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For F a field and G a group, let FG denote the group
algebra of G over F. Let ¥ be a class of finite groups. Call
the fields F and F equivalent on ¥ if for all G, H € 9, FG = FH
if and only if FG = FH. In [9] we began a study of this
equivalence relation, discussing the case when ¥ consists of all
finite p-groups, for p an odd prime. In this note we continue
our study of the equivalence relation. Section one deals with
some general results, section two solves the equivalence problem
when % is the class of all finite 2-groups, and some remarks
about the results are made in section three.

1. Throughout this paper we assume that all group algebras FG are
semi-simple, that is, the characteristic of F is zero or does not divide the
order of G. As usual, {, denotes a primitive nth root of unity, Z, is the
field of p elements, and Q, is the p-adic field.

Let G be a finite group of order n, and K afield. Then KG =X, A,
with A, = [K]., ® D,, where D, is a finite dimensional division algebra
over K and [K],, represents the ring of u, X u, matrices over K. Call D,
the division algebra of A, If C is the center of D, then K CC, CK({,).

Let K,G (K,G) represent the sum of those A, for which the
division algebra is (is not) commutative. Then KG = K,G & K,G. If
chark # 0, then KG = K,G.

THEOREM 1.1.  Let L be a field extension of the field K. Let G and
H be groups of order n.  Suppose that L is linearly disjoint from K({,) over
K, and KG = K,G. Then KG = KH if and only if LG = LH.

Proof. 1If KG =~ KH then LG = KG ®«L =~ KH ®«L = LH.
Conversely, suppose LG =LH. Then KG = Z,[K]., ® K, where
K CK, CK(Z). So

LG=(3[KL ®K)®L
K K
~3[KL. ® (K ® L)
K K
=2[K]. @ KL since K, and L are linearly disjoint.
K

=2%([L], ® L, where L, = K.L.
L
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This shows that the numbers u, are determined by LG. Also L, N
K({,)= LK, N K({,)= K, by linear disjointness. So each L, determines
a K. Thus LG determines KG. This proves the converse.

CoroLLARY 1.2. If the field K is algebraically closed in the exten-
sion field L, and KG = K,G, then KG = KH if and only if LG = LH.

The next two results apply to the case where KG# K,G.

THEOREM 1.3. Let L/K be a field extension of degree r# ». Let
G, H be groups of order n. Assume that (r,n)=1 and L is linearly
disjoint from K({,) over K. Then KG = KH if and only if LG = LH.

Proof. Suppose LG = LH. As before, we show that LG deter-
mines KG. Let KG =X A, where the A, are simple algebras. Then
LG=3A, where A =A QxL FEach A is also a simple
algebra. For example, let A = A,=[D],, where D is the division
algebra of A. Let C be the center of D. Then K CC CK({,), and so,
by linear disjointness, A @xL =[D].QCRQ«L =[D],Q-CL =
[D&®cCL},,and [CL: C]=[L: K] = risrelatively prime to the index of
D, (indD). Consequently, D CL is also a division
algebra. (Corollary, Theorem 20, p. 60, [1].) It is the division algebra
of the simple algebra A @« L, and its center is CL. So what is necessary
is to check that A @QxL determines A uniquely, that is, D & CL
determines D. But the center C of D is uniquely determined by
CLNK(,)=C Now suppose D QL =D’'QxL for some second
division algebra, D', whose center also is C. Let D' be the inverse of D
in the Brauer group. Then, for some integers [ and v:

[CL],=[C]®L=D"'"®DQ®L=D"®D'QL=[D"].®L

K
= [D” & CL]
C v
where D" is a division algebra whose center, again, is C. So CL splits
D". But(r,ind D")= 1 because ind D" divides (ind D). So D"= C, so
that D' is the inverse of D’, that is, D = D’.

THEOREM 1.4.  Suppose L is a purely transcendental extension of the
field K. Then KG = KH if and only if LG = LH.

Proof. We show once again that LG determines KG.

Case i. L = K(x), x transcendental.



ON SEMI-SIMPLE GROUP ALGEBRAS I1 555

Again, KG =3[D,],, D, a division algebra with center C D
K. And again we examine a particular D, = D, (C, = C, u, = u). Then
LRRD=LXKCRcD=LCKR:D issimple. (68.10f [S§].) So there
is an integer, ¢, and a division algebra, E, such that L Q«xD =[E]. If
t#1, L QxD must have zero-divisors. Suppose a, B € L QxD with
a-B=0. Thena=3r(x)Qa, B=2s(x)R b, where r(x),s(x)EL
and a, b, € D. Multiplying by a suitable p(x) Q1 EL XD we can
assume that r(x),s(x) are polynomials in x. We then obtain an
equation of the form 0= (Zcx') (2 dx') with ¢,d € D. Obviously
either a =0 or B=0. So t=1 and L ®D =E is also a division
algebra. And E determines D. For suppose LQxD =LXRxD"
Then, as in the previous proof, there exist integers u, v such that:

[LC]M:{L(?C] =LQICL=L®D®D'=L®D'QD"

u

~L @D, ~|L®D"|
K K v

for some division algebra D" with center C. But since L @xD" is a

division algebra, v = u and L QxD"=LC. Thus D"= C andso D™'=

(DY, iie. D=D".

Case ii. L has finite transcendence degree over K.

The result follows immediately from i by induction.
Case iii. I is an index set and L = K{x, | i € I}.

Let G={g, -, g}, H={h,, -+, h,} and suppose ¢: LG — LH is
an L-algebra onto isomorphism. Write ¢(g)=2" a;h, i=1,---,n
and ao; € L. Then each «, is the quotient of two polynomials with
coefficients in K, each involving only a finite number of the indetermi-
nates {x, | i € I}. Let B be the set of all indeterminates which appear in
any of the @, 1=1i, j=n. Then [B|<x. Also ¢(g)€ K(B)H, i =
I,---,n. And ¢: K(B)G — K(B)H. But ¢ isa K(B) isomorphism of
the finite dimensional vector space K(B)G into K(B)H. So it is
onto. So LG = LH implies K(B)G = K(B)H. Since K(B)isa purely
transcendental extension of K, of finite transcendence degree, the result
follows by Case ii.

2. Let K be afield. Let yx(n)=deg(K({»-)/K({r+)). We call
{yk(n)} n=1,2,--- the 2-sequence of K. This sequence has one of the
following forms:

1,1,1,---
1,1,1,---,1,2,2,---
2,2,2,---.

bl
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Define:
1if ye(1)=2
ind, K =9 p if ye(n)=2, w(n—1)=1, n=2
w if ye(n)=1, n=1,2,3,--"

1if X?+ Y*= —1 issolvable in K
HK) 0 if X*+ Y?*= —1 is not solvable in K.

11if X*+1=0 is solvable in K
O(K)Y=1 it X2+1=0 is not solvable in K.

We call ind,(K), t(K) and O(K) the 2-invariants of K. In [8] the
following proposition was proven:

ProposiTioN 2.1.  Let K, L be fields. Then K and L are equivalents
on the class of all finite abelian 2-groups if and only if O(K)= O(L) and
ind,(K) = ind,(L).

This result is generalized here to all finite 2-groups.

LEmMMA 2.2. Let p be an odd prime. Then the equanon X*+ Y*=
—1 is solvable in Z, and in Q,.

Proof. Any homogeneous polynomial equation of degree 2 in 3
variables has a nontrivial solution over a finite field, X*+ Y*+ Z*=0 in
particular. This leads to a solution of X*+ Y?= —1. Let a,b€ Z,
satisfy a®+ b*= —1. Regarding a as an integer in Q,, the equation
Y?= —1-a’issolvable in Z, and hence in Q,. This yields a solution of
X*+Y'=~-1in Q,

LemMmA 2.3. Let F be a field of characteristic 0. Let a, b be
elements transcendental over F such that a’+ b’>= —1. Then the alge-
braic closure of F in F(a, b) is F.

Proof. deg(F(a,b)/F(a))=2. Soif a € F(a,b) and « is algebraic
over F then deg(F(a)/F)= 2 Suppose aZF and a=V4d,
d€F. Then F(a,b)= F(a, \/21) So b= p(a)+q(a)\/:1 for some

pa),q(a)E F(a). —1-a*=p*a)+q*(a)d+2p(a)q(a)Vd Thus
p(a)=0 or q(a)=0. (a)=0, then b€ F(a), which is
impossible. So b = q(a)\fq Write  g(a)=q.(a)/q.,(a) where

4:(a), 4:(a) € Fla]. Now (- 1)(1+a*) = d(q:(a)//(q:(a)y. But1+a’
is either irreducible in F[a] or the product of two primes, while the prime
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factorization of (q.(a))’/(q.(a))’ involves only squares of primes. This
contradicts the assumption that a & F.

If n = 2 is a positive integer, the field Q ({,~) contains a unique cyclic,
real extension of Q, of degree 2"7*. Call this field R,. Then R,CR;C
R,C---.

THEOREM 2.4. Let K, L be fields. Then K and L are equivalent on
the class of all finite 2-groups if and only if t(K)=t(L), O(K)= O(L),
ind,(K) = indy(L).

Proof. Let # be the classical quaternion algebra of Hamilton over
Q. Let F be a field extension of Q. Then F splits # if and only if
t(F)=1. ([3], problem 12, page 149.) Suppose K and L are equival-
ent on the class of all finite 2-groups. By Proposition 2.1, O(K) = O(L)
and ind,(K)=1ind,(L). Let G be the quaternion group of order 8 and H
the dihedral group of order8. Then QG=Q PO PH O PH O P ¥ and
QH=0H Q0P QPHOP[Q],- (This can be deduced, for example,
from the examples on page 339 of [5], plus the fact that the characters of
G and H are allreal.) So KG# KH if and only if # does not split over
K, ie. t(K)=0.

Conversely, suppose t(K) = t(L), O(K)= O(L), ind,(K) = ind,(L).

Case 1. t(K)=1t(L)=0.

Then O(K)=O(L)=0. By Lemma 22 charK =charl =
0. Assume first that ind,K = n <o. Then R,.,CK, R,,;CL, and the
2-invariants of R,., and K agree. It is sufficient to show that R,.,, and K
are equivalent on the class of all finite 2-groups. Let G be a group of
order 2. Write R,,,G =R,,,,G P R,..,G and KG = K,G P K,G as
in §1. But the only division algebra that can occur at a simple
component of KG (or R,,,G) is ¥ oK (or # QoR..1). (7)) So
K,G determines R,.,,G. As in the proof of Theorem 1.1, K,G deter-
mines R,.,;G. So KG determines LG.

If ind,K =, and | G |=|H|= 2, then R, CK and R, CL, so that by
an argument similar to the previous, KG = KH if and only if R.G = RH
if and only if LG = LH.

Case ii. t(K)=1t(L)=1 and charK =charL =0.

Now, if G is a 2-group, KG = K,G. Suppose ind(K)=n <. If
O(K)=1, then Q({,+)CK and Q({»+)CL. The result follows by
Theorem 1.1. If O(K)=0, then R,,;CK. Let g, b be transcendental
over K, satisfying a’+ b>= —1. Then K is algebraically closed in
K(a,b). By Corollary 1.2, K and K(a, b) are equivalent on finite
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2-groups. R,.(a,b)CK(a,b). So by Proposition 1.1 of [9]
R..i(a, b, {y) and K(a, b) are linearly disjoint over R,.,(a, b), because
R...(a,b,{x)NK(a,b)=R,,(a,b,a) for some a € Q({r), and by
Lemma 2.3, « € K and R,.(a, b, {»)N K(a,b) = R,..(a, b). Therefore,
by Theorem 1.1, R,.(a,b) and K(a,b) are equivalent on_2-
groups. Similarly, let 4, b be transcendental over L, satisfying a*+ b* =
—1. Then R,..(a, b) and L are equivalent on all finite 2-groups. It is
sufficient, therefore, to check that R,.,(a, b) and R,.,(a, b) are equivalent
on finite 2-groups. But ¢: R,.,(a, b)— R,..(a, 5) given by ¢(r)=r if
r€R,.., ¥(a)=a, y(b)=b extends to an isomorphism of R,.(a, b)G
onto R,.,(a, b)G. 1If ind,K = =, proceed as in Case i.

Case iii. 1(K)=1t(L)=1, charK = p >2.

Suppose ind, K = n <. It is sufficient to show that there is a field
K of characteristic 0 with the same 2-invariants as those of K, and which
is equivalent to K on the class of all finite 2-groups. If O(K)=0, let
T=2, fOK)=1let T=2Z,({). Ineithercase T CK, T and K
have the same 2-invariants, and by Theorem 1.1 T and K are equivalent
on finite 2-groups. Let K be a totally unramified extension of Q, which
has residue class field T. By Proposition 2.4 of [9] and Lemma 2.2, K
and T have the same 2-invariants and are equivalent on the class of finite
2-groups. For ind, K = o, we proceed again as in Case i.

CoroLLARY 2.5. Q and Q, are equivalent on the class of all finite
2-groups.

Proof. By Eisenstein’s criterion, the 2'-th cyclotomic polynomial is
irreducible over Q,. Hence ind)(Q,)=ind,(Q). We must check
1(Q,)=0.

If X?+ Y?= —1lissolvable in Q,, with X, Y 2-adic integers, then the
equation X?+ Y?= —1 (mod 8) is solvable, a contradiction. Otherwise,
we can assume the solution of X*+ Y?= —1in Q, has the form X = a/2’
y = B/2" with r >0, « and B 2-adic integers and @« =1 (mod 2). Then
a’+ B°=0 (mod 4). This leads to a solution of Z*= —1 (mod 4), a
contradiction.

3. (i) The hypotheses of Theorem 1.3 are all necessary. The two
non-abelian groups of order 8 suffice to check this.

(i) In Theorem 1.4 we cannot just assume that K is algebraically
closedin L. Forif K = Q, L = Q(a, b), with a, b transcendental over Q
and a’+ b*= —1, by Theorem 2.4, K and L are not equivalent on
2-groups.
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(iii) If K is an algebraic number field, by the results in [6] we can
say exactly when X?+ Y?= —1 is solvable in K.

(iv) In [9] we asked whether there is a prime field Z, that is
equivalent to Q on the class of all p-groups, for p odd. This says that
q*'#1 mod p® for all p# q. Such primes g are studied in relation to
the Fermat problem, and numerical indications can be found in [4].
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