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In this paper the class (subclass) of associative rings whose
additive subgroups are subrings (ideals) is completely charac-
terized by defining relations. An exact description is also given of
those rings in these classes which are commutative, regular,
Artinian, Noetherian, or with identity. The only integral
domains in either class are the ring of integers Z and Z/(p) for
prime p.

0. Introduction. A ring which has the property, called S, that
all its additive subgroups are subrings is called a 5-ring. A ring R is a
S-ring if and only if, for every x and y in R, xy is a linear combination of
x and y. This fact will be used constantly in this paper. All rings
herein are associative, all groups are abelian, and all constants are
integers. A ring R will be primary, torsion, torsion-free, mixed, etc.
exactly if its additive group, R+, is primary, etc. By the rank of i?, r(R),
we mean the rank of R+. Occasionally, when the meaning is perfectly
clear, distinction will not be made between R and R+. Other terminol-
ogy is essentially that of [4]. Our chief results are found in Theorems
1.4, 1.5, 1.6, 2.6, 3.5, and 3.6. Special S-rings are described in §4.

1. Torsion rings. In this section all rings are torsion. We
begin with primary rings.

PROPOSITION 1.1. If R is a p-primary S-ring, R is bounded or R is a
zero-ring.

Proof, (a) Let B be a basic subgroup of R+ and assume B is
unbounded. We prove R2 = 0» Suppose x2 = rx/ 0 for some x in B
and o(x) = pn. Choose z independent of x such that o(z)^p2n. Then
(x + pnz)2 = rx + p2nz = k(x + pnz) for some k. This implies pn divides
k and 0=kx = rx, a contradiction. Thus JC2 = 0, for every x in
B. Suppose x and y are linearly independent in B and xy = ax + by,
by7^0. If o(x) = pn and o(y) = pm, choose z in B such that z is
independent of x and y and pn+m divides o(z). Write xz =
ex + dz. Then x(y + z) = (a + c)x + (by + dz). The right-hand term
must be a multiple of y + z which implies dy = by^O. But pndz =
pn(xz) = 0 and pm divides d which implies dy = 0. Therefore, xy = 0
and B2 = 0. It follows easily that R2 = 0 (see Theorem 120.1 of
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[4]). (b) Assume, then, B is bounded and write R+ = D 0 β where D
is divisible. Since R is primary, D2 = RD = DR = 0. It will suffice to
show B2 = 0 when D^ 0. If B is bounded by pn, we select z in D such
that o(z) ^ p 2 n . Using this z we repeat the proof given in (a) and again
deduce B2 = 0. This completes the proof.

If R is a bounded primary ring, we wish to know when it has
property S. The answer is given in the next proposition for which we
need a lemma.

LEMMA 1.2. Let R be a p-primary S-ring. If x, y are linearly
independent in JR, o(x)^k o(y), x2 = rx, and y2 = sy, then xy + yx =
sx + ry + e(x + y) for some constant e. If ex^ 0, then p = 2, 2ex = 0,
and o ( x ) = o(y).

Proof. We write (x + y)2 = k(x + y) and (x + 2y) 2 = l(x + 2y)
where k and 1 are constants. Solving simultaneously, we obtain 2k =
2(5 + r) (mod O(JC)). If we set k = s + r + e, then xy + yx =
sx + ry + e(x 4- y). If ex ^ 0, then p = 2 and lex - 0. In this event,
(x + 2y) 2 = ( r + 25) ( x + 2 y ) + 2ey. Here 2ey must be a multiple of
x + 2 y which implies o(x) = o(y).

PROPOSITION 1.3. Let R be a ring on G = ® 0 t , ), a bounded p-
group. Then R has property S iff there are constants M, and υ, for each i
such that:

(1) XiXj = ϋ/jc. + MfJCy, /or every i and /, or if 2nG = 0, r(2 n" !G) = 2 /or
5ome n,

(2) x^j = ϋyjc/ + M/JCy, /or Ϊ V / and x2 = (ut + ϋ, + 2n"1)jcI , /or eυery i.

Proo/. (a) Sufficiency. Let α = Σ α̂ x,, β = Σ tyx, be elements in
R. If (1) is given,

<*β = ( Σ bjv^j a + ( Σ

and we are done. If (2) is given,

α0 = (Σ *

The right-hand sum is a linear combination of a and β if and only if
ah — ka % + lfe, (mod 2) for some fc and 1 and all i. This, in turn, is
possible if and only if r ( 2 n " 1 G ) ^ 2 , as can be shown by considering
cases, (b) Necessity. If r ( G ) = l , (1) is satisfied. We assume
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r(G) ^ 2. We first show that, for each /, there exist u\ and υ\ such that,
for ίVy, XiXj = v'jXt + u\xr For fixed i choose xk^ x, of maximal order
possible. Write x,xk = ex, 4- dxk and, for iVyV fc, *i*, = #*« 4- 6x;. Then
x,(xy 4- jcfc) = (α 4- c)x, 4- (/>x; + dx*). The right-hand term must be a mul-
tiple of Xj 4- jck and, hence, dx} = fee,-. Similarly, if xfcx, - cox, 4- doxk and
jCyXf = αox, + boxh an examination of (x; + xk )x, shows that d0Xj =
feo^/ . We let u[= d, υ\- d0 and do this for each i. Then, x,oc; =
v]Xi + u'iXj for *Vy. Next, for each i, x^ = (wί+t -4-^)x, for some e{

such that 0 ^ e, < o (x,). Write r,, = w + υ \ + e,. If i ̂  y,

x,x} + x7-x, = (w; + υ')xt + (M; + i;',)*,- = r;x,- 4- r,x; - (e,-*,- 4- e ^ ).

If the right-hand term equals zero for all zV y, we let w, = w , vt = ϋ 4- ̂ ,
and condition 1 of the theorem will be satisfied. Suppose, for some i^ y,
£,*,• + e,jt,y 0 where O(JC,-) = (̂ /) I f ^ . ^ 0 , o(x,)=o(x / ) by (1.2). If
βtXjjέ 0, βjXi + β,x7, as a multiple of xk 4- x;, equals et{xx 4- x7). Here exxx -
e^/O, and again o(x,)=o(x ; ) . Since both terms in eyX, + e,x7 are
nonzero, the sum would remain nonzero if, say, ί or y were replaced by k
where xk has maximal order p " in i?+. It means o{xt) = o(x ;) = pn. By
(1.2), e, and e7 may be replaced by 2""1 and r(2n~ιG) = 2 (we already knew
r(2 n " 1 G)S2) . It follows that x] equals, for each /, («;-h ϋ; + 2n"1)xi. Let
w, = M;, ϋi = ϋ! for every i. The proof is complete.

We now consider how a 5-ring can be constructed on a bounded
primary group. In general, if group G - 0(x,), a ring (not necessarily
associative) can be constructed on G in the following way (see Theorem
120.1 of [4]). For each i, y, let x,x; be an element in G subject to the sole
condition: ^(x.Xy^min (o(x,), o(Xj)) and define multiplication on the
rest of G linearly. We note that these two conditions are also
necessary. We may now state a theorem.

THEOREM 1.4. Let G = 0(x,) be a bounded p-group where o(x,) =
n,. A S-ring can be constructed on G by setting

(1) xtXj = VjXt 4- w,x;, and

(2) (Σ atx,) (Σ bjXj) = Σ,, α,fcyx«*/> where
(3) n,w,G = ntvtG = 0 , and
(4) UiVjXk = 0 unless i = j = fc.

2, any p-primary S-ring, not a zero-ring, is of this type.

Proof By (1.3) and the preceding paragraph, conditions 1-3 are
sufficient for constructing a S-ring (not necessarily associative) on
G. Conversely, let J? be a p-primary S-ring, not a zero-ring. Its
additive group has the form G by (1.1) and, by (1.2) and the paragraph
above, conditions 1-3 are necessary. We now show that (4) is necessary
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and sufficient for associativity. Multiplication is associative if and only
if, for all /, /, fc, (*,*/)** = jcί(x7ock) or, by computation, if and only if
UjVkXi = VjUiXk for every i, /, k. Clearly, (4) implies this
equation. Conversely, suppose this equation is given. If ιV K */ and
xk are linearly independent and UiV,xk = 0. If yV K we substitute, in the
above equation, k, i, j for ί, y, fc respectively, and derive u Ό{xk - vxukxh

and again UiVjXk = 0. Property (4) is established.

REMARK. A S-ring on a 2-group, however, need not satisfy
condition 1 of the preceding theorem. An example is the ring-direct
sum Z/(2) φ Z/(2), which we call M. The following theorem will allow
for the ring M.

THEOREM 1.5. Let G be as in (1.4) where 2nG = 0 and r(2n~1G) = 2
for some n. A S-ring R can be constructed on G by setting

(Γ) XiXj = VjXi +. u,xh for i Φ j where x] = (u, + vx + 2n~1)xh for every i,
(5) all un υt are even,

and satisfying conditions 2-4 of (1.4). A S-ring on a 2-group, not a
zero-ring, has this construction or that of (1.4).

Proof (a) Let G and multiplication on G be as given. Conditions
Γ, 2, and 3 define a 5-ring R (not necessarily associative) on G for the
same reasons as in (1.4). We claim (4) and (5) ensure jc,(x;jck) = (jC/Jcy)jck

for all ΐ, y, k. If i = j = fc, this is clear. If i, y, k are all distinct, these
products are computed exactly as in (1.4) and the equation is true by
(4). Suppose, in the equation, exactly two subscripts agree. Again, the
value of each product in G is as in (1.4). This is so because each term
involving the number 2 n l disappears. We illustrate this with one
example. In JC,(JC,JC;) = v}(ut + vt + 2n~1)jcι 4- uxxxXj, vj2

n~1xi = 0 by
(5). Therefore, R is associative, (b) We now verify the last sentence
of the theorem. Suppose R is a 5-ring on a 2-group G but is neither a
zero-ring nor structured as in (1.4). By (1.3), (Γ) is necessary together
with (2) and (3). If all ux and υ, are even, the products Xι(xpck) and
(jCfjCy)jcfc are computed as in (1.4) unless i=j = k and (4) is again
needed. If (5) is not satisfied, we will prove R is isomorphic to M, the
ring mentioned in the Remark above. That M has a construction
satisfying the conditions of this theorem is routine to show. Therefore,
suppose (5) is not satisfied and ux or vx is odd for fixed /. Consider
x]Xj = X,(JC(JC7) for yV i and o(x}) = pn. If we compute this equation in G
and equate the two jCy-terms, we obtain (ut{ + vt +2n~1)uιxj , = u^x, or
(vι + 2n'1)uιxj = 0. Similarly, from XjX] = (jC/Jt,-)*,-, we obtain
(u, + 2n~ι)ViXj = 0. We deduce from these equations that u, and υ, have
the same parity. Thus, u, and vx are both odd, (vx + 2n l)jc ; = 0, and
n = 1. Also, x] = xt and x) = xf. From the condition on rank, it follows
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that R+ = <x,)0<JCy). We claim x.x,- = xy = jc7jct. Suppose x,xy = x, + x;

(the only other possibility since ux is odd). Then xt + x} = x2

tx} =
xi(xιxJ) = xh a contradiction. Thus, x, x7 = x r Similarly, x]xi=xΓ By
writing JR+ = (x, + x 7 ) 0 ( x ; ), we readily see that JR is isomorphic to M
which satisfies the conditions of the theorem.

REMARK. At first glance, the construction of S-rings might seem
unduly complicated, but this is not so. Suppose G is the group given in
(1.4) with least bound pN. We can satisfy the conditions of the theorem
by, for each i, letting ut = rx, vx=0 where pN divides rxnx. Another
example shows that all ux, vx can be nonzero. Let R be the ring on the
group (x)0(y> where o(x) = 81 = o(y), x2 = 27x, y2 = 27y, xy =
9x + 18y, and yx = 18JC + 9y. This ring also has property S.

We now consider torsion S-rings in general.

THEOREM 1.6. Let G be a torsion group with primary decomposition,
G = 0 P Gp. A ring R on G has property S if and only if, for each p, the
subring Rp on Gp has property S.

Proof The necessity of the condition is clear. We suppose JRP is a
S-ring for each prime p and prove R = 0 Rp is a S-ring. Let a = Σ xp

and β = Σ yp be elements in R where xp, yp E JRP (xp = yp = 0 for almost
all p's). Since, for each p, xpyp = apxp + bpyp for constants ap and ftp,
aβ = Σ xpyp = Σ αpxp + Σ fepyp. For each p, let np = max (o(xp),
o(yp)). By the Chinese Remainder Theorem, there exist constants k
and 1 satisfying k = ap (mod np) and ί = bp (mod np) for each p for which
xp or yp is nonzero. It follows that aβ = ka + lβ and that R is a S-ring.

2. Torsion-free r ings. In this section all rings are assumed
to be torsion-free. We first establish, in 5 lemmas, some properties of
S-rings. Theorem 2.6 will be the culmination of this effort.

LEMMA 2.1. Ifx and y are elements in a S-ring, x2 = rx, andy2 = sy,
then xy + yx = sx + ry and xy = sx or ry.

Proof First, suppose x and y are linearly independent. The proof
that ry + yx = sx + ry is the same as in (1.2), except that k now equals
s + r exactly. Next, set xy = ax + by, yx = ex + dy. Then, αrjc + ftry =
jc2y = x(xy) = (ar + ab)x + b2y and ab = 0 = b(b - r). Similarly, cd =
0 = c(c - r). If fe^ 0, then 6 = r, a = 0, and xy = ry. If c ^ 0, then
c = r, d = 0, and yx = rx which means that xy = sx. If b = c = 0, then
xy = sx since α + c = s. Secondly, suppose x and y are linearly depen-
dent and mx = ny^0. By computation, mxy = m(sx) and xy =
sx. Similarly, yx = ry, and, as a result, xy + yx = sx + ry.
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and y in

Proof. From (2.1), (1) implies (2) and (2) implies (3). We must
show that (3) implies (1). If x and y are linearly independent, this
follows from (2.1). Suppose mx = ny^O. Then 0= mn(xy + yx) =
m(x(ny) + (ny)x) = m(x(mx) + (mx)x) = 2m2x2 and x2 = 0. Similarly,

LEMMA 2.3. If K is a subring of the S-ring R and K2 = 0, then K is
an ideal.

Proof Let x G K, y G R\K. If x and y are linearly dependent,
then xy = yx = 0 £ K. Assume that they are linearly independent and
write xy = ax + by. Then 0 = x2y = x(xy) = x(ax + by) = bxy =
abx 4- b2y and by = 0. Thus, xy (similarly yx) is in K.

LEMMA 2.4. // the S-ring R has rank one, it is a zero-ring or R+ is
cyclic.

Proof Assume the lemma to be false. Then there is an element
JCT^O in R+ of unbounded height. Since R2 ^ 0, x2 = ax^O for some
a. Choose n and y such that ny = x but n is not a factor of a. If
y2=by, by computation ax = n2by = nbx and n divides α, a
contradiction. Therefore, the lemma is true.

LEMMA 2.5. If R is a S-ring, then it is a zero-ring or it contains an
ideal K and an element z such that R+ = K+Q)(z), where K2 = 0 and
z2= sz for some s^ 0. Also, for every x in K, xz = ux and zx = (s - u)x
where u(s — u) = 0.

Proof Suppose i? is not a zero-ring and K is a maximal subring in
R such that K2 = 0. By (2.3), K is an ideal and we may form the
quotient ring R/K = L. We will show that L + is cyclic and torsion-
free. First, L has property S. For, if D is a subgroup of L+, so is its
inverse image in R+ and closure under multiplication in R implies it in
L. Secondly, L is torsion-free. Suppose y ^ 0 but ny = 0 in L. If x in
R maps to y, then nx is in K and (nx)2 = 0. If x2 = θ, the subring
generated by x and K is a zero-ring by (2.2) which contradicts the
maximality of K. Thus, x2 ^ 0, n = 0, and L is torsion-free. Thirdly,
we prove that L has rank one. By the previous argument, it suffices to
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show that r(L)> 1 implies R\K has a nonzero element whose square is
zero. Suppose, then, r(L)> 1 and x and y are linearly independent in
R\K. If x2 = rx, y2 = sy, then, by (2.1), xy + yx = sx 4- ry and
(sx - ry )2 = 0. Therefore, the rank of L must be one. By the maximal-
ity of K, L is not a zero-ring. By (2.4), L+ is cyclic and R+ = X + 0(z>
for z where z 2 ^ 0 . Finally, we verify the last sentence of the
theorem. Let x, y be elements in K. By (2.1) it will suffice to show that
yz = uy implies xz = ux. Since K is an ideal, xz = αx for some
α. Suppose x and y are linearly independent. Then (x + y)z =
ax + uy must be a multiple of x + y and xz = wx. Suppose mx =
ny 7̂  0. Then max = mxz = nyz = nuy = umx and a = u, as
desired. The proof is complete.

We can now describe all S-rings on torsion-free groups.

THEOREM 2.6. Let G be a torsion-free group of the form
/ ί φ ( z ) . A S-ring can be constructed on G by, for x, y E H, setting
(x + αz) (y + bz) = bux 4- a (s — u )y + αbsz, where u (s — w) = 0. Any
torsion-free S-ring, not a zero-ring, has such a structure.

Proof. If R is a S-ring and i? 2 ^0, then the structure of R is as
above by (2.5). Conversely, suppose the above structure is given. It is
easy to check that multiplication is well-defined and that the distributive
law holds. Let a = x + az, β = y + bz, y = w + cz, where x, y,
w G H. We may assume w = 0 (the proof is similar if u = s). Then
aβ = asβ and property 5 is assured. Since (aβ)y = (as) (bs)γ =
ot(βy), the associative law is satisfied. Therefore, the construction
defines a S-ring.

3. Mixed rings. In this section the ring R is always mixed and
T is its torsion subring. It is well-known that the torsion subring of a
ring is an ideal. If R is a S-ring, we can say more.

PROPOSITION 3.1. If R is a S-ring, T2 = 0.

Proof We first show that x2 = 0 for every x in T. Let xGT,
y E R\T, where o(x)=n, x2 = rx, and y 2=sy. Then (x + ny)2 =
rx + n2sy — k(x -f ny) for some k. Hence, k = ns and x2 = nsx =
0. To complete the proof, it will suffice to show xz = 0 for linearly
independent x and z in T. We write xz = ax 4- bz and, since T is an
ideal, yz = cz. Then (x + y)z = ax + (fe + c)z and αx must be a
multiple of x + y which implies αx = 0. Similarly, we can show bz =0
by considering x(z -\- y). Therefore, xz = 0 and, as a result, T2 = 0.
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If i? is a mixed S-ring, not a zero-ring, then R/T may or may not be
a zero-ring. We consider the second case first and describe the structure
of R when (R/T)2^0 in Theorem 3.5. To prove it three lemmas are
required.

LEMMA 3.2. If R is a S-ring and R/T is not a zero-ring, then R has

an ideal K containing T and an element z such that K2 = 0, z 2 ^ 0, and

Proof. By (2.5), (R/T)+ = (K/T) φ (z + T) for some ideal K/T and
element z + T such that {KIT)2 = 0, (z + T)2 / 0. By the isomorphism
theorems for groups, JR + = K+ φ (z), where K D T and z2 ^ 0. Since T
and K/T are ideals, so is K. We must show K2 = 0. Since any two
elements of K are contained in a subgroup of torsion-free rank at most
two, it will suffice to show K2 = 0 where K+ = T φ ( x ) φ ( y ) for some x
and y. Since K/T is a zero-ring, so is ( x ) φ ( y ) as well as Γ. We will
show tx = 0 for ί in T and it will follow, by symmetry, that K2 =
0. Since T and K are ideals, tx = α/, zx = ftx for some # and b. Then,
(t + z)x = at + fex and αf is a multiple o£ t + z which implies ίx = αί =
0. This completes the proof.

For the rest of this section, 7] is the p,-component of T where {/?,},
i E /, is the set of prime numbers.

LEMMA 3.3. Let R be a S-ring, R+ = KQ)(z), where K D Γ, K2 =
0, and z2 = sz. Then:

(1) // K is mixed, for every x in K, xz = ux, zx = (s — u)x where
u(s- M) = 0 ;

(2) if K = φ T,, ί/z^re βx/5ί5 w, /or ^^c/ι i swc/i that xtz = utxn

zx, = (s ~ Ui)xn and u,{s — Ui)xt = 0 for every xt in T|.

Before proving this lemma, we establish the following.

LEMMA 3.4. Let R be as in (3.3). If x, y E K and o(y) is infinite or
o(x) divides o(y), then yz = uy implies xz — ux.

Proof. If x and y are linearly independent or if o(x) is infinite, the
argument at the end of the proof of (2.5) may be used to prove the
lemma. If x and y are dependent and o(x) is a finite number, then
x = w + ay for element w and constant a such that w is independent of y
and o(w) divides o(y). By the previous sentence applied to w and y,
wz = uw. Again xz = ux.

Proof of 3.3. In general, if x E K and xz = ux, then zx = (5 — u)x
and w(5 — u)x = 0. To see this, consider (x + z) 2 = xz + zx 4- sz. Since



RINGS WHOSE ADDITIVE SUBGROUPS ARE SUBRINGS 517

this expression must be a multiple of x + z, xz + zx = sx or zx =
(s - u)x. Also, swx = sxz = x(sz) = xz2 = w2x and w(s-w)x =
0. Suppose, then, K is mixed. If yE.K\T, and yz = uy, then
ι*(s — M) = 0 and, by (3.4), xz = ux, for every x in K We have proved
(1). Assume, then, K = Γ as in (2). We will examine the following
possible cases: (a) 7| is bounded, (b) Tt is not reduced, and (c) Tt is
unbounded and reduced, (a) Let Tt be bounded. Let y be an element
of maximal order in Tt and yz = uty. Then (2) follows from (3.4) and
from what was said at the beginning of this proof, (b) Let Ή contain a
divisible subgroup D of rank one. We claim Dz = 0 or zD =
0. Suppose this is not so. Then D contains an element y such that
neither yz nor zy is zero. For n >0, there exists x such that pnx = y,
and for some u, xz = ux and zx — (s — u)x by what was said
above. But, if n is large relative to o(y), uy or {s — u)y is zero since
u(s — u)x — 0, although uy = yz^ 0 ^ zy = (s — u)y. From this con-
tradiction we conclude that Dz = 0 or zD = 0 and yz = uy for all y in D
where u(s - u) = 0. If x E T,\D, we may select y E D such that o(x)
divides o (y) and (3.4) completes tne proof of (2) in case (b). (c) Suppose
T, is reduced with unbounded basic subgroup B. First, assume
Bz^Oy^zB. We show a contradiction. If x z ^ O ^ z y for x, y in B
arid o(x) divides o(y), then yz^ΰ by (3.4). In this event, we select
H Έ β of large order relative to that of y. Then, if wz = uw, zw =
(s-u)w, uy = yz^- 0^ zy = (5 - u)y. But u(s - u)w = 0 and the
largeness of o(w) imply uy or (5 — u)y equals zero. Therefore, Bz — 0
or zB = 0 and, for all x E J3, xz = ux where i φ - u) = 0. If g E η\B,
we may choose x E ί? such that o(g) = o(x) and, by (3.4), gz = ug. We
have established (2) for case (c).

THEOREM 3.5. Let G = H φ ( z ) fee α mixed group where HD
T. A S-ring R can be constructed on G by defining:

(1) // ί/y Γ, (x + az) (y + bz) = α(s - w)y + bux + αfoz /or x,
y ELH where u(s — u) = 0;

(2) i/ H = 0 JΠ, (Σ x, + αz)(Σ yt + bz) = a Σ(s - u^y, + b Σ MΛ

•f αfez /or x,, y, E T, where ut(s — u^Ti^Q for each i. If R is a mixed
S-ring and R/Tis not a zero-ring, R has the above structure with s^ 0.

Proof We prove the last sentence first. If R is a mixed S-ring and
R/T is not a zero-ring, JR has the structure of the theorem by (3.2), (3.3),
and the distributive law. Therefore, we assume G is as given and show
that (1) and (2) define S -rings on G. The proof for definition (1) is the
same as in (2.6). We assume (2) is given. A routine calculation shows
that multiplication is well-defined and that the distributive law
holds. This leaves associativity and property 5 to be verified. Let
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a = Σ xt + az, β = Σ y<f + bz, γ = Σ wt + cz, where xh yh w, G T, and let
nt = max (0 (*,•), o(y,), o(wt)). By the Chinese Remainder Theorem, we
can find k such that k = u, (mod n,) for each i such that JC,, y, , or w, is
nonzero. Then aβ = bka + a(s - k)β and property 5 is
assured. Finally, (aβ)γ = fcc/c2α + αc/c(s - fc)β + αf>s(s - fc)γ = α(/3γ)
and the ring is associative. The proof is complete.

If R is a S-ring, it may happen that R/T is a zero-ring but I? is
not. In this case, as we shall see, the additive group of R/T has rank
one but may not be cyclic. Hence, a few words on mixed groups of
torsion-free rank one are in order. Let G be such a group and
T = φ Γ , , / ε /, its torsion subgroup (X| is the p,-component of T where
pι is a prime number). Let z be a torsion-free element in G. We
partition / into subsets / and K such that i is in / or K exactly if the
^-height of z -f T in GIT is infinite or finite, respectively. The latter
height is designated nr In this case G has a generating set:

A = {7; zim zk}, i E /, j G /, k G K, n = 1,2, •

where

Z = pnjZjn + ί/π, ίyn G Tj

(*)

= pZfczk + ίk, fit e Tk.

Here zk = z if nk = 0. We write G = (A, *). Each element α in G has
a unique expression of the form:

(**) a = Σ *. + Σ 0Am, + Σ fcfcZfc + cz,

where xt G Γ(, m] depends on y, (α;, p; ) = 1, | αy | < p;

m', and | fck | < p ^ . The
last sentence can be seen by examining the image of a in GIT.

We are ready to state and prove the final theorem of this section.

THEOREM 3.6. Let G = (A, * ) . A S-ring R can be constructed on
G in the following manner. For each i in /, choose ut such that u\Tx = 0
and, if i G J, ux = 0. For each i and k φ Ϊ V y, choose uki and uμ such that
ukι =0= uμ if Tt is unbounded and pkuki = 1 = PjUn (mod p^) if Tx has least
bound p?\ Multiplication on G is defined by the following rules:

(1) T2 = 0, and xy = - yx for JC, y G A.
(2) For Xi G Tn zk, and zjn,

xxzk - ulϊpΐUiXt
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and

XiZjn = uJφΐ'UΛ (n, = 0 if iE J).

(3) For i E K and zk, z}n,

zxzk = u^uktk - uftuA

and

z,z}n = — uJiuX.

(4) For i E / and zιm, z]m

zιmzjn = 0.

(5) Multiplication on G is linear relative to A. If R is a S-ring and
R/T but not R is a zero-ring, then R has the above structure.

Proof (a) We prove the last sentence first. Assume 5-ring R is
not a zero-ring but R/T is. We claim t(R/T) = 1. To show this, it will
suffice to prove R is a zero-ring if R+ = T 0 ( x ) 0 ( y > , for some x and
y. We know T2 = 0. Since R/T is a zero-ring, so is the ring on
( * ) Θ ( y ) If t E T, (/ + y)x = ta is in T and must be a multiple of
ί -h y. Thus, to = 0. Other products in R are zero by symmetry, and
JR2 = 0. Therefore, r(R/T)= 1, and we let R+ = G = (A,*). We pro-
ceed to verify properties 1-5. Throughout this proof we assume k and /
are always in K and / respectively. First, since T and R/T are
zero-rings, it follows that, for JC, y E R, x2 = y2 = 0 = (x + y )2 = xy + yx
and, hence, (1) is necessary. If / E K, consider the subgroup
Tt φ<z,). By (3.3) with 5 = 0 , there is a constant w, such that u2Tt = 0
and xιzι - utxn for every x, in Tj. If i E / and JC, E T,, x,z,n = 0 for all n
because of the height condition on zm (modulo Tt) and, as a result,
xtzm = Mfjc, where ut = 0. We have proved (2) for / = k or /. Next, for
fixed i and fc ̂  ίV /, let wkl and u;ι be as stated in the theorem. If i E K,
by reason of (*),

pΓ MΛ = x.ίpΓ'z, + 0 = x^pΐZk + ίk) = JC,(p7z/n + ί/n).

If i ε / , the same equations hold true when, for m > 0 , p7 and zim

replace p" and z,, respectively. These equations, then, imply (2) for the
remaining possible cases. We next verify (3). By (1), any element in A
squared is zero and (3) is true for / = k. For i E K but iV K consider
pt!izι + ti = plkzk -f tk. Multiplying on the right (left) by zk (z f), we derive:
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pΐ%zk = uktk - uβpΐ uύ and pk

kzxzk = u"φn

k

kuktk - uxtx.

Since zxzk E Tk (£) Γl? z,zfc has the form given in (3). Similarly, consider-
ing pΓ z, + t = p;z/n + ί/π for / G K and multiplying right (left) by zjn (z,),
we derive the second equation of (3). We next prove (4). For i E / but
ίVy, consider pm

xzxm + tίm = /?;zyn + ίyn. If we multiply right (left) by z]n

(zιm\ we obtain p™zιmzjn = 0 = pnjZιmz]n which implies z,mzyn =
0. Suppose, however, / = y and m > n. Then z/n = pm~nzιm + x, for
some JC, E Tπ and z/mz;n = p m π z L + zιmxx = 0. We have proved
(4). Since (5) is obvious, the proof of the final sentence of the theorem is
complete, (b) Suppose G and multiplication on G are as given in the
theorem. We must prove that multiplication is well-defined and that the
associative and S properties are present. We first observe that the
second equation of (1) is consistent with the first equation of (3) and of
(4). We now prove multiplication is well-defined. First, if x E A and
y, yγ are two representatives of z given by (*), we claim xy = xyx and it is
meaningful to write xz = xy = xyλ. To prove this, we consider
cases. If x E T(, a reversal of the proof of (2) above yields the desired
result. If x = zt, i E X, a reversal of the proof of (3) above yields the
desired result. If x = zjm then xy = 0 for every representative y of
z. We compute the less obvious product. Let z = p?zx + ί,,
/ E K. Then

= pΐun

]luιtι -uΊipΐuά =0.

Secondly, if x E A and z]n = PjZjn+ι + x]n where xjn E T7, we claim xz]n =
x(PjZ]n+ι + x]n). Again we consider cases. If x E Tn (2) yields the de-
sired result. If x = zn i E K, then, by (3),

ZxZ]n = - llJiUttt = PJ(- Ujι

 + lUitι) = Pj(ZiZjn + 1)

as desired. If x = zim, / E /, then zιmz/π = 0 = zιm(p}zjn+ι + x/π), as
desired. Thirdly, multiplication on all of G is well-defined. By reason
of (1) and (5) it will suffice to show that aβ = a'β where a = a\ a is the
representative of (**), and β is arbitrary in G. Suppose, then, a'=
Σ,y, +Σj(Σnd}nz}n) + Σkekzk + fz where y, E Tx. For fixed / and n < mp

by what was said above, d]nz]n may be replaced by djnp,z]n+λ + djnx]n in
computing a'β. If n > mn by the uniqueness of the form of α, djn = Pjdf

]n

for some d']n and rf,nz;n = d']npjZjn = djn(zjn-λ - xjn-x). We replace the left
term by the right term in computing a'β. Continuing in this manner and
simplifying, for each /, we may replace y, + Σπ djnz}n by x} + a}z]m] + fiz for
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some fj. In like manner, for each fc, we may replace yk + ekz by
Xk + ί>/A + fkZ for some /fc. The sum of the /; 's, /, and the fk 's must equal
c and it follows that a'β = aβ. Multiplication is well-defined. Finally,
we establish the associative law and property S. It will suffice to show
them for a subring Rι of R where Rt is finitely generated over T. Since
any finitely generated subgroup of the group G/T is cyclic, we may
assume R\= T 0 ( y ) where y is a linear combination of members of
A\T. By reason of (1) and (2) and linearity, there exists a constant vt for
each i such that x,y = ιvct = — yxt for every xt in T| and v2

iTι = 0. By
the proof of (3.5), JRi is associative and possesses property S. The proof
of the theorem is complete.

4. Special properties. The additive group of an Artinian,
Noetherian, or regular ring belongs to a narrowly defined and well-
known class of groups (see chapter XVII of [4]). This knowledge
together with the theorems of the preceding sections enable us to decide
the nature of particular classes of S-rings. We describe the classes that
seem most important in the following corollaries.

COROLLARY 4.1. A S-ring R has an identity if and only if R is
isomorphic to Z, to Z/(2)φZ/(2) (ring-direct sum), or to 0Z/(p r t p )
summed over a finite number of distinct primes p where np depends on p.

COROLLARY 4.2. The rings Z and Z/(p) are the only integral
domains with property S.

COROLLARY 4.3. A nontriυial S-ring R is regular if and only if it has
the form φ Z / ( p ) (ring-direct sum) where each p^2 (p = 2) occurs at
most once (twice).

COROLLARY 4.4. A S-ring R is Artinian if and only if it is a torsion
ring of finite rank.

COROLLARY 4.5. A S-ring R is Noetherian if and only if R+ is a
direct sum of a finite number of cyclic groups.

In the following let T be the torsion subring of R and Tt be the
pι -component of T for prime number /?,. Let φ signify ring-direct sum
and let (z) and (z,) signify the subring generated by z and zn respectively.

COROLLARY 4.6. A ring R has the property that every additive
subgroup is an ideal if and only if

(1) R is a zero-ring,
(2) R = T(&(z) and T2 = sT where z2 = sz, or
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(3) R=φTt and, for T]μ 0, η = Ή 0 ( z , ) and H2

i = Q
where z] = 5,-z. .

The last corollary is not new and may be found in [5]. We include it
here because it follows readily from the theorems of the paper.
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