixed bounded region (open
connected subset) in the plane, and if ¢: ) — (), then ¢, will denote the
nth iterate of ¢, i.e. ¢, = ¢ and ¢, = ¢ °@,_\.

LeEmMmA 1.1. Suppose ¢ is an analytic function, ¢:Q— € and
2,EQ is a fixed point of ¢.

() If ¢'(z0)=1, then ¢(z) =z for all z € Q.

(i) If ¢'(zo)Y =1 for some positive integer N, then ¢n(z) = z for all
z €0,

Proof. (i) Suppose in a neighborhood of z, the function ¢ has a

Taylor series representation ¢(z)=z+c.(z —2z,)" +---. Since
e(z)—zy=2z—2zy+ ¢, (2 —z,)" + -, the Taylor series expansion of ¢,
at z, 18 ¢@Az)=z+2c,(z—z))"+--- and, in general, ¢,(z)=
z+nc,(z—zy)"+---. The mth derivative of ¢, at z, is ¢{(z)) =
nm!c,,.

On the other hand, since Q is bounded, {¢,} is a normal family on
and so there exist an analytic function @ on Q and a subsequence {¢,, }
with ¢, — @ uniformly on compact subsets of . Since {¢7(2)} is
unbounded unless ¢,, =0 and lim,_... ¢ 7'(z,) = ®"™(z,), we conclude that
¢» =0 and hence ¢ (z) = z for all z in a neighborhood of z,. Since Q is
connected, ¢(z)= z for all z € Q.

(i) If ¢'(z0)Y = 1 for some positive integer N, then ¢ (z,) = ¢'(z)" =
1, so that ¢n(z) = z for all z € ().

LEMMA 1.2. Suppose ¢ is an analytic function, ¢:Q— ) and
20 € Q is a fixed point of ¢. If |¢'(z0)| =1, then ¢ is a schlicht map of Q)
onto itself.

Proof. By Lemma 1.1 we need only prove this for the case where
¢'(z9)=e” and e” is not a root of unity. For this case, let {n,} be an
increasing sequence of positive integers with e™® —1. Again, {¢,, } is a
normal family on Q and so there exist a subsequence {¢,} and an analytic
function @ on Q with ¢,,— ® uniformly on compact subsets of ().

Clearly ®(zy)=1lim,_..¢.(20)=2zy and @'(z)=lim_.e,(z0)=
lim,_.e™’ = 1. Now consider the normal family {¢,,°¢.}. A routine
calculation shows that (¢,,,° ¢ .,)"(z0) = (P P)*(z,) for each nonnega-
tive integer ». On the other hand, there is a subsequence which we also
call {¢.,°¢n} and an analytic function ¢:Q—Q with ¢, ¢, — ¢
uniformly on compact sets. Also ¢*“(z,) = lim, ... (@ n,°¢.)"(2,) for
nonnegative integers v. Thus ®o® = ¢ near z, and so ®>® may be
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defined on all of Q with ®o®: Q— . In asimilar way, for each positive
integer N, ®y may be defined on Q with range ®, CQ. Since ®'(z,) = 1,
by Lemma 1.1, ®(z)=z for all z€ Q. We have thus shown that
lim,_.. ¢,/(z)= z uniformly on compact subsets of ().

The function ¢ is schlicht since if u, v € Q) and ¢ (u) = ¢(v), then
u=>Pu)=lim_.¢,(u)=lim_.¢,(v)=P@)="20

To show that ¢ is onto, suppose the contrary that for some ¢ € (),
cZrange ¢. Suppose r >0, C={z ||z —c|=r}CQ and y denotes the
circle {z ||z —c|=r}. Since c & range ¢, for each positive integer n and

each z€Q, ¢,(z)#c Consider f[(,oﬁ.(t)/(gon(t)—c)]dt. Since

. (t)# ¢ for all t € C, f [€:(t)/(@.(t)—c)]dt =0 for each n. On the
other hand, we have shown that there is a subsequence {¢,, } with ¢, — z

uniformly on C. Hence, 0=f [go;,k(t)/(gp,,k(t)—c)]dt—»f (t—c)'de

while f (t —c¢)'dt = 2mi, a contradiction. Thus, for some ¢'€ ) and

some positive integer n, ¢,(t')=c and so ¢ = ¢(¢.-i(t")). Thus
c Erange ¢. Since c is an arbitrary element in (), we conclude that ¢ is
onto.

Combining with Lemma 1.1, we have shown that if ¢ is an analytic
function from € to Q with a fixed point z, and if [ ¢'(zo)| = 1, then ¢ isa
schlicht map of Q onto itself.

LEMMA 1.3. Let ¢:Q— Q be analytic with fixed point z, and suppose
|¢'(z0)|<1. Then there exists a neighborhood U of z, such that
lim, .| @.(z2) = zo|" =|¢'(20)| for z € U and consequently lim,_.. ¢ (z) =
z, for z € U.

Proof. Choose € >0 satisfying (|¢'(z¢)|+€)<1. Then there
exists & >0 such that 0 <|z — z,/ < & implies

(PZ — Z

) !
_ < A
P ¢0'(z0) €

Hence, |¢(z) = zo| <(|¢'(z0)| + €)|z.— zo| for |z — z,|< 8. Then

le(e(z)— zol <(J@'(zo)| + €)|@(z)— zo] < (J @' (20)| + 5)2‘2'_ zy|

for |z —z/< & and, by induction, [¢,(z)— z,| < (|¢'(z0)| + €)" |z — 2|
for all positive integers n and |z — z,| < 8. Thus lim,...|¢.(z) = zo["" =
|@'(zo)| +€ for all €>0, |z—2,/]<8 and so lim,..|¢.(z)— zo|"" =
l@'(z0)] for |z — z,| < 8.
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The statement concerning lim, .. ¢,(z) = z, follows immediately.

THEOREM 1.4. Let Q) be a bounded region in the complex plane and
© an analytic function from Q into itself. If ¢ has two fixed points in ),
then ¢ is a schlicht map of Q onto itself.

Proof. Suppose z, is a fixed point of ¢. As we have seen, if
l¢'(zy)] =1, then ¢ is schlicht and onto.

The remainder of the proof is in two parts. We first show that
[¢'(zy)] =1, and then show that if [¢'(z,)| <1, then z, is the only fixed
point of ¢.

Indeed, suppose |¢'(z,)|>1. If {.} is a subsequence converging
uniformly on compact sets to the analytic function &, then
en(z))—= ®'(z,). But {p.(z,)} is unbounded since ¢, (z)) = (¢'(z0))™.

For the other case, suppose | ¢'(z,)| < 1. If ® is analytic on Q and
¢, — @ uniformly on compact sets, then for each z € Q, limy_.. ¢, (z) =
®(z). But Lemma 1.3 implies that for z near z, lim..¢,(z)=
z,. Hence ®(z)=z, in a neighborhood of z, and so ®(z)=z, on
Q. This implies that z, is the only fixed point of ¢, since ¢(b)=b
implies b = ®(b) = z,.

REMARKS. (1) More is known if ) is conformally equivalent to the
disc. Then the only analytic map of ) into itself with two fixed points is
the identity. This can easily be proved by reducing to the case that () is
the unit disc and using Schwarz Lemma.

(2) In the case of an annulus G ={z |r, <|z|<r.}, it can be shown
using, for example, the Hadamard three circles theorem, that the only
analytic maps of G onto itself are linear fractional transformations which
are either rotations about the origin (no fixed points unless the identity)
or those of the form ¢(z)=e”r;r,/z. In the latter case the fixed points
are =e*\/rr, and ¢’ at each fixed point is— 1.

(3) The conclusion of Theorem 1.4 holds for any region which is
conformally equivalent to a bounded region.

2. The annulus algebra. We now specialize and let G be
the open annulus G ={z |R <|z|<1} where 0 <R <1, and let A(G)
denote the uniform algebra of functions analytic on G and continuous on
G. For this algebra, too, every nonzero endomorphism T is a composi-
tion operator of the form Tf=/foe where ¢ € A(G) and
¢:G— G. In this section, the spectrum of T is determined in the case
¢ has a fixed point in the open set G.

LEMMA 2.1. If T is a nonzero endomorphism of A(G), then Tf =
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fe@ where ¢ = Tz, z the ideniity function on G. The function ¢ is in
A(G) and ¢: G — G.

Proof. Since T is a nonzero endomorphism of a uniform algebra, it
follows that ||T||=1. Hence |Tz|.=||T||z|.=1. Thus, if ¢ =
Tz € A(G), then sup.cs|@(2)|=|le|l.=||Tz|.=1. Also, R/z € A(G)
and |R/z|.=1. Therefore, | T(R/z)|.=1. But T(R/z)= R/¢(z).
Thus, sup.cs [R/¢(z)| =1 and hence inf.c; |¢(z)| Z R, i.e. for z € G,
we have R =|¢(z)|=1and so ¢: G — G.

Further, each f € A(G) is a uniform limit of rational functions of the
form2;__, aiz*. Butforsuchafunction g: g(z)=Z;__,,az* we have

T)@=T( 3 azt)= 3 a2 = T ale@) =)

=-m =—m k=-m

Hence Tf=fog for all f € A(G).

Conversely, for each ¢ € A(G) with ¢: G — G, the map f— fo o,
for f € A(G), is a nonzero endomorphism of A (G). Henceforth in this
paper we will show the dependence of this endomorphism on the
inducing function ¢ by denoting the endomorphism by C,. Thus
(C.f)(z)=f(e(z)). It should be remarked that this is also standard
notation for a composition operator. [4]

LEmma 2.2. Let ¢ € A(G), ¢:G— G and let z,€ G be a fixed
point of ¢. Then the following hold.

(i) Suppose A#0,1, (¢'(z0))", n a positive integer and that f, g €
A(G) withAf —fop = g. If g has a zero of order v at z,, then f has a zero
of order at least v at z,.

@) IfA#0,1, (¢'(z0))", n a positive integer, f € A(G) and Af(z)=
f(¢(z)) in some neighborhood of z,, then f = 0.

(ili) The only possible eigenvalues of C, are 0,1 or (¢'(z0))", n a
positive integer.

(iv) 1€0(C,), and for each positive integer n, (¢'(z0))" €
o(C,). If ¢ is not schlicht and onto, then C, is not an automorphism and
0ea(C,).

Proof. (i) This is essentially Lemma 3 in [2].

(i) Evaluating the successive derivatives of Af(z)= f(¢(2)) at z,
gives that f*(z,) =0 for all nonnegative integers v which implies that
f=0.

(iii) This follows from (ii).

(iv) This is essentially Lemma 2 in [2]. The proof consists in
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showing that for each nonnegative integer v there is no f € A(G) with

(¢'(2o))f = foo =(z — 2)"

LEMMA 2.3. Suppose f and g are defined on G, ¢: G— G and
M —foo =g Then the following hold for every positive integer n.

0 f@@)=f(e.2)DA " +Zi0g(@u(2)A*! for all z € G.
(i) If {x«}i-—= has the property that ¢(x,) = x,., for all integers p,
and ¢,(x0) = x,, p >0, then

(*) Af(x_)=f(x)A ™" + k'g" g(x ) .

Proof. The proof by induction of (i) is in Lemma 5 in [2].

EY

As for (ii), suppose {x,}.-_. has the property that ¢(x,) = x,., for all
integers p and ¢,(x0) = x,, p >0. Then, from (i),

2n~1

/\2nf(z) = f((Pz,,(Z))+ ‘;) g(‘Pk (z))/\z"_k_l.

Thus if we let z = x_,, we obtain

2n-1

'\Z"f(xﬂn) = f(xn) + z} g(xk_"))\Zn—k-x_

Hence

2n—-1

ATf(x-n) = fx)A™" + kZO 8 (Xi-n)A"
which is equivalent to (*).

LEMMA 2.4. Suppose T is a bounded linear operator on a Banach
space with the property that for some number a , |a| =1, we have

(i) o(T)D{a"|n is a positive integer} U{0,1}, and

(i) for some positive integer N, o(T")={a™|k is a positive
integer} U{0,1} and o (T"*")={a™*" |k is a positive integer} U {0, 1}.

Then o(T)={a"|n is a positive integer} U {0, 1}.

Proof. Suppose 0#A E€o(T). Then AN € og(TY) and AN'E
a(T"™*"), and so (ii) implies there exist positive integers j and k for which
AN =a" and AN = g™V Therefore, |A|=|a| and |A|=|al|* show-
ing that j = k. Hence A = a* for some positive integer k.
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Thus o(T) C{a* | k is a positive integer} U {0, 1} which, together with
(i), implies that o(T) ={a* |k is a positive integer} U {0, 1}.

The main result will be proved in three parts, Theorems 2.5, 2.6 and
2.7.

It was observed at the end of §1 that the only schlicht analytic maps
of the open annulus G onto itself have the forms ¢ (z) = ez, a real, or
¢(z)=e"“R/z, a real. Further, if T is any automorphism of a com-
mutative semi-simple Banach algebra, then it has been shown ([1], [3])
that either T" = I for some positive integer N in which case o(T) is a
finite union of finite subgroups of the circle, or else o(T)={A | || = 1}.
Thus we have the following.

THEOREM 2.5. If 0<R <1, G={z|R<|z|<1} and T is an
automorphism of A(G), then T = C, where ¢ € A(G) is a schlicht map of
G onto G.  Such ¢ take the form ¢ (z) = e“z, areal, or ¢(z) = e“R/z, a
real. In the first case o(C,)= closure {¢™ |n is a nonnegative integer},
while if ¢(z)=e"“R/z, then o(C,)={~1,+1}.

For more general theorems concerning spectra of automorphisms of
Banach algebras see [1] or [3].

Now suppose ¢ € A(G), ¢:G— G and ¢ is not schlicht and
onto. Let $=M7_0,(G). A straightforward topological argument
shows that S is a nonempty compact connected subset of G and that ¢
maps S ontoitself. Suppose z, € G is a fixed point of ¢. The results of
§1 show that this point is unique. Clearly z, € S and if S# {z,}, then the
connected set S is infinite. In this case there is a sequence {x,},-_.CS
with ¢(x,) = x,., for all integers p. To construct such a sequence, let
2y # xy€ SN G and define x, = ¢,(x,) ES N G for n =0 and for n >0
let x_, € § satisfy ¢(x_,) = x_,,;. Although x_, need not be unique, we
can find such x_, since ¢ maps S onto itself.

THEOREM 2.6. Let 0<R <1 and G ={z|R <|z|<1}. Suppose
¢ EA(G), ¢:G—G, ¢(z0)=2,€ G and S = M., ¢,(G) is infinite. If
C, is not an automorphism of A(G), then o(C,)={A[|A|=1}.

Proof. Since C, is not an automorphism, the inducing function ¢ is
not schlicht and onto and so it follows from Lemma 1.2 that [¢'(z,)| < 1.

We will show that if » is a positive integer, then o(C,)D
{A]@'(z0)]" <|A|<1}. To this end fix v and let g:g(z)=
(z — z)”. Further, suppose x,# zo, Xx,€ S N G and that {x,};- . is a
sequence in § satisfying ¢ (x,) = x,,, for all integers n, and x, = ¢,(x,) for
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n=0. Assume, too, that x, has been chosen close enough to z, that
lim, . @, (xo) = 2.

Since g has a zero of order v at z,, if f€ A(G) and Af —fep =g,
then by Lemma 2.2(i), f(z) = ¢..,(z — z0)""" + O( z — z,|"*?"") near z, for
some integer p=0 and complex number c,.,. Hence f(¢.(z))=
Coip(@n(2) = 20)"" + O @a(z) — 2o|""?"") for z near z,. Moreover, from
Lemma 1.3 we have lim,_..| ¢,(z) — zo|"" = | ¢'(20)| for z near z,. Thus,
for such z, if |¢'(z)[* <[A[, then

lim, .| f(ea(2))|[A " =lim, ..

Corp || @a(z) = 2o["?[A [ = 0.

Now assume that o(C,) does not contain {A || ¢'(z,)|" <|A| <1} and
that A & o(C,) with |@'(zo)|" <|Ao|<1. Let U be a neighborhood of
Ao with U C{A [|@'(20)]" <|A|<1}, and U N{(¢'(z))"|n is a positive
integer} = J and such that for each A € U, (A — C, ) exists. Then for
each A € U there exists a function f, € A(G) with Af, —ficp =g.

By Lemma 2.3(ii), for each positive integer n, we have

) M) = AT+ S gt

Also, since the map A — (A — C,)' is analytic on U, there exists a
positive number M such that |[(A — C,)'||= M for all A € U. Hence
Ifil-=1(A —C,) 'g|l-= M]||g|- for all A € U. Therefore, for A € U,
lim,..A"f,(x-,)=0. Since we have already shown that
lim, .. fi(x,)A ™" =lim,_.. fi (¢.(x)))A" =0, we have from (*) that
Si- . g(x)A* =0forall A in the open set U C{A ||¢'(z)]" <|A|<1}.

However, the function w — Z5__. g(x,)w " is analytic in the annulus
{wlle'(z0)]" <|w|<1} since lim,...|g(x-,)|"" =1 and

v

limy .. | g (ox (x)) [ = limea. | (@i (X0) = 20)" ["* = [ ¢"(20)
But, 27 . g(x,)A ™ =0 for A € U. Hence Z;__.g(x,)w™ =0 for all w
with |¢'(z0)|” <|w]|<1. This implies that g(x,)=0 for all integers k,
which is a contradiction to the assumption that g(x,) = (x,— z,)* and
xo7# zo. Hence a(C,) D{A [[¢'(z0)|" <|A[<1}. Since this holds for all
positive integers v, we conclude that o(C,)={A||A| =1}, as desired.
For an arbitrary region @ we let A (Q)={f|f is analytic on £ and
continuous on Q}. If Q is a simply connected Jordan region (a region
whose boundary is a Jordan curve), then A ({2) is isomorphic to the disc
algebra A (D). This follows from the fact that if B is a conformal map
of & onto D, then B extends to a homeomorphism of Q onto
D. Further, if T is a nonzero endomorphism of A ({2), then Tf = foo
for some ¢ € A(Q), ¢:Q—>Q. Moreover, if ¢y =Bcp°p”", then
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¥ € A(D) with ¢(D) CD and it is easy to verify that if C, and C, are the
linear operators induced by ¢ and ¢ on A(Q) and A (D) respectively,
then o(C,)=0o(C)).

THEOREM 2.7. Let 0<R <1 and G={z|R<|z|<1}. If
¢:G—>G, o€EA(G) and S=M,0,(G)={z}CG, then o(C,)=
{(¢’(20))" | n is a positive integer} U {0, 1}.

Proof. Let G, and G, be two overlapping 51mply connected Jordan
reglons with G,UG,= G. Specifically, let a; =317 targz, and a,=

ym +argz, and let 8 = 7/100. For k =1,2, let G, be the region
bounded by Jordan curves each consisting of the following four arcs.

Y« 1 = radial segment from Re"™ to e,

Yr.2 = clockwise circular arc from e to e ‘¢7 %%

Y« 3 = radial segment from e ¢7 %" to Re @7 % 2"

Yr.« = counterclockwise circular arc from Re™® =% to Re'.

Choose € >0 so that U ={z ||z —z,/|<€}CG, N G,. Since S =
7-1¢.(G) = {z,}, there exists a positive integer N for which ¢n..(G)C

en(G)CU. For this N, ¢n(G,)CU CG, and ¢n(G,)CU CG,. The
operator C, = C% is then an endomorphism of both A(G,) and A (G,)
and, further since N7, on (Gy) ={zo}, k = 1,2, it follows that o(C, )=
{(¢ Mz0))* | k is a positive integer} U {0, 1} as an operator both on A(G )
and A (G,).

Thus, given g € A(G) and A Z {(¢'(z,))™ | k is a positive integer} U
{0, 1} there exist f, € A(G)) and f, € A(G,) with Afi(z) — fi(en(2)) = g(2)
for z € G, and Afy(z)— faen(2)) = g(2) for z € G..

Now, on U CG, N G,,

Afi(z) = filen(2)) = Afi(2) — faen(2)).

Then Lemma 2.2(ii) implies that f(z)= fy(z) on the component of
G, N G, which contains z,.
On the other hand, for all z € G, N G, we have by Lemma 2.3(i) that

F2)= Flon@N " + 5, glon(2)A

and

fz) = filon(z)A N + z (o (A,

Since ¢n(2) € U, it follows that fi(on(2)) = fa(en(2)) and so fi(z) = fiz)
on all of G,N G,. Since f, is continuous on G, f, is continuous on G,
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and f,=f, on G,N G,, we have that f=f,Uf,€ A(G) and Af —fop =
g. Therefore, if AZ{(¢Mz0)"|k is a positive integer} U{0,1}, then
(A= C,)" exists on A(G), ie. o(C, ) C{(¢'(zo)™ |k is a positive
integer} U{0,1} as an operator on A(G). However, Lemma 2.2(iv)
implies that the opposite inclusion holds, and so o(C, )= {(¢'(z0))™ | k is
a positive integer} U {0, 1}. _

On the other hand, a similar result holds for o(C,_ ) since ¢n.1(G)
is also a subset of U. That is, o(C,  )={(¢'(z0))""" |k is a positive
integer} U {0, 1}. Therefore, by Lemma 2.4, we conclude that o(C,) =
{(¢'(z0))" | n is a positive integer} U {0, 1} as required.

To summarize, Theorems 2.5, 2.6 and 2.7, combined, show that
Theorem A is valid for the annulus algebra.

3. Final remarks. The theorems in §2 can be extended
further to composition operators on uniform algebras of analytic func-
tions on regions other than the disc or the annulus. The analogues of
Theorems 2.5 and 2.6 can be proved in exactly the same manner as the
originals. In Theorem 2.7, a crucial part of the proof was to express G
as a union of two overlapping simply connected Jordan regions. Thus if
1 is conformally equivalent to any bounded region which can be written
as a union of two overlapping simply connected Jordan regions and if
e EA), ¢:Q—Q and if ¢(z,) = z, €, then Theorems 2.5, 2.6 and
2.7 hold with G replaced by €.

A final remark relates to the disc algebra and the case where ¢ has
all its fixed points on the circle. In this case the spectrum of C, need not
have the same form as the operators in Theorem A. Indeed, if ¢ is the
linear fractional transformation ¢(z)=(z +1)/(3— z), then D. J. New-
man (personal communication) has shown that o(C,)=[0,1], the unit
interval. A slight modification of this example can be constructed for
which o (C,) is the spiral {0} U {e “|0=1t}, a fixed with Rea >0. This
arises  from  the linear fractional transformation ¢(z)=
[Q—a)z +a]/[—az +(a +2)].
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